Geometric group theory at IRMP 2017–2022

Timothée Marquis

April 26, 2024

The evolution of the research team

PhD student		Post-doc			Academic			
Year	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24
PE. Caprace (FNRS-Prof.)								
T. Marquis (FNRS)								
Thierry Stulemeijer (FNRS)								
Nicolas Radu (FNRS)								
Adrien Le Boudec (FNRS)								
Joachim Verstraete (FNRS)								
Lancelot Semal (FNRS)								
Waltraud Lederle (SNS+FNRS)								
François Thilmany (FNRS)								
Alex Loué (Assistant)								
Justin Vast (FSR+FNRS)								
Laura Grave (EOS)								
Max Carter (EOS)								
Robynn Corveleyn (EOS)								
Maximilien Forte (FRIA)								
Sebastian Bischof (DAAD)								

Current members

T. Marquis

François Thilmany

Sebastian Bischof

Alex Loué

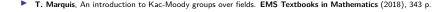
Max Carter

Justin Vast

- Algebraic structure of (non-discrete) **locally compact groups**.
 - e.g. G closed subgroup of $Aut(T_d)$
 - U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491–562

- Algebraic structure of (non-discrete) **locally compact groups**.
 - e.g. G closed subgroup of $Aut(T_d)$
 - U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491–562
- Unitary representations of locally compact groups.
 - P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447–486

- Algebraic structure of (non-discrete) **locally compact groups**.
 - e.g. G closed subgroup of $Aut(T_d)$
 - U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491–562
- Unitary representations of locally compact groups.
 - P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447–486
- Kac–Moody groups.
 - ▶ e.g. $G = SL_n(\mathbb{K})$, $G = SL_n(\mathbb{K}((t)))$, non-linear groups.

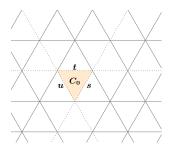


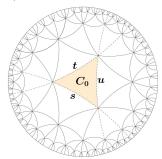
- Algebraic structure of (non-discrete) locally compact groups.
 - e.g. G closed subgroup of $Aut(T_d)$
 - U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491–562
- Unitary representations of locally compact groups.
 - P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447–486
- Kac–Moody groups.
 - e.g. $G = \mathrm{SL}_n(\mathbb{K})$, $G = \mathrm{SL}_n(\mathbb{K}((t)))$, non-linear groups.
 - $> \operatorname{SL}_{n+1}(\mathbb{K}) = U^+WU^+T \text{ with } U^+ = \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & * \end{pmatrix}, \ T = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{pmatrix}, \ W \cong \operatorname{Sym}(n).$
 - T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.

- Algebraic structure of (non-discrete) **locally compact groups**.
 - e.g. G closed subgroup of $Aut(T_d)$
 - U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491–562
- Unitary representations of locally compact groups.
 - P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447–486
- Kac–Moody groups.
 - e.g. $G = \mathrm{SL}_n(\mathbb{K})$, $G = \mathrm{SL}_n(\mathbb{K}((t)))$, non-linear groups.
 - $\blacktriangleright \operatorname{SL}_{n+1}(\mathbb{K}) = U^+WU^+T \text{ with } U^+ = \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix}, \ T = \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{pmatrix}, \ W \cong \operatorname{Sym}(n)$
 - T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.
- KMS groups and connections to high-dimensional expanders
 - e.g. $G = U^+$ over \mathbb{K} finite field.
 - Topic of EOS project with Tom De Medts (UGent).
 - P.-E. Caprace, M. Conder, M. Kaluba and S. Witzel, Hyperbolic generalized triangle groups, property (T) and finite simple quotients. J. London Math. Soc. 106 (2022), Nr. 4, pp. 3577–3637.
 - P.-E. Caprace, M. Kassabov, Tame automorphism groups of polynomial rings with property (T) and infinitely many alternating group quotients. Trans. Amer. Math. Soc. 376 (2023), no. 11, pp. 7983–8021.

Coxeter groups.

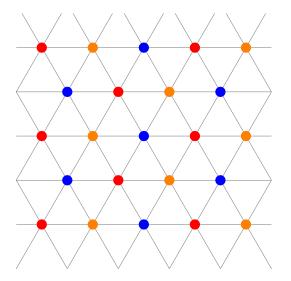
• e.g. $W = \operatorname{Sym}(n)$, $W = \operatorname{Aut}(\operatorname{tiling})$



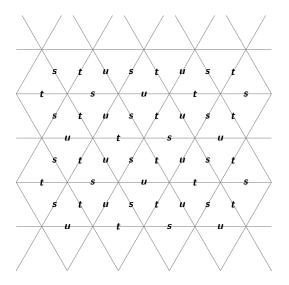


- T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Éc. Norm. Supér. 54 (2021), 483–502.
 - T. Marquis, Structure of conjugacy classes in Coxeter groups. to appear in Astérisque. 106 p.

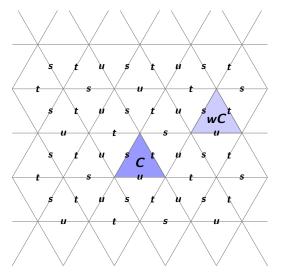
 $W = \text{Weyl group of } \mathrm{SL}_3(\mathbb{K}((t))) = \mathrm{Aut}(X) \text{ where } X \text{ is the colored tiling}$



W= Weyl group of $\mathrm{SL}_3(\mathbb{K}(\!(t)\!))=\mathrm{Aut}(X)$ where X is the colored tiling

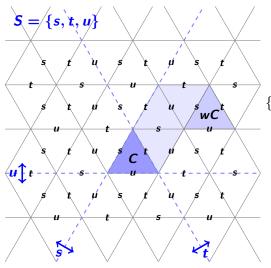


 $W = \text{Weyl group of } \mathrm{SL}_3(\mathbb{K}((t))) = \mathrm{Aut}(X) \text{ where } X \text{ is the colored tiling}$



Triangles $\leftrightarrow W$: $wC \leftrightarrow w$

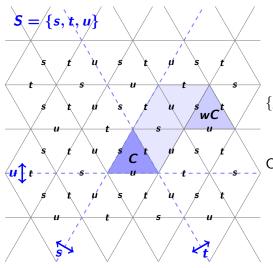
W= Weyl group of $\mathrm{SL}_3(\mathbb{K}((t)))=\mathrm{Aut}(X)$ where X is the colored tiling



Triangles $\leftrightarrow W: wC \leftrightarrow w$

 $\underbrace{\text{ex}:} \ w = tsus \\ \{\text{galleries } C \leadsto wC\} \leftrightarrow \\ \{S\text{-words representing } w\}$

 $W = \text{Weyl group of } \mathrm{SL}_3(\mathbb{K}((t))) = \mathrm{Aut}(X) \text{ where } X \text{ is the colored tiling}$



Triangles $\leftrightarrow W: wC \leftrightarrow w$

 \underline{ex} : w = tsus

 $\{\text{galleries } C \leadsto wC\} \leftrightarrow$

 $\{S\text{-words representing }w\}$

Connectedness $\leftrightarrow W = \langle s, t, u \rangle$

 $W = \langle s, t, u \rangle \Leftrightarrow \text{every } w \in W \text{ can be represented by a word over the alphabet } S = \{s, t, u\} \text{ (e.g. } w = tsus = tusu\text{)}.$

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

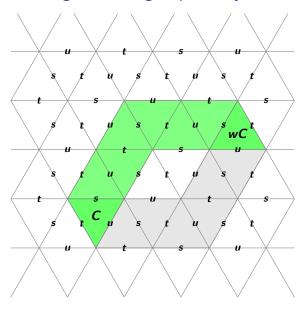
 $W = \langle s, t, u \rangle \Leftrightarrow \text{every } w \in W \text{ can be represented by a word over the alphabet } S = \{s, t, u\} \text{ (e.g. } w = tsus = tusu\text{)}.$

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

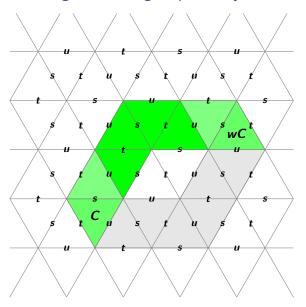
Tits' solution to the word problem in Coxeter groups (1969)

Two (reduced) S-words representing the same group element differ only by a sequence of **braid relations** ($sts \leftrightarrow tst$, $sus \leftrightarrow usu$, $tut \leftrightarrow utu$).



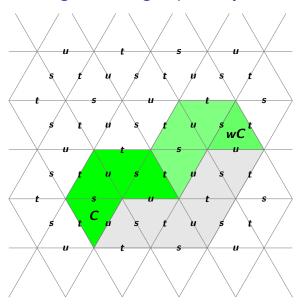
w = sutstus

= ustutsu



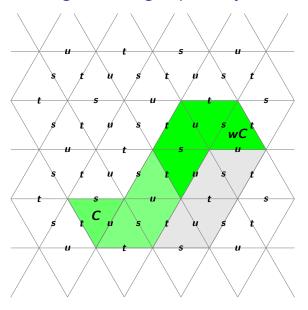
w = sutstus

= ustutsu

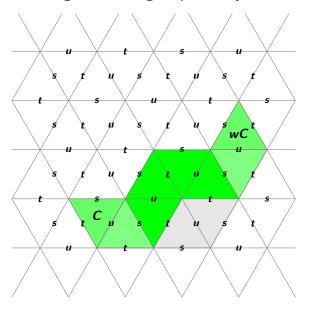


w = sutstus= sustsus

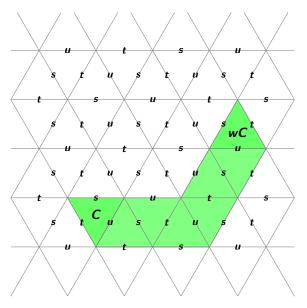
= ustutsu



w = sutstus
= sustsus
= usutsus
= ustutsu

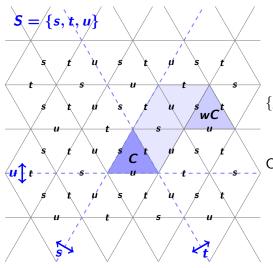


w = sutstus
= sustsus
= usutsus
= usutusu
= ustutsu



w = sutstus
= sustsus
= usutsus
= usutusu
= ustutsu

 $W = \text{Weyl group of } \mathrm{SL}_3(\mathbb{K}((t))) = \mathrm{Aut}(X) \text{ where } X \text{ is the colored tiling}$



Triangles $\leftrightarrow W: wC \leftrightarrow w$

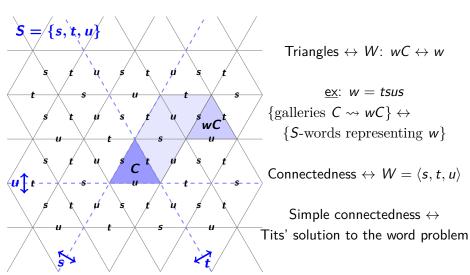
 \underline{ex} : w = tsus

 $\{\text{galleries } C \leadsto wC\} \leftrightarrow$

 $\{S\text{-words representing }w\}$

Connectedness $\leftrightarrow W = \langle s, t, u \rangle$

 $W = \text{Weyl group of } \mathrm{SL}_3(\mathbb{K}((t))) = \mathrm{Aut}(X) \text{ where } X \text{ is the colored tiling}$



 $W = \langle s, t, u \rangle \Leftrightarrow \text{every } w \in W \text{ can be represented by a word over the alphabet } S = \{s, t, u\} \text{ (e.g. } w = tsus = tusu\text{)}.$

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)

Two (reduced) S-words representing the same group element differ only by a sequence of **braid relations** ($sts \leftrightarrow tst$, $sus \leftrightarrow usu$, $tut \leftrightarrow utu$).

 $W = \langle s, t, u \rangle \Leftrightarrow \text{every } w \in W \text{ can be represented by a word over the alphabet } S = \{s, t, u\} \text{ (e.g. } w = tsus = tusu\text{)}.$

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)

Two (reduced) S-words representing the same group element differ only by a sequence of **braid relations** ($sts \leftrightarrow tst$, $sus \leftrightarrow usu$, $tut \leftrightarrow utu$).

Conjugacy problem: a more precise question (A. Cohen, 1994)

Is there a *nice* algorithm, describing when two elements of W are **conjugate**, using "natural" elementary conjugation operations?

 $W = \langle s, t, u \rangle \Leftrightarrow \text{every } w \in W \text{ can be represented by a word over the alphabet } S = \{s, t, u\} \text{ (e.g. } w = tsus = tusu\text{)}.$

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)

Two (reduced) S-words representing the same group element differ only by a sequence of **braid relations** ($sts \leftrightarrow tst$, $sus \leftrightarrow usu$, $tut \leftrightarrow utu$).

Conjugacy problem: a more precise question (A. Cohen, 1994)

Is there a *nice* algorithm, describing when two elements of W are **conjugate**, using "natural" elementary conjugation operations?

- T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Éc. Norm. Supér. 54 (2021), 483–502.
- **T. Marquis**, Structure of conjugacy classes in Coxeter groups. to appear in **Astérisque**. 106 $p_{6/7}$

Some key points on impact and visibility

- EOS funding on "High-dimensional expanders and KMS groups" (total budget: €1,577,000).
- Summer school on high-dimensional expanders in May 2023 (\sim 80 participants).
- P.-E. Caprace has been a speaker in the Algebra Section of the International Congress of Mathematicians in 2022.
- P.-E. Caprace was elected member of the Académie Royale des Sciences in 2023.