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The evolution of the research team

o PiDswde Post-doc  Acdemic
Year 16-17 17-18 18-19 19-20 20-21 21-22 22-23 23-24

P-E. Caprace (FNRS-Prof.) [ gy

T. Marquis (FNRS) I

Thierry Stulemeijer (FNRS) [
Nicolas Radu (FNRS) ] ]
Adrien Le Boudec (FNRS)
Joachim Verstraete (FNRS) [0 [ [
Lancelot Semal (FNRS) 1 1 1 |

Waltraud Lederle (SNS+FNRS)
Frangois Thilmany (FNRS)
Alex Loué (Assistant) ] 1
Justin Vast (FSR+FNRS) [
Laura Grave (EOS)
Max Carter (EOS)
Robynn Corveleyn (EOS)
Maximilien Forte (FRIA)
Sebastian Bischof (DAAD)

7



Current members

Alex Loué

T. Marquis

Max Carter

Robynn Corveleyn

Frangois Thilmany

=

e i

Maximilien Forte

Sebastian Bischof

Justin Vast

3/7



Main research directions around geometric group theory

@ Algebraic structure of (non-discrete) locally compact groups.
» e.g. G closed subgroup of Aut(Ty) %’%

» U. Bader, P.-E. Caprace and J. Lécureux, On the linearity of lattices in affine buildings and ergodicity of the

singular Cartan flow. J. Amer. Math. Soc. 32 (2019), Nr. 2, 491-562
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» T. Marquis, An introduction to Kac-Moody groups over fields. EMS Textbooks in Mathematics (2018), 343 p.
@ KMS groups and connections to high-dimensional expanders

» eg. G = U" over K finite field.
» Topic of EOS project with Tom De Medts (UGent).
> P.-E. Caprace, M. Conder, M. Kaluba and S. Witzel, Hyperbolic generalized triangle groups, property (T) and
finite simple quotients. J. London Math. Soc. 106 (2022), Nr. 4, pp. 3577-3637.
P.-E. Caprace, M. Kassabov, Tame automorphism groups of polynomial rings with property (T) and infinitely
many alternating group quotients. Trans. Amer. Math. Soc. 376 (2023), no. 11, pp. 7983-8021.
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Main research directions around geometric group theory

o Coxeter groups.
» eg. W =Sym(n), W = Aut(tiling)

> T. Marquis, Cyclically reduced elements in Coxeter groups. Ann. Sci. Ec. Norm. Supér. 54 (2021), 483-502.

T. Marquis, Structure of conjugacy classes in Coxeter groups. to appear in Astérisque. 106 p.
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About geometric group theory
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{galleries C ~» wC} «
{S-words representing w}

Connectedness <+ W = (s, t, u)

Simple connectedness +»
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Some key points on impact and visibility

e EOS funding on "High-dimensional expanders and KMS groups”
(total budget: €1,577,000).

@ Summer school on high-dimensional expanders in May 2023 (~ 80
participants).

o P.-E. Caprace has been a speaker in the Algebra Section of the
International Congress of Mathematicians in 2022.

o P.-E. Caprace was elected member of the Académie Royale des
Sciences in 2023.
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