Geometric group theory at IRMP 2017-2022

Timothée Marquis

April 26, 2024

The evolution of the research team

Current members

P-E. Caprace

Alex Loué

T. Marquis

Max Carter

François Thilmany

Sebastian Bischof

Maximilien Forte

Justin Vast

Main research directions around geometric group theory

- Algebraic structure of (non-discrete) locally compact groups.
- e.g. G closed subgroup of $\operatorname{Aut}\left(T_{d}\right)$
- U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491-562

Main research directions around geometric group theory

- Algebraic structure of (non-discrete) locally compact groups.
- e.g. G closed subgroup of $\operatorname{Aut}\left(T_{d}\right)$

- U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491-562
- Unitary representations of locally compact groups.
- P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447-486

Main research directions around geometric group theory

- Algebraic structure of (non-discrete) locally compact groups.
- e.g. G closed subgroup of $\operatorname{Aut}\left(T_{d}\right)$

- U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491-562
- Unitary representations of locally compact groups.
-P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447-486
- Kac-Moody groups.
- e.g. $G=\mathrm{SL}_{n}(\mathbb{K}), G=\mathrm{SL}_{n}(\mathbb{K}((t)))$, non-linear groups.

- T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.

Main research directions around geometric group theory

- Algebraic structure of (non-discrete) locally compact groups.
- e.g. G closed subgroup of $\operatorname{Aut}\left(T_{d}\right)$

- U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491-562
- Unitary representations of locally compact groups.
- P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447-486
- Kac-Moody groups.
- e.g. $G=\mathrm{SL}_{n}(\mathbb{K}), G=\mathrm{SL}_{n}(\mathbb{K}((t)))$, non-linear groups.
- $\mathrm{SL}_{n+1}(\mathbb{K})=U^{+} W U^{+} T$ with $U^{+}=\left(\begin{array}{ccc}1 & \cdots & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right), T=\left(\begin{array}{ccc}* & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & *\end{array}\right), W \cong \operatorname{Sym}(n)$.
- T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.

Main research directions around geometric group theory

- Algebraic structure of (non-discrete) locally compact groups.
- e.g. G closed subgroup of $\operatorname{Aut}\left(T_{d}\right)$

- U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491-562
- Unitary representations of locally compact groups.
- P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447-486
- Kac-Moody groups.
- e.g. $G=\mathrm{SL}_{n}(\mathbb{K}), G=\mathrm{SL}_{n}(\mathbb{K}((t)))$, non-linear groups.

- $\mathrm{SL}_{n+1}(\mathbb{K})=U^{+} W U^{+} T$ with $U^{+}=\left(\begin{array}{ccc}1 & \cdots & * \\ 0 & 1 & * \\ 0 & 0 & 1\end{array}\right), T=\left(\begin{array}{ccc}* & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & *\end{array}\right), W \cong \operatorname{Sym}(n)$.
- T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.
- KMS groups and connections to high-dimensional expanders
- e.g. $G=U^{+}$over \mathbb{K} finite field.
- Topic of EOS project with Tom De Medts (UGent).
- P.-E. Caprace, M. Conder, M. Kaluba and S. Witzel, Hyperbolic generalized triangle groups, property (T) and finite simple quotients. J. London Math. Soc. 106 (2022), Nr. 4, pp. 3577-3637.
P.-E. Caprace, M. Kassabov, Tame automorphism groups of polynomial rings with property (T) and infinitely many alternating group quotients. Trans. Amer. Math. Soc. 376 (2023), no. 11, pp. 7983-8021.

Main research directions around geometric group theory

- Coxeter groups.
- e.g. $W=\operatorname{Sym}(n), W=\operatorname{Aut}($ tiling $)$

- T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Éc. Norm. Supér. 54 (2021), 483-502.
T. Marquis, Structure of conjugacy classes in Coxeter groups. to appear in Astérisque. 106 p.

About geometric group theory

$W=$ Weyl group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

About geometric group theory

$W=$ Weyl group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

About geometric group theory

$W=$ Weyl group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

Triangles $\leftrightarrow W: w C \leftrightarrow w$

About geometric group theory

$W=$ Weyl group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

Triangles $\leftrightarrow W: w C \leftrightarrow w$

$$
\text { ex: } w=t s u s
$$

$\{$ galleries $C \rightsquigarrow w C\} \leftrightarrow$
$\{S$-words representing $w\}$

About geometric group theory

$W=$ Weyl group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

Triangles $\leftrightarrow W: w C \leftrightarrow w$

$$
\text { ex: } w=t s u s
$$

$\{$ galleries $C \rightsquigarrow w C\} \leftrightarrow$
$\{S$-words representing $w\}$

Connectedness $\leftrightarrow W=\langle s, t, u\rangle$

About geometric group theory

$W=\langle s, t, u\rangle \Leftrightarrow$ every $w \in W$ can be represented by a word over the alphabet $S=\{s, t, u\}$ (e.g. $w=t s u s=t u s u)$.

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

About geometric group theory

$W=\langle s, t, u\rangle \Leftrightarrow$ every $w \in W$ can be represented by a word over the alphabet $S=\{s, t, u\}$ (e.g. $w=t s u s=t u s u)$.

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)
Two (reduced) S-words representing the same group element differ only by a sequence of braid relations (sts $\leftrightarrow t s t$, sus $\leftrightarrow u s u, t u t \leftrightarrow u t u$).

About geometric group theory

$w=$ sutstus
$=$ ustutsu

About geometric group theory

$$
w=\text { sutstus }
$$

$=u s t u t s u$

About geometric group theory

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus } \\
& \\
& =u s t u t s u
\end{aligned}
$$

About geometric group theory

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus } \\
& =\text { usutsus } \\
& =\text { ustutsu }
\end{aligned}
$$

About geometric group theory

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus } \\
& =u s u t s u s \\
& =u s u t u s u \\
& =u s t u t s u
\end{aligned}
$$

About geometric group theory

$$
\begin{aligned}
w & =\text { sutstus } \\
& =\text { sustsus } \\
& =u s u t s u s \\
& =u s u t u s u \\
& =u s t u t s u
\end{aligned}
$$

About geometric group theory

$W=$ Weyl group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

Triangles $\leftrightarrow W: w C \leftrightarrow w$

$$
\text { ex: } w=t s u s
$$

$\{$ galleries $C \rightsquigarrow w C\} \leftrightarrow$
$\{S$-words representing $w\}$

Connectedness $\leftrightarrow W=\langle s, t, u\rangle$

About geometric group theory

$W=$ Weal group of $\operatorname{SL}_{3}(\mathbb{K}((t)))=\operatorname{Aut}(X)$ where X is the colored tiling

Triangles $\leftrightarrow W: w C \leftrightarrow w$

$$
\text { ex: } w=t s u s
$$

$\{$ galleries $C \rightsquigarrow w C\} \leftrightarrow$
$\{S$-words representing $w\}$

Connectedness $\leftrightarrow W=\langle s, t, u\rangle$

Simple connectedness \leftrightarrow Tits' solution to the word problem

About geometric group theory

$W=\langle s, t, u\rangle \Leftrightarrow$ every $w \in W$ can be represented by a word over the alphabet $S=\{s, t, u\}$ (e.g. $w=t s u s=t u s u)$.

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)
Two (reduced) S-words representing the same group element differ only by a sequence of braid relations (sts $\leftrightarrow t s t$, sus $\leftrightarrow u s u, t u t \leftrightarrow u t u$).

About geometric group theory

$W=\langle s, t, u\rangle \Leftrightarrow$ every $w \in W$ can be represented by a word over the alphabet $S=\{s, t, u\}$ (e.g. $w=t s u s=t u s u)$.

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)
Two (reduced) S-words representing the same group element differ only by a sequence of braid relations (sts $\leftrightarrow t s t$, sus $\leftrightarrow u s u, t u t \leftrightarrow u t u$).

Conjugacy problem: a more precise question (A. Cohen, 1994) Is there a *nice* algorithm, describing when two elements of W are conjugate, using "natural" elementary conjugation operations?

About geometric group theory

$W=\langle s, t, u\rangle \Leftrightarrow$ every $w \in W$ can be represented by a word over the alphabet $S=\{s, t, u\}$ (e.g. $w=t s u s=t u s u)$.

Word problem

Is there an algorithm deciding whether two S-words represent the same group element?

Tits' solution to the word problem in Coxeter groups (1969)
Two (reduced) S-words representing the same group element differ only by a sequence of braid relations (sts $\leftrightarrow t s t$, sus $\leftrightarrow u s u, t u t \leftrightarrow u t u$).

Conjugacy problem: a more precise question (A. Cohen, 1994)
Is there a *nice* algorithm, describing when two elements of W are conjugate, using "natural" elementary conjugation operations?
T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Éc. Norm. Supér. 54 (2021), 483-502.
T. Marquis, Structure of conjugacy classes in Coxeter groups. to appear in Astérisque. $106 \mathrm{p}_{6 / 7}$

Some key points on impact and visibility

- EOS funding on "High-dimensional expanders and KMS groups" (total budget: €1,577,000).
- Summer school on high-dimensional expanders in May 2023 (~ 80 participants).
- P.-E. Caprace has been a speaker in the Algebra Section of the International Congress of Mathematicians in 2022.
- P.-E. Caprace was elected member of the Académie Royale des Sciences in 2023.

