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The evolution of the research team
PhD student Post-doc Academic

Year 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24
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Current members
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Main research directions around geometric group theory
Algebraic structure of (non-discrete) locally compact groups.

▶ e.g. G closed subgroup of Aut(Td)

1

▶ U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the

singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491–562

Unitary representations of locally compact groups.
▶ P.-E. Caprace, M. Kalantar and N. Monod, A type I conjecture and boundary representations of hyperbolic

groups. Proc. London Math. Soc. 127 (2023), no. 2, pp. 447–486

Kac–Moody groups.
▶ e.g. G = SLn(K), G = SLn(K((t))), non-linear groups.

▶ SLn+1(K) = U+WU+T with U+ =
(

1 ∗ ∗
0 1 ∗
0 0 1

)
, T =

(
∗ 0 0
0 ∗ 0
0 0 ∗

)
, W ∼= Sym(n).

▶ T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.

KMS groups and connections to high-dimensional expanders
▶ e.g. G = U+ over K finite field.
▶ Topic of EOS project with Tom De Medts (UGent).
▶ P.-E. Caprace, M. Conder, M. Kaluba and S. Witzel, Hyperbolic generalized triangle groups, property (T) and

finite simple quotients. J. London Math. Soc. 106 (2022), Nr. 4, pp. 3577–3637.

P.-E. Caprace, M. Kassabov, Tame automorphism groups of polynomial rings with property (T) and infinitely

many alternating group quotients. Trans. Amer. Math. Soc. 376 (2023), no. 11, pp. 7983–8021.
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Main research directions around geometric group theory

Coxeter groups.
▶ e.g. W = Sym(n), W = Aut(tiling)

t

u s
C0

▶ T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Éc. Norm. Supér. 54 (2021), 483–502.

T. Marquis, Structure of conjugacy classes in Coxeter groups. to appear in Astérisque. 106 p.
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About geometric group theory
W = Weyl group of SL3(K((t))) = Aut(X ) where X is the colored tiling
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About geometric group theory
W = ⟨s, t, u⟩ ⇔ every w ∈ W can be represented by a word over the
alphabet S = {s, t, u} (e.g. w = tsus = tusu).

Word problem
Is there an algorithm deciding whether two S-words represent the same
group element?

Tits’ solution to the word problem in Coxeter groups (1969)
Two (reduced) S-words representing the same group element differ only by
a sequence of braid relations (sts ↔ tst, sus ↔ usu, tut ↔ utu).

Conjugacy problem: a more precise question (A. Cohen, 1994)
Is there a *nice* algorithm, describing when two elements of W are
conjugate, using “natural” elementary conjugation operations?

T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Éc. Norm. Supér. 54
(2021), 483–502.
T. Marquis, Structure of conjugacy classes in Coxeter groups. to appear in Astérisque. 106 p.
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Some key points on impact and visibility

EOS funding on “High-dimensional expanders and KMS groups”
(total budget: AC1,577,000).
Summer school on high-dimensional expanders in May 2023 (∼ 80
participants).
P.-E. Caprace has been a speaker in the Algebra Section of the
International Congress of Mathematicians in 2022.
P.-E. Caprace was elected member of the Académie Royale des
Sciences in 2023.
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