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Entering the LHC High Luminosity Era

Hufnagel et al.: EPJ 214 (2019)

LHC is about to enter a phase of unprecedented luminosity (= collision rates)!
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Why such high luminosity?

• The Standard Model (SM) is inher-

ently incomplete, as it fails to explain

many phenomena (gravity, dark mat-

ter, dark energy, neutrino oscillations,

matter-antimatter asymmetry...)

• At the same time SM is extremely pre-

cise in predicting experimental obser-

vations as no result contradicts SM by

5 σ

• In order eliminate possible extensions

of the SM, rare processes with so far

high uncertainties have to be measured

with higher precision, which could lead

to a breaking of the 5 σ bound

Mohamed: Spinger (2020)
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Role of theoretical predictions

In the high luminosity era, theory predcitions also need to be of increasing precision.

ATLAS: JHEP 08 (2022)

• Signals of small magnitude can be only identified when the background is precisely known

• The plurality of extensions of the SM leads to the necessity to discreminate between their

predictions

• Precise theoretical predictions are necessary to guide experimentalists to observables which

are most likely to show deviations from the SM
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From Theory Models to Cross Sections

dσ ∼ f (x)∣M(x)∣2dΦ σ ∼ ∫ dσ

Lagrangian Interactions Matrix element

Phase Space

Integration for total

cross section

Hadronization

Comparison with

Experiment

ALICE

Additionally, many detector simulations need unweighting, which requires the ability to create

unbiased samples of the phase space, e.g. i.i.d samples.
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Challenges of Phase Space Integration

• Integration of the matrix element is often too complex to be performed analytically, espe-

cially at higher order

• For processes with a high number of particles in the final state, the integrals become quickly

high-dimensional

• Phase space cuts for regularization and peak structures create a high variance in the value

of the integrand

• Parton distribution functions (PDFs) create correlations in the phase space

• Evaluation of the integrand can become very costly, around O(1s) !
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Numerical Integration
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Numerical Integration

Monte Carlo integration: Integral is the average over randomly sampled integrand points:

Î
(N)
X =

1

N

N

∑

i=1

f (xi) ÐÐÐ→
N→∞

I = ∫
Ω
dxf (x)

For uniform sampling, this is equivalent to the expectation value of the integrand.

I = EX∼U(Ω)(f (X )) = EX∼U(Ω)(Î
(N)
X )

The variance of the estimator for the integral given by the MC method becomes then

Var(Î
(N)
X ) =

1

N2

N

∑

i=1

Var(f ) =
Var(f )

N
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Numerical Integration

Var(f ) may be determined by the unbiased sampling variance

Var(f ) ≈ s2N =
1

N − 1

N

∑

i=1

(f (xi) − I
(N)
X )

2.

If the sequence converges, the uncertainty estimate of the MC approximation becomes

σ(Î
(N)
X ) =

σ(f )
√

N
=

sN
√

N
.

Error scales with N−1/2. Other numerical methods scale even worse (e.g.N−2/D) How would one

naively increase precision of the prediction? → Naive solution: Increase number of samples!
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The end of Moore’s Law

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Free lunch is over! The increase in precision from the LHC High Luminosity Era outperforms

the increase of thread speed from better CPUs.
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Importance sampling

Two orthogonal ways to improve precision while limiting cost: Integrate on GPU (MC integration

is embarrassingly parallelizable) or sample cleverer than uniformly → Importance Sampling

(Jarosz (2008))

I = EX∼U(Ω)(f (X)) I = ∫Ω p(x)dx f (x)
p(x)
= EX∼p(U(Ω)) ( f (X)p(X)

)

Uniform Sampling Importance sampling

lim
p→f

Var(EX∼p(U(Ω)) (
f (X)
p(X))) = 0
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Importance Sampling

The problem of MC integration has been reduced to predicting the integrand for

sampling from it!

Generally two starting points exist:

1. Using prior knowledge of the integrand, e.g. Multichanneling

(Kleiss&Pittau Comput.Phys.Commun. 83 (1994))

g(x) =∑
i

αigi(x), ∑

i

αi = 1

2. Using adaptive approaches without prior knowledge.

We focus on the latter, as this can perform black box integration and needs to only perform one

integral.
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The Benchmark: VEGAS

• Most common used importance sampling algorithm, in use since late 70s

Lepage : JCP 27 (1978)

• Fast, modern extensions exist Sakitotis et al.: 2202.01753

• Factorises along each dimension p(x) = p(x1)p(x2)...p(xn)

• Approximates the integrand by a step function with M steps with likelihood of 1/M to draw

a sample, and learns stepwidth
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The issue with VEGAS

Factorization limits the performance of VEGAS! This is especially relevant when correlations

exists, for example due to PDFs. VEGAS works only well if dimensions are independent.

Additionally, many peaks in high dimensions also reduce convergence speed.
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Improvements of VEGAS

• VAMP: (Ohl: CPC 120 (1999)) approximates integrand not only with product, but also sum

of functions, implementing the mulitchannel approach

• BASES: (Kawabata, CPC 88(1995)) treats some of the dimensions as ”wild” with strong

variations and other as less important

• PARNI: (van Hameren, APP B40 (2009)) Local multichannel approach, together with sub-

regions where the density is constant

• VEGAS+: (Lepage, JCC 430 (2021)) Use stratified sampling, which partitions the integration

volume into regions of similiar values. Reduces effects of having structures and multiple

peaks. Used as benchmark in the following.

Although each of these represent an improvement, they cannot overcome the core limitations of

this approach
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Neural Networks (NN) for the rescue?

• Advantage: NN are universal function approximators. One could learn the integrand di-

rectly and sample from it. (1707.00028, Klimek et al.: SciPost P. 9 (2020), Chen et al.: SciPost

P. 10 (2021))

• The NN learns the whole event generation

• Input random numbers, output 3N − 4 variables in [0,1) which are mapped into the phase

space

• minimise KL divergence
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Neural Networks (NN) for the rescue?

• Other approach: use generative adversarial networks

• Two NN compete: one produces samples, one tries to determine if they are from the training

set or generated

• Works well for event generation (Butter et al.: SPP 7 (2019))and unweighting (Backes et al.:

SPP 7 (2021))

• Struggles with regions poorly populated in the phase space
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Neural Networks (NN) for the rescue?

Problem: We still have to sample from the learned function!

This is very problematic!

For sampling from the learned distribution, we need the Jacobian, which also has to be

invertible. In general, this is not guaranteed for a NN and is very costly and unstable. The

model might ignore tails of the phase space which makes unweighting difficult.

Reason

If T (u) = x ∼ q(x) and u ∼ p(u), with T the transformation of the probabilty distribution,

then:

q (x = T (u)) = p(u) ∣JT (u)∣
−1,

where JT is the Jacobian determinant of T :

JT (u) = det
∂Ti

∂uj
(u).
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Normalizing Flows (NF)

• Idea: Instead of learning the integrand directly, we learn the parameters of a bijective

mapping! (Bothmann et al.: SciPost P. 8 (2020), 2001.05486, Gao et al.: PRD 101 (2020),

Winterhalder et al.: SciPost P. 12 (2022)).

• Normalizing flows are such a parametric diffeomorphism (Papamakarios et al.: JMLR 22

(2021))

• T (⋅, θ) has a tractable Jacobian which can be calculated without backpropagation, which

is composable and where θ is optimized during training.

• We realise NF with coupling cells. (1410.8516, 1605.08803,1808.03856)

• Other than VEGAS, we do not suffer from grids or binning.

• We learn the correct change of variable, just like VEGAS, but better!
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Coupling Cells

Masking

Coupling cell 1

m(xA)

C(xB ;m(xA))

Coupling cell 2

. . .x

xA

xB

yA

yB

Coupling cell n

z

Π
J1 J2 Jn

Πn
i=1Ji

Schematic structure of a coupling layer. m is a NN, which determines the parameters of separable,
invertible functions C(xB , θ). The masking has to performed in such a way that every coordinate
influences the transformation of all other coordinates.
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Coupling Cells

Due to the masking, the determinant of the Jacobian of each cell becomes especially simple to

calculate:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

1 0

0⋱

0 1

∂CB(θB ,xB)
∂xA

∂C b1(θb1
,xb1)

∂xb1
0

⋱

0
∂C bB (θbB

,xbB )

∂xbB
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Coupling Transform

Commonly, there are three different forms for the coupling transform:

• affine: yB = CB
(xB ,θB

) = xB ⊙ es
B

+ tB , θB
= (tB , sB) ∈ R2,∣B ∣

• piecewise-linear yB = CB
(xB ,θB

), with each component

Cb(xb,Q) = ∫
xb
0 cb(t)dt = αQbk +∑

k−1
s=1 Qbs , which is basically a step function

• piecewise-quadratic yB = CB
(xB ,θB

), with each component

Cb(xb,W,V) = α2

2
(Vbz+1−Vbz)Wbz+αVbzWbz+∑

z−1
k=1

Vbk−Vbk+1

2
Wbk , which is a step function

with varying bin width → needs less bins to achieve good resolution

Piecewise-linear approximation Piecewise-quadratic approximation
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Training Strategy

Want to minimise: σ2
(f ,p) = E

x∼p

⎛

⎝

(

f (x)

p(x)
)

2
⎞

⎠

− I 2.

Forward variance training:

Lforward(θ) =
1

N
∑

f 2(x)

p2 (x , θ)
.

Two sources of dependence on p: p itself and sampled points - strong dependence on initialisa-

tion, constant resampling needed. Good for late stages of training, when p is a good estimator.

Niklas Götz NIS: Accelerating Phase Space Integrals in HEP with GAI 22



Training Strategy

Backward variance training

Let us consider a second PDF q:

Lbackward(θ) =
1

N
∑

f (xi)
2

q(xi)p(xi , θ)

Sample is now independent of p, so we can ensure good coverage (for example, with choosing q

uniform), or run multiple gradient steps with the same batch of points by a frozen copy of the

NF (similiar to buffered training in MadNIS Heimel et al.: SciPost P. 15 (2023))
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Training Strategy

Adaptive Training

• Uniform q optimises coverage in the beginning, and immunizes against random initial model

• Frozen NF as q optimises θ better

• Switch between both approaches once loss with frozen NF is smaller than with uniform

sampling

• Guarantees training on whole phase space, improves stability and convergence

Kullback-Leibler-Distance training:

Alternatively, one could also maximise similarity between distributions:

DKL(q∣p) = ∫ dxq(x) log
q(x)

p(x)
= ∫ dx

f (x)

I
log

f (x)

I
−

f (x)

I
log q(x)∝ −∫ dxf (x) log q(x)

This however trains also regions where the integrand is small and less relevant
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Simple Examples in 2D with ZüNIS

Trained Mapping between latent space and target distribution for 2D functions
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Simple Examples in higher dimensions with ZüNIS

Without any hyperparameter tuning, NIS can reduce the number of needed sample points

by orders of magnitude in comparison to uniform sampling and VEGAS. High-variance high-

dimension situations need tuning.

Training on 1M points.

Niklas Götz NIS: Accelerating Phase Space Integrals in HEP with GAI 26



Simple Examples in higher dimensions

Even though boosted by GPU usage, sampling and training are considerably slowed down using

NIS in comparison to VEGAS. This effect is negligble if integrands are expensive to evaluate.

Niklas Götz NIS: Accelerating Phase Space Integrals in HEP with GAI 27



Simple Examples in higher dimensions

Keeping the model frozen for 5-10 epochs greatly improves performance!
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Towards Cross Section Integrals: Phase Space Sampling

• For evaluating differential cross sections, arguments need to be valid phase space points

• Phase space sampling should be done on GPU to minimise data transfer cost and maximise

parallelization

• Number of sampled random numbers has to be kept minimal → ideally same as degrees of

freedom

• Use ”RAMBO on diet” algorithm (1308.2922) in the PyTorch libraryTorchPS (10.5281/zen-

odo.4639109)

• Inverse is straightforward

• Creates 1.2M massive 4-particle final states per second on GeForce RTX 2080
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Integration of MadGraph cross sections

MadGraph is a software tool to calculate (differential) cross sections Alwall et al.: JHEP 07 (2014)

Three benchmark examples:

• trivial, uncorrelated and peak-free process e+e− → µ+µ−

• dd̄ → dd̄ with correlations due to PDFs

• uc → ucg three jet cross section for higher-dimensional integration

All processes with cuts which lead to discontinuities!
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Integration of MadGraph cross sections - speed-up

• Typical challenge of cross section integration: high variance of training outcome, different

choice of loss function favourable. Training on 500K evaluations

• Improvements increase for complex integrands

• VEGAS performs well for uc → ucg due to phase space sampling aligning enhancements

and reducing correlations
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Integration of MadGraph cross sections - Unweighting Efficiency

• Unweighting efficiency: how much data of an original sample is kept when employing a veto

algorithm during sample generation

• For simple integrals, unweighting benefits from NIS

• Similar trends as for speed-up
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Impact of adaptive training

Using adaptive training reaches maximum training performance faster and more stable due to

better coverage of integration space!
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Limits of the black box approach

i-flow: Gao et al.: PRD 101 (2020)

• We observed a decay of improvements in high dimensional spaces

• If most of the phase space does not contribute to the integrand, black box approaches are

likely to fail

• Similar approaches observed issues at high-multiplicity events

• Here prior knowledge is necessary in order to stabilise training
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Limits of the black box approach

Other refinements Heimel et al.: SPP 15 (2023) and 2311.01548

• MadNIS combines Neural Importance Sampling with multichanneling

• It uses initialization with classical importance sampling algorithms to speed up and stabilise

training

• However, high-dimensional multi-jet cases stay challenging even for the improved MadNIS

approach
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The ZüNIS library

• Fully open-source PyTorch-based NIS tool which can be trivially run on GPU

• Wide range of automatic benchmarks included

• Extensivly documented, aimed at being used by non-experts by providing reasonable defaults

• Installation is as easy as pip install zunis

• Incorporates all presented strategies and refinement of NIS

Basic example:
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Survey and refine stages

• Start by performing a survey phase, in which it optimizes the way it samples points

• In the refine phase, the integral is calculated using the learned sampler

• Steps are useful to observe convergence and for resampling point batches

• Samples of survey phase are by default not used for integration
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Customising coupling cells

To implement a new invertible coupling cell, provide an InvertibleTransform object, which

provides both forward and inverse mapping as well as Jacobian calculation. For example, consider

a very simple linear coupling cell over Rd

y = Q(x) ∶ {
yA
= xA

yB
= exp (T (xA)) × xB ,
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Customising coupling cells

Now we can construct the coupling cell training the transformation parameters, and specify the

architecture of the NN.

At this point, we are ready to go!
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Conclusion

• NIS beats VEGAS for most cases both for convergence rate and unweighting efficiency

• Due to high cost of training in comparison to VEGAS, it fills the gap for high-cost integrands

with correlations

• Careful choice of survey strategy is necessary to unleash full potential of NIS

• With ZüNIS, a NIS library is available both trivial to use in an arbitrary context and flexible

enough to modify at wish, suitable to explore this method and expand it

• WithMadNIS, a full NIS-powered event-generator is in work to be integrated inMG5AMC,

including many additional features
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