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Optimal transport solutions for pileup mitigation at hadron colliders
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The paradigm of hadron colliders: the CERN LHC

CERN hosts the biggest and most powerful
particle accelerator ever built

Large Hadron Collider: LHC
LHC accelerates hadrons (protons) to nearly
the speed of light and to record energy of
13.6 TeV
LHC isn’t filled with “single“ protons, but
rather with “proton bunches“
Each particle collision inside the LHC is
effectively a “bunch crossing“

F. Iemmi (IHEP) TOTAL PU mitigation March 5th, 2024 2 / 36
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PU mitigation at hadron colliders

L = n2Nbγν

4πϵnβ∗ F

At the LHC, usually interested in rare,
head-on pp collisions
Maximize probability of head-on collisions by
squeezing the proton bunches as much as
possible
Keep “instantaneous luminosity“ L high
High integrated luminosity =⇒ more
statistics =⇒ better physics outcome
Drawback: non-negligible probability of
having more than one pp collision per
bunch crossing
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PU mitigation at hadron colliders

Leading vertex: vertex out of which the biggest energy stems
Pileup: additional pp collisions (vertices) superimposing to main collision
During current LHC data taking period (Run3) PU has reached nPU = 60
PU will reach nPU = 200 during High-Luminosity LHC (~2029)
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PU mitigation at hadron colliders

Anna Benecke
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Pileup mitigation is crucial at hadron
colliders
Will severely degrade quality of our
measurements if not properly treated
Main goal: reject particles coming form
pileup vertices, keep particles coming from
leading vertex (LV)
Easy task for charged particles: use
tracking information to disentangle particles
Very challenging for neutral particles
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The paradigm of particle detectors: CMS

CMS: Compact Muon Solenoid
One of the two “general purpose“ LHC
experiments
Specs: 15x15x20m3, 12500 tonnes
Broad programme of precision
measurements and searches
Sometimes called “the cylindrical onion“:
several layers of subdetectors
Going outwards: tracker, calorimeters,
magnet, muon chambers
PU mitigation capabilities strongly
depend on subdetectors features
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CMS subdetectors examples: tracker & ECAL

Tracker: detect trajectories of
charged particles
Silicon pixels/strips
Excellent spatial resolution: σ ≈ µm
Can disentangle different vertices

Electromagnetic calorimeter (ECAL):
measure energy of electrons/photons
Lead tungstate (PbWO4) crystals
Worse spatial resolution: σ ≈ cm
Cannot disentangle different
vertices

F. Iemmi (IHEP) TOTAL PU mitigation March 5th, 2024 7 / 36
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Physics objects: jets and MET

Pileup affects all the physics objects, in particular jets and MET
Jet: “spray“ of particles (charged and neutral) produced by the
hadronization of a quark or a gluon, clustered with dedicated algorithms
MET: momentum imbalance in plane transverse to proton beam direction
MET can be used to indirectly infer presence of weekly interacting particles

Neutrinos
New physics (dark matter, ...)?
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How bad is pileup?

Jet multiplicity
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State-of-the-art at CMS: PUPPI [JINST 15 P09018]

Starting from LHC Run3, default PU mitigation technique in CMS is
PUPPI
Rule-based algorithm
Calculates a weight w ∈ [0, 1] for each particle in the event

Encodes the probability for a particle to be LV or not
Weight used to reweight the particle 4-momentum before jet clustering

For charged: use tracking information and assign 0 or 1
For neutrals: build α variable

αi = log
∑

j ̸=i ,∆Rij <R0

(
pT ,j
∆Rij

)2{|ηi | < 2.5 j are all charged particles from LV
|ηi | > 2.5 j are all kinds of particles

LV radiation is harder and more collimated than PU =⇒ higher α than PU
F. Iemmi (IHEP) TOTAL PU mitigation March 5th, 2024 10 / 36
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PUPPI with Machine Learning: PUPPIML [1810.07988]
4 J. Arjona Mart́ınez et al.: Pileup mitigation at the Large Hadron Collider with Graph Neural Networks

Fig. 2. Conceptual depiction of the GGNN model architecture. The event is pre-processed by linking local particles together,
after which it is fed to 3 GGNN layers with time-steps [2, 1, 1] and including a residual connection from the first to the third
layer. This is then passed, individually per graph node, to a fully-connected network that outputs a [0,1] pileup classification
score. Adam is used with a learning rate of 0.004 to minimize the binary cross-entropy. The output of the network is checked
to be a well-calibrated probability.

– The PUPPI weight associated to the particle: a number between 0 and 1 that can be related to the probability of
the particle being pileup.

– A flag set to 1 for charged particles from the LV, -1 for charged pileup particles and 0 for all neutral particles. This
flag provides a simple encoding for when CHS is used.

– A pileup flag indicating whether the particle belongs to the hard scattering or to any of the pileup vertices. This
information is used as the ground truth later on.

We assume units such that h̄ = c = 1. Furthermore, we store for each event the median pT per unit area in (η, φ) for
all particles (ρ), for all charged particles alone (ρC), and for all neutral particles alone (ρN ).

4 Network architectures

PUPPI can be straightforwardly interpreted as a per particle classification algorithm. Under this point of view, tra-
ditional metrics such as the Receiver Operating Characteristic (ROC) curve (true positive rate against false positive
rate) or the accuracy (fraction of correctly classified particles) can be used. The choice of the shape variable α1 is then
driven by its discriminating power, with the underlying assumption that a better classification performance should
correlate with a better reconstruction of physics-motivated quantities which are relevant to study these data. For all
the investigated network architectures, we generalize this approach to multiple shape variables, indicated from now
on as features. We feed as input to our networks all the particles, with all the features discussed in Sec. 3 except for
the pileup flag, which we use as the training ground truth. The global features are concatenated to each particle’s
individual features. An generalization of PUPPI by mean of ML techniques is already discussed in Ref. [1], where it is
asserted that training a Boosted Decision Tree modestly improves performance when compared to the use of α1 as
discriminating quantity.

Our most straightforward model makes use of two stacked fully-connected hidden layers and a final single-neuron
layer with a sigmoid activation function. This network is trained, as all the other models, to minimize a binary
cross-entropy loss function using the Adam optimizer [32]. This model stands out for its simplicity, as it operates on
each particle completely independently of the others, but suffers from a clear issue: while the input includes global
(ρ, ρC , ρN ) and local (αCi , α

F
i ) features, the network has no mechanism by which it could learn these or similar features.

Extending the network architecture beyond a simple per-particle processing, one could overcome this limitation.
To this purpose, different network architectures can be chosen. Reference [24] describes an approach based on CNNs.
Motivated by the arguments described in Sec. 2, we complement the results of Ref. [24] by studying GRUs and GGNNs.
Both these architectures take as input the full list of particles in the event, outputting a per-particle label.

The GRU is a recurrent neural network architecture that sequentially processes each item of an input list, based
on the outcome of previous-item processing. While making no assumption on the underlying detector geometry, the
GRU architecture implies the use of a ranking principle to order the items in the input list. In our study, the inout
list contains the particles in the event, which are ordered by their pT value. This is one of the many arbitrary choices
that one could make. In the network, we make use of a bidirectional GRU layer, i.e., we consider both increasing- and
decreasing-pT ordering. The output of this layer is concatenated to each particle’s features. We show that this approach
does not improve the classification performance with respect to DNNs and traditional methods. This is mainly due by
the fact that GRUs require a global ordering criterion, while the information determining if a given particles belongs
to the LV or originates from pileuphas mainly to due with the particle’s local neighborhood.

PUPPI is based on local information: use GNN to collect it in more
expressive ways
Developed using Delphes (fast detector simulation) at particle-level (before
interaction with the detector)
Low complexity of fast-sim makes it possible to know if a particle is
leading vertex or PU: truth labels available
Fully supervised: use truth-labels coming from Delphes simulation
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Truth labels in full-sim?

LV
PU

η

φ
Critical issue: truth labels for neutrals not
available in Geant4 full-scale simulations

For charged, use tracker
High complexity full-sim makes it extremely
hard to get truth labels
Truth label definition can even be
ambiguous

Merged neutral deposits can’t be
disentangled

Previous approaches can’t be exported
to ATLAS/CMS
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Semi-supervised PUPPI [2203.15823]

Figure 2: Node representation hv update for the kth iteration.

Table 1: The first four columns include the average numbers of four types of particles under different pileup
conditions per graph. The last two columns indicate the number of charged particles being randomly selected
for training per graph in one epoch.

nPU
# Particles (in total) # Selected Particles (for training)

Charged LV Charged PU Neutral LV Neutral PU Charged LV Charged PU

20 69 ± 34 407 ± 154 43 ± 22 203 ± 80 7 35

80 67 ± 33 1630 ± 310 42 ± 22 813 ± 160 7 126

140 68 ± 34 2846 ± 408 43 ± 22 1423 ± 213 7 224

charged particles can be applied to infer the labels of neutral particles in the later testing stage. Therefore,
the features of these charged particles in the training should mimic the ones of neutral particles, and their
LV/PU labels should not be used as the input features. On the other hand, the LV/PU label information of
neighboring charged particles serves as important inputs for predicting the labels of target particles. Thus
the label information of neighboring particles should be kept in the inputs.

Note that such masking procedure is at risk of breaking the original structure of the data and thus may
introduce biases. To reduce such bias, our model only masks a small portion of the charged particles per
event. However, masking only a small portion of charged particles for training may not sufficiently leverage
the labels. To achieve a better usage of the labels, we propose the random selection mechanism. That
is, for each event, we perform multiple-time random selections of the charged particles for masking. This
guarantees that for each event each time, only a small portion of charged particles are masked and used to
supervise the model training, while most of the charged particles of this event can be eventually used to
supervise the model after running the model multiple times on this event.

Another practical consideration is regarding the time complexity of model training. Although the random
masking strategy guarantees a sufficient usage of the labels and the data, setting the masking portion too
small may slow down the training procedure, because a huge time of model running per event is needed
to guarantee a good coverage of the masking procedure. To balance the tradeoff, in our experiments we
randomly select about 10% of charged particles per event each time. Table 1 includes the numbers of
selected charged LV and PU particles per graph per epoch and the total number of charged LV and PU
particles per graph. With about tens of training epochs, all charged particles should be selected as training
data at least once by random selection. Even though different pileup levels seem to affect the actual numbers
of selected particles greatly, experiments show that the model is robust when it is trained on one pileup level
and tested on another pileup level.

4.3 Training details and complexity

We also compare our SSL model with a fully supervised model that has the same architecture but is trained
using the labels of neutral particles without any masking strategy. The fully supervised model needs to be
trained and tested over different events, though our SSL model does not need to. To make fair comparisons,
for experiments where nPU = 80, there are 3000/1000/1000 events for training/validation/testing. When
nPU = 140, 2000/800/800 events are used for training/validation/testing. For the nPU = 140 scenario, there

7

PUPPI is based on local information: use GNN to collect it in more
expressive ways
Developed at Delphes particle-level (before interaction with the detector)
Semi-supervised: train on charged (labels exist in Geant4 as well, from
tracking), apply on neutrals
Can train on data, but requires extrapolations (charged → neutrals, central
→ forward)
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Overview of PU mitigation techniques

Currently in use (e.g., CMS): PUPPI [JINST 15 P09018]
Rule-based algorithm

Nature and complexity of task inspired machine-learning-based approaches
PUPPIML: use GNN, rely on Delphes truth labels [1810.07988]
Semi-supervised PUPPI: train on charged, apply on neutrals, rely on
extrapolations [2203.15823]

Recurring problem: lack of truth labels for neutrals in full simulation
We developed a new ML-based approach to overcome this bottleneck

Use Attention-Based Cloud Network (ABCNet, [2001.05311]) combined
with optimal transport concepts
TOTAL: Training Optimal Transport with Attention Learning

Train model on a Delphes-based simulation of the CMS Phase2 detector
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Attention-Based Cloud network

ABCNet is an graph neural network enhanced with attention mechanisms
Treat particle collision data as a set of permutation-invariant objects
Attention mechanisms filter out the particles that are not relevant for the
learning process

Implemented inside custom graph attention pooling layers (GAPLayers)
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A novel approach to PU mitigation

Definition of truth labels is highly non trivial in simulations at hadron colliders
Our approach: simulate identical proton-proton collisions in two scenarios

1 Only the hard interaction is simulated: no-PU sample
2 Pileup is superimposed to the hard interaction: PU sample

Do not assign per-particle labels: rather just assign a “global“ label to
samples
Train network to learn differences between the two samples

η

φ

η

φ
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How to learn: OT concepts for a loss function

We build a custom loss inspired by
optimal transport ideas (OT) OT example: the Earth Mover’s

Distance is the minimum work to move
earth to fill some holes

EMD(x⃗ , y⃗) = min
f

W (f , x⃗ , y⃗)

With OT you can match distributions
(e.g., earth-holes)
We want to match the distributions for
the no-PU particles and PU particles
weighted by an ABCNet weight (ω⃗)
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Limitation of the EMD loss function

Using the EMD loss comes with
some limitations We consider 9000 particles per event

High computational cost: feasible
flows f are 9000x9000 matrices
Can only match 3D distributions
We use a modified loss to

Match higher-dimensionality
distributions
Solve OT efficiently

Sliced Wasserstein Distance (SWD)
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Efficient OT: sliced Wasserstein distance (SWD)

The optimal transport problem has a closed form for 1D problems:

Wc(pX , pY ) =
∫ 1

0
c
(
P−1

X (τ), P−1
Y (τ)

)
dτ

where pX , pY are 1D PDFs, PX (τ), PY (τ) are the respective CDFs and c(·, ·)
is the transportation cost function
No guarantee that the integral is solvable (it depends on the form of c(·, ·))
The integral can always be approximated by the finite sum

1
M

M∑
m=1

c
(
P−1

X (τm), P−1
Y (τm)

)
, τm = 2m − 1

2M
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Example: M = 5

px py

x

τ2 = 0.3

c(P−1
x (τ2), P

−1
y (τ2))

0.1

0.5

0.7

0.9

1
M

Px Py

x

τm

m ∈ {1, 2, 3, 4, 5} =⇒ τm = 2m−1
2M ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
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Efficient OT: sliced Wasserstein distance (SWD)

In the special case of discrete distributions (discrete in nature, or resulting
from a sampling), PDFs are sums of Dirac’s deltas

px = 1
M

M∑
m=1

δ(x − xm); py = 1
M

M∑
m=1

δ(y − ym);

The integral of a Dirac’s delta is the Heaviside’s step function Θ =⇒
=⇒ CDFs are Heaviside functions

Px (t) =
∫ t

−∞
px (z)dz = 1

M

∫ t

−∞

M∑
m=1

δ(z − xm)dz = 1
M

M∑
m=1

Θ(t − xm)

If we sort the samples by feature, the CDFs become a sum of steps
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Example: M = 5

px py

x

Px Py

c(P−1
x (τ2), P

−1
y (τ2))

1
Mτ2 = 0.3

x1 x2 x3 x4x5

0.1

0.5

0.7

0.9

x

τm

m ∈ {1, 2, 3, 4, 5} =⇒ τm = 2m−1
2M ∈ {0.1, 0.3, 0.5, 0.7, 0.9}

Note that

P−1
x (τm) = xm; P−1

y (τm) = ym
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Efficient OT: sliced Wasserstein distance (SWD)

Note that

P−1
x (τm) = xm; P−1

y (τm) = ym

Therefore

Wc(pX , pY ) = 1
M

M∑
m=1

c
(
P−1

X (τm), P−1
Y (τm)

)
= 1

M

M∑
m=1

c (xm, ym)

The 1D OT problem is reduced to a sorting of the 1D feature
Fast and easy to solve
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Efficient OT: sliced Wasserstein distance (SWD)

CHECKPOINT
1 Optimal transport problem has a closed form in 1D
2 For sampled distributions, the problem is reduced to a sorting of the 1D feature
3 Particles have multi-dimensional distributions though. How to apply this?
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Efficient OT: sliced Wasserstein distance (SWD)

Each particle is a sample from a n-D
feature space
SWD: take n-D feature space and
project (slice) it to 1D
Project on a vector belonging to Sn−1

For robustness, take multiple random
slices

Now can solve the 1D OT
problem for each slice
Sort particles by slice
The average on all slices and
particles becomes the loss function

Input

C1

C2

G Task-Specific 
Sliced Wasserstein Discrepancy

Linear  
Projection 

Figure 1: An illustration of the proposed sliced Wasserstein discrepancy (SWD) computation. The SWD is designed to capture the
dissimilarity of probability measures p1 and p2 in Rd between the task-specific classifiers C1 and C2, which take input from feature
generatorG. The SWD enables end-to-end training directly through a variational formulation of Wasserstein metric using radial projections
on the uniform measures on the unit sphere Sd−1, providing a geometrically meaningful guidance to detect target samples that are far from
the support of the source. Please refer to Section 3.3 for details.

(2) freeze the parameters of the generator G and update the
classifiers (C1, C2) to maximize the discrepancy between
the outputs of the two classifiers on the target setXt, identi-
fying the target samples that are outside the support of task-
specific decision boundaries,

min
C1,C2

Ls(Xs, Ys)− LDIS(Xt) (2)

where LDIS(Xt) is the discrepancy loss (L1 in [58]).
Ls(Xs, Ys) is also added to this step to retain information
from the source domain, and
(3) freeze the parameters of the two classifiers and update
the generator G to minimize the discrepancy between the
outputs of the two classifiers on the target set Xt,

min
G
LDIS(Xt) (3)

This step brings the target feature manifold closer to the
source.

3.2. Optimal Transport and Wasserstein Distance

The effectiveness of domain adaptation in the aforemen-
tioned MCD framework depends entirely on the reliability
of the discrepancy loss. Learning without the discrepancy
loss, essentially dropping step 2 and step 3 in the training
procedure, is simply supervised learning on the source do-
main.

The Wasserstein distance has recently received great at-
tention in designing loss functions for its superiority over
other probability measures [74, 41]. In comparison to other
popular probability measures such as total variation dis-
tance, Kullback-Leibler divergence, and Jensen-Shannon
divergence that compare point-wise histogram embeddings
alone, Wasserstein distance takes into account the proper-
ties of the underlying geometry of probability space and it is
even able to compare distribution measures that do not share
support [1]. Motivated by the advantages of the Wasserstein
distance, we now describe how we leverage this metric for
measuring the discrepancy in our method.

Let Ω be a probability space and µ, ν be two probability
measures in P(Ω), the Monge problem [43] seeks a trans-
port map T : Ω→ Ω that minimizes the cost

inf
T#µ=ν

∫
Ω

c(z, T (z))dµ(z), (4)

where T#µ = ν denotes a one-to-one push-forward from
µ toward ν ∀ Borel subset A ⊂ Ω and c : Ω × Ω → R+

is a geodesic metric that can be either linear or quadratic.
However, the solution T ∗ may not always exist due to the
assumption of no splitting of the probability measures, for
example when pushing a Dirac measure toward a non-Dirac
measure.

Kantorovitch [27] proposed a relaxed version of Eq 4,
which seeks a transportation plan of a joint probability dis-
tribution γ ∈ P(Ω× Ω) such that

inf
γ∈Π(µ,ν)

∫
Ω×Ω

c(z1, z2)dγ(z1, z2), (5)

where Π(µ, ν) = {γ ∈ P(Ω× Ω)|π1#γ = µ, π2#γ = ν}
and π1 and π2 denote the two marginal projections of Ω×Ω
to Ω. The solutions γ∗ are called optimal transport plans or
optimal couplings [73].

For q ≥ 1, the q-Wasserstein distance between µ and ν
in P(Ω) is defined as

Wq(µ, ν) =

(
inf

γ∈Π(µ,ν)

∫
Ω×Ω

c(z1, z2)
qdγ(z1, z2)

)1/q

, (6)

which is the minimum cost induced by the optimal trans-
portation plan. In our method, we use the 1-Wasserstein
distance, also called the earth mover’s distance (EMD).

3.3. Learning with Sliced Wasserstein Discrepancy

In this work, we propose to apply 1-Wasserstein dis-
tance to the domain adaptation framework described in
Section 3.1. We utilize the geometrically meaningful 1-
Wasserstein distance as the discrepancy measure in step 2
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Energy conservation in OT: MET constraint

SWD focuses on the optimal matching between individual particles in no-PU
and PU samples

No guarantee that energy is conserved between the two
Add an event-level MET constraint term to the loss

Enforce energies in no-PU and PU events to be similar
Final loss function:

OT = SWD(x⃗p · ω⃗, x⃗np) + λ × MSE (MET(x⃗p · ω⃗), MET(x⃗np))

where x⃗p = PU sample; x⃗np = no-PU sample; MSE = mean squared error
λ can be tuned to include/exclude MET constraint
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The model
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Aggregation layers

Post-aggregation layers 9 input features:
(pT, η, ϕ, E)
Charge
PDG ID
dXY & dZ impact parameters
Track label

Loss: OT (x⃗p · ω⃗, x⃗np)
Cost function: squared distance
Sliced features: (pT, η, ϕ, E )
Output: per-particle weight ω⃗

Train on 300k events, equally split between QCD multijet, t̄t dileptonic and
VBF Higgs(4ν) processes
Consider 9000 particles per event (zero-padding included)
Gather the 20 k-nearest neighbors for each particle when building graph

F. Iemmi (IHEP) TOTAL PU mitigation March 5th, 2024 27 / 36



TOTAL PU
mitigation

F. Iemmi

Introduction
PU mitigation

CMS

PUPPI

PUPPIML

SSPUPPI

TOTAL PU
mitigation
General idea

Loss function: SWD

Model

Results
Distributions

Inclusive resolutions

Differential
resolutions

Robustness

Physics impact

Conclusions

The model

Input
(Bx4000x19)

GAPBlock 1
(f = 16, k=20, h=1)

Neighbors features 1 Graph features 1

Conv1D
(f = 64, ks = 1, s = 1)

Conv1D
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Aggregation layers

Post-aggregation layers
Compare TOTAL with PUPPI
and no-PU scenario
Reweight each particle’s
4-momentum by the network
weight

À-la-PUPPI
Cluster TOTAL jets and
TOTAL MET

We define the resolution as:

δ = q75% − q25%
2

where qX% is the X-th quantile of the considered response distribution
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Results: observables distributions
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Jet pT and MET in semileptonic t̄t (left, center); AK8 jet mass in Z ′ → t̄t
fully hadronic (right)
No biases/distortions/sculpting for TOTAL
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Inclusive resolutions
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Jet pT and MET response in semileptonic t̄t (left, center); AK8 jet mass
response in Z ′ → t̄t fully hadronic (right)
≈ 20% improvement in jet pT and MET resolution; ≈ 30% improvement in
mass resolution wrt PUPPI
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Differential resolutions
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Jet pT resolution vs jet pT in semileptonic t̄t (left); jet pT resolution vs jet |η|,
in QCD (center); τ3/τ2 resolution vs jet pT in Z ′ → t̄t fully hadronic (right)
Improvement up to ≈ 30% wrt PUPPI
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Robustness
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Evaluate resolution on processes and PU scenarios unseen during training
Network is trained on QCD+t̄t+VBF with ⟨NPV⟩ = 140
Evaluate on W+jets production, flat NPV between 0 and 200
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Physics impact
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Search for invisible Higgs decays
Signal: VBF Higgs to invisible
Background: strong production of
Z(νν)

Train linear classifier with MET
and mjj as inputs
Plot improvement in significance
Improvement of ≈ 15%

Consistent with improvement on
single objects
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Comparison with fully supervised network
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Use Delphes truth labels to
compare OT approach with
fully-supervised approach
Train ABCNet with truth labels
Compare with TOTAL, PUPPI and
PUMA [Mach. Learn.: Sci. Technol.
3 025012]
Little to no loss in performance
when using OT
Dramatic conceptual advantage of
no use of truth labels
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Conclusions

Presented a novel algorithm to reject PU particles at high-intensity hadron
colliders

Trained and tested on Delphes simulation of Phase2 CMS detector
We are Training Optimal Transport with Attention Learning: TOTAL
We solved the longstanding problem of neutral labels in PU mitigation
We do not rely on explicit, per-particle labeling

Can be used in Geant4: ATLAS, CMS, ...
Learning happens through OT in a self-supervised fashion
TOTAL acronym has no “pileup“ in it. Very general approach
Our approach can be expanded to a wide range of denoising problems

Only needed input is a reliable simulation of signal and noise
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Conclusions

Thank you!

Questions?
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State-of-the-art at CMS: PUPPI [JINST 15 P09018]

Starting from LHC Run3, default PU mitigation technique in CMS is
PUPPI
Rule-based algorithm
Calculates a weight w ∈ [0, 1] for each particle in the event

Encodes the probability for a particle to be LV or not
Weight used to reweight the particle 4-momentum before jet clustering

For charged: use tracking information and assign 0 or 1
For neutrals: build α variable

αi = log
∑

j ̸=i ,∆Rij <R0

(
pT ,j
∆Rij

)2{|ηi | < 2.5 j are all charged particles from LV
|ηi | > 2.5 j are all kinds of particles

LV radiation is harder and more collimated than PU =⇒ higher α than PU
F. Iemmi (IHEP) TOTAL PU mitigation March 5th, 2024 2 / 8
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State-of-the-art at CMS: PUPPI [1407.6013]

To translate into a weight, compare each particle’s α with the mean and RMS
of PU particles

signedχ2
i = (αi − ᾱPU)|αi − ᾱPU|

(αRMS
PU )2

Use charged particles for ᾱPU and (αRMS
PU )2 computation

Finally, assume signedχ2 follows a χ2 distribution and assign weight based on
CDF

wi = Fχ2,NDF=1(signedχ2)

LV particle =⇒ large signedχ2 =⇒ large CDF =⇒ large weight
PU particle =⇒ small signedχ2 =⇒ small CDF =⇒ small weight
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State-of-the-art at CMS: PUPPI [1407.6013]

4. The CHS and PUPPI algorithms 7
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Figure 2: Data-to-simulation comparison for three different variables of the PUPPI algorithm.
The markers show a subset of the data taken in 2016 of the jet sample and the PU sample, while
the solid lines are QCD multijet simulations or PU-only simulation. The lower panel of each
plot shows the ratio of data to simulation. Only statistical uncertainties are displayed. The
upper left plot shows the α distribution in the jet sample for charged particles associated with
the LV (red triangles), charged particles associated with PU vertices (blue circles), and neutral
particles (black crosses) for |η| < 2.5. The upper right plot shows the α distribution in the PU
sample for charged (blue circles) and neutral (orange diamond) particles. The lower left plot
shows the signed χ2 = (α− αPU)|α− αPU|/(αRMS

PU )2 for neutral particles with |η| < 2.5 in the jet
sample (black crosses) and in the PU sample (orange diamonds). The lower right plot shows
the PUPPI weight distribution for neutral particles in the jet sample (black crosses) and the PU
sample (orange diamonds). The error bars correspond to the statistical uncertainty.
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PileUp Mitigation with Machine Learning: PUMML
[1707.08600]

η
φ

b
ea

m

Leading vertex charged

Pileup charged

Total neutral

Leading vertex neutral
Inputs to NN ︸ ︷︷ ︸

10 filters ×2

Figure 1: An illustration of the PUMML framework. The input is a three-channel image:

blue/purple represents charged radiation from the leading vertex, green is charged pileup

radiation, and yellow/orange/red is the total neutral radiation. The resolution of the charged

images is higher than for the neutral one. These images are fed into a convolutional layer with

several filters whose value at each pixel is a function of a patch around that pixel location in

the input images. The output is an image combining the pixels of each filter to one output

pixel.

– 5 –

Treat jets as squared images,
use CNNs
Input is a three-channel image

Charged radiation from LV
Charged radiation from PU
Total neutral radiation

Output is regressed neutral
radiation from LV
Image-based approach
overlooks complex detector
geometry
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Attention mechanism

Attention

Add together self- (x ′
i ) and local- (y ′

ij) coefficients
and apply non-linearity

cij = LeakyRelu(x ′
i + y ′

ij)

Align coefficients cij by applying SoftMax

c ′
ij = exp(cij)∑

k exp(cik)

Get attention coefficients by multiplying y ′
ij by c ′

ij

x̂i = Relu

∑
j

c ′
ijy ′

ij
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Signal: VBF Higgs to invisible
Background: strong production of
Z(νν)

Train linear classifier with MET
and mjj as inputs
Plot improvement in significance
Improvement of ≈ 15%

Consistent with improvement on
single objects
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