Detecting rare phenomena at high rates with Compressed Baryonic Matter experiment

> Maksym TEKLISHYN for the CBM Collaboration

> > GSI (Darmstadt), June 11, 2024

> > > Seminar at CP3, UCLouvain

Introducion to heavy ions

Nuclear mater at neutron star density

Equation of state of nuclear mater

$$P = \rho^2 \delta(E/A) / \delta \rho$$
 T=const

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

$$E_A(
ho, \delta) = E_A(
ho, 0) + E_{\mathsf{sym}}(
ho) \cdot \delta^2 \quad \mathsf{with} \quad \delta = rac{
ho_n -
ho_p}{
ho}$$

- Symmetric matter ($\delta = 0$):
 - $E/A(\rho_0) = -16 \,\mathrm{MeV}$
 - Slope $\delta(E/A)(\rho_0)/\delta\rho = 0$
 - curvature $K_{nm} = 9\rho_0^2 \delta^2 (E/A)/\delta \rho^2$
 - ► K_{nm}(ρ₀) = 210 220 MeV (Giant monopole resonances)
- Symmetry energy:
 - $E_{\text{sym}}(\rho) = E_{\text{sym}}(\rho_0) + \frac{L}{3} \left(\frac{\rho \rho_0}{\rho_0}\right) + \frac{K_{\text{sym}}}{18} \left(\frac{\rho \rho_0}{\rho_0}\right)^2$
 - Empirical value E_{sym}(ρ₀) ≈ 30 MeV
 Theoretical value L(ρ₀) ≈ 60 MeV

m.teklishyn@gsi.de

High rates CBM experiment

State of the nuclear matter depending on baryochemical potential (μ_B), isospin symmetry (μ_I) and temperature (T)

Special interest: observation of the phase transition and finding the critical point

Heavy ion collisions

Ultra-relativistic Quantum Molecular Dynamics (UrQMD)

- Combines with hydrodynamic models for comprehensive simulations.
- Initial dense phase: hydrodynamic treatment.
- Later dilute phase: microscopic transport.

UrOMD transport calculation Au+ Au 10.7 A GeV

Heavy ion collisions

Parton-Hadron-String Dynamics (PHSD)

- Microscopic off-shell transport approach for relativistic heavy-ion collisions.
- Describes the evolution from initial scatterings through QGP to hadronization and hadronic phase.
- Developed by Giessen/Frankfurt groups based on Hadron-String Dynamics (HSD).

Heavy ion collision time evolution

- Clockwise evolution, 1 step is 1 fm/c
- Excitation energy density:s energy density minus mass density
- Dashed line: possible area of phase coexistence

m.teklishyn@gsi.de

High rates CBM experiment

Exploration of the QCD phase diagram at high baryonic densities:

- Fixed-target experiment
- Investigation of the properties of dense QCD matter
- ► Transport calculations at SIS100 energies:
 - ► $\epsilon \leq 2.5 \,\text{GeV fm}^{-3}$ and $5 \dots 8\rho_0$, expecting to reach neutron-star densities
- Long time ($\geq 5 \text{ fm/c}$) in dense QCD regime

Searching for landmarks of the QCD matter phase diagram

Experimental challenges:

- Isolate unambiguous signals of new phases of QCD matter, order of phase transitions, conjectured QCD critical point
- Probe microscopic matter properties

Measure with utmost precision:

- Light flavour (chemistry, vorticity, flow)
- Event-by-event fluctuations (criticality)
- Dileptons (emissivity)
- Charm (transport properties)
- Hypernuclei (interaction)

Almost unexplored (not accessible) so far in the high μ_B region

Critical Point Search

$$\kappa_n(N_q)\frac{N_q}{VT^3} = \frac{1}{VT^3}\frac{\partial^n \ln Z(V,T,\mu)}{\partial (\mu_q/T)^n} = \frac{\partial^n p}{\partial \mu_q^n} = \chi_n^q$$

Non-monotonic trend of the higher moments k_4/k_2 of net-proton number distributions, visible in a beam energy scan?

- ► Current data consistent with non-critical physics? → reduced errors to come from STAR BES-II
- Sensitivity to features of the QCD phase diagram grows with the order of the moment
- Higher order moments probe the tails statistics/artefacts!

Thermal Dilepton Measurements

- Dileptons are rare probes
- Decisive parameters for data quality:
 - Interaction rates (*IR*) and signal-to-combinatorial background ratio (*S*/*CB*): effective signal size: S_{eff} ~ *IR* × *S*/*CB*
- ▶ Needs coverage of mid-rapidity, low-M_{ℓℓ}, and low-p
- Isolation of thermal radiation by subtraction of measured decay cocktail (π⁰, η, ω, φ), Drell-Yan, cc̄ (bb̄)
- Temperature sensitive to phase transition

Seck, MSc 2015

Particle multiplicities

Blume 2005, Adronic 2010

CBM experiment

N. Herrmann EPJ Web Conf. 259 (2022)

detection of the rare probes of compressed nuclear matter in high-rate heavy-ion collisions

- hundreds tracks in aperture /interaction, high occupancy
- ► low momenta → low material budget m.teklishyn@gsi.de
 High rates CBM experiment

Facility, accelerator, and infrastructure

Facility for Antiproton and Ion Research: exploring new frontier

- Located in Darmstadt, Germany, FAIR is one of the largest projects for basic research in physics worldwide.
- > The facility will provide particle beams with unprecedented intensity and quality.
- Research at FAIR will cover areas such as nuclear structure, nuclear astrophysics, hadron physics, and atomic physics.
- International collaboration with scientists from more than 50 countries.

m.teklishyn@gsi.de

High rates CBM experiment

Compressed Baryonic Matter experiment

- Heavy-ion experiment, first at the beam line: CBM
 - CBM stands for Compressed Baryonic Matter
 - It is designed to explore the properties of nuclear matter at high densities.
 - The experiment aims to study the behavior of matter under extreme conditions, similar to those in neutron stars
- Relativistic heavy-ion beams: gold up to $11 \, A \text{GeV}$, lighter ions up to $14 \, A \text{GeV}$
 - gold ions are used because they provide a large number of nucleons for collision experiments
 - lighter ions provide complementary information
- Beam intensity up to 10⁹ ions/s
 - high beam intensity allows for the exploration of rare processes

m.teklishyn@gsi.de

June 11, 2024

Experimental complex and infrastructure: cave, magnet, mechanics Tracking and vertexing: Silicon Tracking System and Micro-Vertex Detector Event geometry determination: forward detector Global tracking and particle identification: RICH, TRD, ToF, MUCH

m.teklishyn@gsi.de

High rates CBM experiment

CBM detector configurations

CBM setup can be rearranged depending on the goals

ELEHAD precise tracking and vertexing, enhanced e/π separation MUON best muon PID HADR ultimate rates for rare hadrons

m.teklishyn@gsi.de

High rates CBM experiment

CBM cave

- CBM cave will host HADES and CBM experiments
 - 1 Tm superconductive dipole for CBM
- Power electronics under the concrete platform
- Iron beam dump at the back wall

Cave is being prepared, crane installed

Superconductive dipole magnet

- The H-type superconducting magnet
- Vertical magnetic field 1 Tm
- Depth of 1 m from the target

Cryostat

New magnet gap requested by STS:

width 330 cm (+30 cm) weight 147 cm (+3 cm)

Assigned for European manufacturer after terminated cooperation with Russian institutions

m.teklishyn@gsi.de

High rates CBM experiment

Carbon-fibre beam pipe

pushing the limits of vacuum technique

- Beam pipe full-size prototype will be produced this year
- ▶ FEM simulation: critical part is transition from membrane to cone

- Window and conical pipe:
 - separate target/MVD vacuum and non-interacting beam from STS aperture
- Carbon fiber material: 0.5 mm (window) 1.0 mm (1.8° cone)
- Zero-force interface at back wall towards downstream section m.teklishyn@gsi.de

Tracking and event building

CBM DAQ chain

- CBM read-out operates with continuous beam in free-streaming mode
- Full online event processing

Challenging reconstruction and tracking environment

- $\blacktriangleright~\lesssim 700$ charge particle tracks in the detector per $11\,A{\rm GeV}$ Au-Au collision
- Continuous beam, free-streaming detector operation
- Complex signatures of cascade decays to be found Ω decay examples: $\Omega^+ \rightarrow \overline{\Lambda}(\rightarrow \pi^+ \overline{p})K^+$, $\Omega^+ \rightarrow \overline{\Xi^0}(\rightarrow \pi^+ \overline{\Lambda})\pi^+$...
- On-line event reconstruction and selection: data being fed non-stop to the computing farm

m.teklishyn@gsi.de

High rates CBM experiment

June 11, 2024

20 / 61

Tracking task: consequences for the tracker design

On-line reconstruction algorithms for the CBM and ALICE experiments, S. Gorbunov

High rates CBM experiment

KF Particle Finder

PhD thesis Maksym Zyzak

Momentum measurement precision:

$$\begin{split} \left. \frac{\delta p}{p} \right|_{\rm res.} &= \frac{\sigma p}{0.3BL^2} \sqrt{\frac{720N}{(N-1)(N+1)(N+2)(N+3)}}, \\ \left. \frac{\delta p}{p} \right|_{\rm scat.} &= \frac{N}{\sqrt{(N+1)(N-1)}} \cdot \frac{0.0136 \ {\rm GeV/c}}{0.3\beta BL} \cdot \sqrt{\frac{\lambda}{\Lambda_0}} \cdot \left(1 + 0.038 \ln \frac{d}{\Lambda_0}\right), \\ {\rm where} \ \beta &= \sqrt{p^2/(p^2 + m^2)} \end{split}$$

Example of the CMS Tracker Upgrade:

CBM Tracker momentum resolution

- Limited benefit from better resolution
- Huge improvement with reduced material (integration?)

Enormous challenge for mechanics. r/o, cooling for

- $\triangleright \mathcal{O}(1 \,\mathrm{m}^2)$ layer surface
- ► O(1%) layer thickness

m.teklishyn@gsi.de

June 11, 2024

24 / 61

CBM Detector construction

What is a particle detector

- Device that makes microscopic particles being observed
 - visual observation (bubble chambers, spark chambers, emulsion films)
 - pulses of current to be read out (most of modern detectors)

- Event \Longrightarrow current/light (with its characteristics), no event eq
- Real detectors are complex, multi-stage devices, they feature:
 - always electromagnetic interaction (at some stage)
 - often electrical charge deposition and transport

m.teklishyn@gsi.de

High rates CBM experiment

How to make a hybrid pixel

- 1. Take a silicon diode
- 2. Do few modifications as we will collect charge carriers using diffusion:
 - invert type to collect electrons in diode field
 - make it thinner, add low-ohmic p-substrate
 - smaller implant for lower capacitance

3. Add r/o electronics...

m.teklishyn@gsi.de

June 11, 2024

26 / 61

Monolithic Active Pixel Sensors (MAPS)

- R/o electronics integrated in the same chip
 - P/NWELLs needed for transistors
 - analogue and digital circuits on the same crystal

- Low material budget, easier integration
- ► Pixel size of $\mathcal{O}(10 \times 10 \,\mu m^2)$ m.teklishyn@gsi.de

June 11, 2024

MIMOSIS requirements from MVD

- Based on ALPIDE architecture
- Discriminator on $27 \times 30 \, \mu m^2$ pixel
- Multiple data concentration steps
- ► 8 × 320 Mbps links (switchable)

Specifications

- ► Technology: TowerJazz 180 nm
- ▶ Epi layer: $\simeq 25 \, \mu {
 m m}$
- Epi layer resistivity: $> 1 \, k\Omega cm$
- ▶ Sensor thickness: $60 \, \mu m$
- Pixel size: $26.88 \,\mu\mathrm{m} \times 30.24 \,\mu\mathrm{m}$
- ► Matrix size: 1024 × 504 (510696 pix)
- Matrix area: $\simeq 4.2 \, \mathrm{cm}^2$
- Matrix readout time: $\simeq 5 \, \mu s$ (event driven)

Requirements

- ▶ Spatial resolution: $\simeq 5\,\mu{\rm m}$
- ▶ Time resolution: $\simeq 5 \, \mu s$
- Material budget: $0.05\% X_0$
- ▶ Power consumption: $< 100 200 \, \mathrm{mW/cm^2}$
- ▶ Operation temperature: $-40 \,^{\circ}\text{C}$ to $30 \,^{\circ}\text{C}$
- Temp gradient on sensor: $< 5 \,\mathrm{K}$
- ▶ Data flow (peak hit rate): $@7 \times 10^5 / (mm^2 s)$ > 2 Gbit/s

m.teklishyn@gsi.de

High rates CBM experiment

MVD: ultra-light detector for precise vertex determination

Micro Vertex Detector (MVD) for the CBM experiment at GSI/FAIR:

- Secondary vertex determination (~ 50 μm), background rejection in di-electron spectroscopy, reconstruction of weak decays
- Vacuum/magnetic field operation
- 4 stations
- $\blacktriangleright \simeq 300 \text{ CMOS sensors}$
- Radiation tol* (non-ion): $> 7 \times 10^{13} \, \mathrm{neq/cm^2}$
- Radiation tol* (ionizing): $\simeq 5 \,\mathrm{Mrad}$
- Power consumption: $40 70 \,\mathrm{mW/cm^2}$

m.teklishyn@gsi.de

Quadrant (smallest functional unit):

- CVD Diamond / TPG carrier for heat evacuation
- CMOS pixel sensors: $\simeq 5\mu s$ read-out
- Aluminum heat-sink (actively cooled)

Design and geometry of the Silicon Tracking System

Detector inside the CBM magnet

Silicon Tracking System assemble

- ▶ 876 modules, 106 ladders, $\gtrsim 14\,000$ r/o ASICs, $\gtrsim 7\,000$ LDOs
- Large number of unique components: 199 module variants, 38 ladder types
- Modular design (3+5 mechanically independent stations) introduced M. Teklishyn VCI 2022

m.teklishyn@gsi.de

Micro-strip sensor and how it works

Particle looses energy $\xrightarrow{\text{converts to charge}}$ e-h pairs drift towards electrodes in $\vec{E} \xrightarrow{\text{current is induced}}$ CSA integrates current \longrightarrow amplification \longrightarrow digitisation

DSDM silicon micro-strip sensors

- Double sided n-type silicon sensors (XY positioning): 1024 strips each side, p-side tilted by 7.5° to the edge
- Thickness $320 \,\mu \mathrm{m} \pm 15 \,\mu \mathrm{m}$
- Pitch size $58\,\mu{
 m m}$ for both sides
- 62 mm × 22 mm, 42 mm, 62 mm or 124 mm
- Strip coupling capacitance (n) $14.1 \pm 0.1 \, \mathrm{pF/cm}$ interstrip capacitance $0.37 \pm 0.01 \, \mathrm{pF/cm}$

Ultra-thin r/o micro cables

FEE connected via micro-cable lines (64) lines/cable)

- 2×1024 ch./sensor: stack of 32 micro cables per module, 8 sub types
- Length from 160 mm to 495 mm

Read-out lines are protected w/ shielding layers

nXYTER: ASIC that measures time and amplitude

nXYTER was a dedicated ASIC for (ToF and Imaging) neutron detectors

 one of applications: double-sided Silicon micro-strip detector (coupled to a Gadolinium neutron-converter layer)

nXYTER: ASIC that measures time and amplitude

▶ nXYTER was a dedicated ASIC for (ToF and Imaging) neutron detectors

one of applications: double-sided Silicon micro-strip detector (coupled to a Gadolinium neutron-converter layer)

two paths after CSA: slow (amplitude) and fast (time)

Analogue memory, external ADC required

m.teklishyn@gsi.de

Latest Generation: STS-MUCH-XYTER v 2.2

Features of the ASIC:

- Low-power, self triggering AISC
- 128 channels + 2 test channels
- Time resolution $\lesssim 5 \, \mathrm{ns}$
- Provides digitized hits with:
 - 5 bit energy resolution
 - 14 bit time stamp
- Linearity range up to 15 fC (100 fC)
- Flash ADC + digital buffer integrated in ASIC

K. Kasinski et al Nucl.Instrum.Meth.A 908 (2018)

Current status:

- ► ASIC production yield 98.5%–99.0%, chip cable yield 96%
- \blacktriangleright production: ~ 4000 available for series module production
- 360 dies per wafer, 100 wafers produced

STS/MUCH-XYTER2 ASIC

Simulation of the detector performance

material budget

- **b** Down to $0.3\% X_0$ per layer around the bending plane,
- **•** No more than $1\% X_0$ at the periphery

Simulation of the detector performance

acceptance and momentum resolution

▶ Au target with $2 \, \text{GeV}/c$ Au beam (upper row), $12 \, \text{GeV}/c$ Au beam (bottom row)

m.teklishyn@gsi.de

High rates CBM experiment

Module assembly

- STS detector modules are produced in the assembly centres in GSI and KIT
 - about 100 series modules already produced

m.teklishyn@gsi.de

High rates CBM experiment

Ladder assembly sequence

- From 8 to 10 detector modules installed on the light-weight carbon structures: ladders
- Sensors precisely positioned ($\lesssim 30\,\mu{
 m m}$) with jigs

 Assembled ladders undergo metrology survey and functionality tests

After tests ladder is installed on c-frame

ates CBM experiment

Studies and experience are summarised in our paper:

Reaction plane and centrality

Determination of the impact parameter value and angle

18\m

- track multiplicity (centrality related; bias for fluctuation studies)
- spectator fragments distribution in forward detector

QEP

m.teklishyn@gsi.de

High rates CBM experiment

Anisotropic flow

Spatial anisotropy of the energy density of the matter produced in HIC converts to **momentum anisotropy** of produced particles due to interaction between them

Forward WALL

CBM spectator calorimeter

FWALL DESIGN

- FWALL size is $160 \,\mathrm{cm} \times 128 \,\mathrm{cm} \times 10 \,\mathrm{cm}$
- FWALL contains 220 modules
- One quadrant:
 - Number of **SMALL** modules: $6 \times 4 4$ (hole)
 - Number of **MEDIUM** modules: 3×2
 - Number of **LARGE** modules: 2×2
- Scintillator hodoscope (depth $\simeq 2.5 \, {\rm cm}$)
 - 140 small cells $(4 \times 4 \, \mathrm{cm}^2)$
 - 64 middle cells $(8 \times 8 \, \mathrm{cm}^2)$
 - 84 large cells $(16 \times 16 \text{ cm}^2)$

FWall points XY distribution after running UrQMD Au+Au @ 6AGeV

High rates CBM experiment

Directed flow (v_1) of strange hadrons

Signal's extraction using invariant mass fit method gives results consistent with MC-extraction
 Flow coefficient calculated in data-driven mode reproduces MC-input within statistical errors

m.teklishyn@gsi.de

High rates CBM experiment

June 11, 2024

Reconstruction of complex topologies

- ► Global tracking covering extended decays (MVS/STS → MUCH/TRD → ToF)
- Particle identification: electrons (RICH, TRD), hadrons (ToF), muons (MUCH)

Muon Chambers

- MuCh detector: muon identification and global (muon) tracking
- Two technologies: GEM and RPC are being involved
 - 4 stations and 4 + 1 absorbers
 - GEM detector technology (3 mm Ar/CO₂)
 - Graphite absorber (magnet), followed by Fe
 - ► Geometrical acceptance: 5.7 25 degree

Real-size (80 x 40 cm²) GEM detector module

Detector testing at CERN-SPS, November 2016:

 Large-size chambers succesfully operated in fixed-target testbeam (Pb+Pb)

- Reconstruction of di-muon cocktail: 8 AGeV Au+Au
- Track selection: associated hits in STS and MuCh, track \(\chi^2\) at STS/MuCh/prim. vertex, TOF mass cut

m.teklishyn@gsi.de

High rates CBM experiment

June 11, 2024

Čerenkov detector for pion/electron separation

Aim: clean electron identification for momenta below $8\,{\rm GeV/c}$ Photodetector (2.4 $m^2,$ 55k Ch.)

- photomultipliers (MAPMT: H12700 series)
- fast self-triggered readout

mirror (11.8 m^2)

- ▶ glass mirror: R=3m, $\leq 6 mm$ thickness, $AI+MgF_2$ coverage
- ► CO₂: $\gamma_{th} = 33$, $p_{th} = 4.65 \, \text{GeV/c}$
- ▶ ⇒ Photons with $\lambda \ge 180 \, (200) \, \mathrm{nm}$

Čerenkov detector prototyping

▶ Full-scale RICH camera demonstrator: test of the forced-convection cooling of electronics

Prototype photon camera for CBM RICH

Prototype cooling system blower + heat exchanger

heat exchanger : sufficient for full RICH blower : sufficient for one camera

Cooling air distribution via "distributor box" into 7 outlets guiding air to the module columns -> how (un)equal is the air flow out of the 7 outlets ???

RICH mirrors (left) and their mechanical support prototype (right)

m.teklishyn@gsi.de

Transition Radiation detector

- PID with the transition radiation emitted by relativistic light particles
- Multi-wire proportional chambers (12 mm Xe/CO₂), fast design, PE foam foil radiator
- Read-out: mirror charge on cathode-pads
- Electron detection due to absorption of TR photons additional to particle energy loss
- Pion suppression by four TRD layers
- Separation of light nuclei, e.g. d →⁴He (reconstruct: ⁵He →⁴He + p + π⁻ // ⁶He)

June 11, 2024

TRD-2D prototype assembling

The back plane assembled

Flat cables positioning before mounting on the back plane

Multi-gap RPC (MRPC)

Double stack high rate MRPC, CBM (2020) - second generation

m.teklishyn@gsi.de

High rates CBM experiment

Time of Flight detector

- Detector layout optimised for different occupancy regions
- ▶ Full size counter with close to final design for all regions build and tested
- M4 and M6 full size modules constructed and installed at mCBM

Materials:

- \blacktriangleright thin float glass, $\rho\,10^{12}\,\Omega\,{\rm cm}$
- low resistivity glass, $ho \, 10^{10} \, \Omega \, {
 m cm}$
- ceramic, $ho \, 10^9 \, \Omega \, {
 m cm}$

Statistics:

- ▶ 230 + 20 modules
- 1400 MRPCs
- 90000 channels

Bayesian identification using TOF

$$\frac{m^2}{q^2} = \frac{1}{c^2} \frac{p^2}{q^2} \left(\frac{c^2 t^2}{L^2} - 1\right)$$

Particles with same m/q (e.g. d and He-4) are indistinguishable PhD thesis O. Lubynets

- use as weight in yield calculation
- the highest value
- value over threshold (purity cut)

m.teklishyn@gsi.de

High rates CBM experiment

June 11, 2024

mCBM experiment

- mCBM experiment as a pathfinder for CBM
 - ultimate test of the detector prototypes
 - test of the read-out chain and data acquisition

- mCBM setup at SIS18 features detector prototypes of key systems
- Installed @SIS18 accelerator at GSI
 - beam campaigns in 2018–2022
 - detector evaluation and phys. analysis

m.teklishyn@gsi.de

High rates CBM experiment

June 11, 2024

MRPC3/4 performance at mCBM

mSTS: functional full-scale detector prototype

- \blacktriangleright Two tracking stations (layers) $12\times12\,{\rm cm}^2$ and $18\times18\,{\rm cm}^2$ arranged by 4 units
- Ultimate test of the detector performance in the fully integrated system
- Commissioning of the assembling and testing procedures to be used in series production
- Hit/track reconstruction performance with the heavy ions in mCBM@SIS18 (GSI, Darmstadt)

m.teklishyn@gsi.de

mSTS: recent beam-test highlights

Dario A. Ramirez Zaldivar at VERTEX 2023

Sensor alignment translations are consistent with the mechanical assembly!

mCBM HRE >96.88% Excluding inactive areas

Testing the free-streaming data acquisition system; data transport to a high-performance computer farm

Online track and event reconstruction as well as event selection algorithms

m.teklishyn@gsi.de

High rates CBM experiment

June 11, 2024

STS goes to Japan: synergy with E16 experiment

K. Ozawa @ 42th CBM Collaboration Meeting, September 28 2023

Conclusions and outlook

- CBM is a unique tool for detailed, high-statistics studies of
 - (differential) yields of multi-strange particles and hypernuclei
 - higher-order fluctuations, flows and correlations
 - detailed di-lepton spectra
- Self-triggering free-streaming detector read out
- Light-weight, radiation tolerant detectors
 - mCBM: a pathfinder for the final setup
 - detectors are being produced
- CBM installation (and individual system commissioning) until end of 2027
- First beam at 2028