

Atomic precision mirror coatings for gravitational

wave detectors

Jorden De Bolle, Christophe Detavernier

Overview

- Who are we?
 - The CoCooN research group
 - Atomic layer deposition (ALD)
 - Thin film characterisation

- Mirror coatings in GW detectors
 - Making mirrors reflective
 - Mirror coatings and noise
 - GHENT UNIVERSITY

- ALD as alternative deposition technique
 - Current state of the art
 - O Why ALD?
 - Growth of Ta₂O₅
 - Growth of SiO₂
- Structural characterisation of mirror coatings
 - Why structure is important
 - Total scattering experiments
 - PDF of Ta₂O₅

Who are we?

The CoCooN research group

- Jorden De Bolle
- PhD student
- Physicist (MSc Physics,
 Ghent University)
- jorden.debolle@ugent.be

- CoCooN research group (Conformal Coating of Nanomaterials)
- Thin film and material research
- Application driven (batteries, proton conductors...) and fundamental research

Atomic layer deposition (ALD)

Self-limiting reactions between substrate and precursor gases!

CoCooN

→ https://www.ugent.be/we/solidstatesciences/cocoon/en

- 8 ALD reactors, 3 MLD reactors
- 1 mobile ALD reactor to take to a synchrotron facility
- PVD reactors
- Characterization:
 - Ellipsometry (in situ during ALD and anneal, ex situ)
 - FTIR (in situ during ALD, ex situ)
 - XRR (ex situ)
 - XRD (in situ during anneal, ex situ)
 - Stress measurements (in situ during anneal, ex situ)
 - Mass spectrometry (in situ during ALD)
 - XPS (in vacuo during ALD, ex situ)
 - SEM (ex situ)
 - •
- Characterization at synchrotron facilities (GISAXS (in situ during ALD and anneal and ex situ), PDF...)

Mirror coatings in GW detectors

Making mirrors reflective

Key components of the detectors

SiO₂

Ta₂O₅

J. Steinlechner. Phil. Trans. R. Soc. Lond. A, no. 376, 2018

Mirror coatings and noise aLIGO noise curve: $P_{in} = 125.0 \text{ W}$

Mirror coatings contributre large fraction to total detector noise

Mirror coatings and noise aLIGO noise curve: $P_{in} = 125.0 \text{ W}$

- Mirror coatings contributre large fraction to total detector noise
- Current state of the art coatings not suited for operation in future detectors

J. Steinlechner. Phil. Trans. R. Soc. Lond. A, no. 376, 2018

Mirror coatings and noise aLIGO noise curve: $P_{in} = 125.0 \text{ W}$

- Mirror coatings contributre large fraction to total detector noise
- Current state of the art coatings not suited for operation in future detectors
- Need for new coating materials and coating designs

Mirror coatings and noise aLIGO noise curve: $P_{in} = 125.0 \text{ W}$

- Mirror coatings contributre large fraction to total detector noise
- Current state of the art coatings not suited for operation in future detectors
- Need for new coating materials and coating designs
- Need for more knowledge on how atomic structure influences performance and how this can be controlled

Mirror coatings and noise

aLIGO noise curve: $P_{in} = 125.0 \text{ W}$

- Mirror coatings contributre large fraction to total detector noise
- Current state of the art coatings not suited for operation in future detectors
- Need for more knowledge on how atomic structure influences performance and how this can be controlled

Mirror coatings and noise

aLIGO noise curve: $P_{in} = 125.0 \text{ W}$

- Mirror coatings contributre large fraction to total detector noise
- Current state of the art coatings not suited for operation in future detectors
- Need for new coating materials and coating designs \leftarrow ALD as alternative deposition technique
- Need for more knowledge on how atomic structure influences performance and how this can be controlled ← structural characterisation with total scattering measurements

ALD as alternative deposition technique

Current state of the art

Ion beam sputtering is used to deposit coatings of Ti:Ta2O5 and SiO2

SiO₂

Ta₂O₅

Atomic layer deposition (ALD)

Self-limiting reactions between substrate and precursor gases!

Research Article

♦ Cite This: ACS Appl. Mater. Interfaces 2018, 10, 41678–41689

www.acsami.org

Scaling Atomic Layer Deposition to Astronomical Optic Sizes: Low-Temperature Aluminum Oxide in a Meter-Sized Chamber

David M. Fryauf,**,†© Andrew C. Phillips,‡ Michael J. Bolte,§ Aaron Feldman, Gary S. Tompa, and Nobuhiko P. Kobayashi†

Available ALD processes at CoCooN

Research Article

www.acsami.org

Cite This: ACS Appl. Mater. Interfaces 2018, 10, 41678–41689

Scaling Atomic Layer Deposition to Astronomical Optic Sizes: Low-Temperature Aluminum Oxide in a Meter-Sized Chamber

David M. Fryauf,**,†© Andrew C. Phillips,‡ Michael J. Bolte,§ Aaron Feldman,¶ Gary S. Tompa,¶ and Nobuhiko P. Kobayashi†

Available ALD processes at CoCooN

- Atomic thickness control
- Superior uniformity

Research Article

Cite This: ACS Appl. Mater. Interfaces 2018, 10, 41678–41689

www.acsami.org

Scaling Atomic Layer Deposition to Astronomical Optic Sizes: Low-Temperature Aluminum Oxide in a Meter-Sized Chamber

David M. Fryauf,**,†© Andrew C. Phillips,‡ Michael J. Bolte,§ Aaron Feldman, Gary S. Tompa, and Nobuhiko P. Kobayashi†

Chamber flow model Side view AlO_x uniformity

Available ALD processes at CoCooN

- Atomic thickness control
- Superior uniformity
- Easily scaleable

Research Article

Cite This: ACS Appl. Mater. Interfaces 2018, 10, 41678–41689

www.acsami.org

Scaling Atomic Layer Deposition to Astronomical Optic Sizes: Low-Temperature Aluminum Oxide in a Meter-Sized Chamber

David M. Fryauf,*^{*,†} Andrew C. Phillips,[‡] Michael J. Bolte,[§] Aaron Feldman, Gary S. Tompa, and Nobuhiko P. Kobayashi[†]

Available ALD processes at CoCooN

- Atomic thickness control
- Superior uniformity
- Easily scaleable
- Wide variety of materials

Research Article

Cite This: ACS Appl. Mater. Interfaces 2018, 10, 41678–41689

www.acsami.org

Scaling Atomic Layer Deposition to Astronomical Optic Sizes: Low-Temperature Aluminum Oxide in a Meter-Sized Chamber

David M. Fryauf,**,†© Andrew C. Phillips,‡ Michael J. Bolte,§ Aaron Feldman, Gary S. Tompa, and Nobuhiko P. Kobayashi†

Chamber flow model Side view AlO_x uniformity

Available ALD processes at CoCooN

- Atomic thickness control
- Superior uniformity
- Easily scaleable
- Wide variety of materials
- X Slow

Growth of Ta₂O₅

PDMAT/H₂O

PDMAT/O₂*

PDMAT/O₃

Additional Ar* step

- Growth speed
- Density
- Purity
- Optical absorption
- Mechanical losses

Growth of Ta₂O₅

- Growth speed
- Density
- Purity
- Optical absorption
- Mechanical losses

Upper boundary for extinction coefficient: 2E-5 (not bad)

10/16

Growth of SiO₂

SiO₂ grows faster when TiO₂ is added

Titania Mixed with Silica: A Low Thermal-Noise Coating Material for Gravitational-Wave Detectors

Graeme I. McGhee®, Viola Spagnuolo®, Nicholas Demos®, Simon C. Tait®, Peter G. Murray®, Martin Chicoine, Paul Dabadie, Slawek Gras, Hough®, Guido Alex Iandolo, Ross Johnston®, Valérie Martinez, Oli Patane®, Sheila Rowan, François Schiettekatte®, Joshua R. Smith, Lukas Terkowski, Liyuan Zhang, Matthew Evans, Iain W. Martin®, and Jessica Steinlechner® 1,2,3,*

Growth of SiO₂

SiO₂ grows faster when TiO₂ is added

Titania Mixed with Silica: A Low Thermal-Noise Coating Material for Gravitational-Wave Detectors

Graeme I. McGhee®, Viola Spagnuolo®, Nicholas Demos®, Simon C. Tait®, Peter G. Murray®, Martin Chicoine, Paul Dabadie, Slawek Gras, Jim Hough®, Guido Alex Iandolo, Ross Johnston®, Valérie Martinez, Oli Patane®, Sheila Rowan, François Schiettekatte®, Joshua R. Smith, Lukas Terkowski, Liyuan Zhang, Matthew Evans, Iain W. Martin®, and Jessica Steinlechner® 1,2,3,*

ALD allows for "delta doping", where delta layers of the doping material are inserted

Growth of SiO₂

SiO₂ grows faster when TiO₂ is added

Titania Mixed with Silica: A Low Thermal-Noise Coating Material for Gravitational-Wave Detectors

Graeme I. McGhee®,¹ Viola Spagnuolo®,²,³ Nicholas Demos®,⁴ Simon C. Tait®,¹ Peter G. Murray®,¹ Martin Chicoine,⁵ Paul Dabadie,⁶ Slawek Gras,⁴ Jim Hough®,¹ Guido Alex Iandolo,²,³ Ross Johnston®,¹ Valérie Martinez,⁶ Oli Patane®,² Sheila Rowan,¹ François Schiettekatte®,⁵ Joshua R. Smith,⁵ Lukas Terkowski,⁵ Liyuan Zhang,¹⁰ Matthew Evans,⁴ Iain W. Martin®,¹ and Jessica Steinlechner®¹,²,²,³,∗

ALD allows for "delta doping", where delta layers of the doping material are inserted

Structural characterisation

Why structure is important

Why structure is important

Corner sharing

Edge sharing

Face sharing

Why structure is important

ALD of VO_2 (TEMAV + H_2O/O_3)

- Amorphous VO₂ shows different crystallisation behaviour when deposited with different ALD processes
- Hints at differences in amorphous phase

- For crystalline materials: XRD
 - Measure Bragg scattering
 - Determine lattice parameters very accurately
 - Measures coherence lengths
 - → Probes the average structure

- For crystalline materials: XRD
 - Bragg scattering
 - Determined are very accurately
 - coherence leng
 - → Probes the average structure

- For crystalline materials: XRD
 - Bragg scattering
 - Determined are very accurately
 - coherence leng
 - → Probes the average structure
- For amorphous materials:
 - No long range coherence
 - → Need to probe local structure

- For crystalline materials: XRD
 - Bragg scattering
 - Determined a courately
 - coherence leng.
 - → Probes the average structure

- No long range coherence
- → Need to probe local structure
- Measure all scattering (also diffuse scattering)
- Measure high Q-region with good statistics
- → Synchrotron based experiments

Total scattering experiments

structure and performance of the coatings

PDF of Ta₂O₅

PDF of Ta₂O₅

Thank you for your attention

Any questions?

Contact

Jorden.debolle@ugent.be
Cocoon Research Group
www.cocoon.ugent.be
Krijgslaan 281-S1, 9000 Ghent, Belgium

