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Gravitational Wave Sources

Source:  https://www.spaceaustralia.com/news/cosmic-lighthouses-and-continuous-gravitational-waves
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Alexander C. Jenkins

https://www.spaceaustralia.com/news/cosmic-lighthouses-and-continuous-gravitational-waves
https://inspirehep.net/literature/2031052


Predictions for Detection
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PHYSICAL REVIEW D 104, 022004 (2021)

ΩGW( f ) =
f

ρc

dρGW
df



Is Intensity sky really isotropic?
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Or Anisotropic ?
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Credit: Alexander C. Jenkins

https://inspirehep.net/literature/2031052


Reasons of Anisotropy

• Astrophysical sources are located in cosmic 
structure and may produce anisotropic 
background. 

• Different mechanism of GW 
production 

• Astrophysical distribution of sources 
in galaxies 

• Galaxy Formation and Large scale 
structure distribution 

• Spacetime geometry along line of 
sight 

• Point-like (hot spot) and extended 
anisotropy

Cusin+ PRD 96, 103019 (2017)
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.96.103019


Chracterization of SGWB
A collection of unresolvable sub-threshold astrophysical and cosmological sources may produce SGWB. 

• Gaussian 

• Unpolarised 

• Stationary 

• Anisotropic

⟨h̃*A( f, ̂n) h̃A′ 
( f′ , ̂n′ )⟩ ∝ δAA′ 

δ( f − f′ ) δ2( ̂n − ̂n′ ) 𝒫A( f, ̂n)
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Source PSD



Detection Strategy : GW Radiometer

• GW signal is assumed to be 
correlated, but detector noise is 
not. 

• ⟨Ĉ12⟩ = ⟨d1d2⟩ = ⟨h2⟩ + ⟨hn1⟩ + ⟨hn2⟩ + ⟨n1n2⟩

d1 = h + n1 d2 = h + n2Signal and noise uncorrelated Noise Uncorrelated

Ballmer 2006
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Mitra+ 2008

Thrane+2009

Mitra+ 2008

https://iopscience.iop.org/article/10.1088/0264-9381/23/8/S23
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.77.042002
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.122002
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.77.042002


Detectors’ Response to Background

γI
p(t, f ) = ∫ d2 ̂n [(F1+(t, ̂n)F2+(t, ̂n) + F1×(t, ̂n)F2×(t, ̂n)] ep( ̂n) ei2πf ̂n ⋅ ΔxI(t)

c
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• Cross Spectral Density: 

• Overlap Reduction Function

⟨CI(t; f )⟩ = ⟨d̃*1 (t; f ) d̃2(t; f )⟩ ∝ γI
p(t, f ) 𝒫p( f )

Source

Basis for Sky Discretisation 

Point Source 

Extended Source

ep( ̂n) = δ2( ̂n − ̂np)

ep( ̂n) = Ylm( ̂n)

Observation

Detector’s response



Overlap Reduction Function

γI
p(t, f ) = ∫ d2 ̂n [(F1+(t, ̂n)F2+(t, ̂n) + F1×(t, ̂n)F2×(t, ̂n)] ep( ̂n) ei2πf ̂n ⋅ ΔxI(t)

c
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Real Part of ORF for HLVKI Network Changing with time Real Part of ORF for HL Network as a function of frequency  

Credit : Jishnu Suresh

Accounting Geometric Time Delay 



Narrowband Map-making

−2 lnℒ ∝ ∑
It

|CI(t; f ) − γI
p(t, f ) 𝒫p( f ) |2

P1(t; f ) P2(t; f )

�̂�p( f ) = Γ−1
pp′ 

( f ) Xp′ 
( f )

Xp( f ) ∝ ℛ [∑
It

CI(t; f ) γI*
p (t; f )

P1(t; f ) P2(t; f ) ]
Γpp′ 

( f ) ∝ ℛ [∑
It

γI
p(t : f ) γI*

p′ 
(t : f )

P1(t; f ) P2(t; f ) ]
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• Additive Gaussian Noise Likelihood and combining data from multiple baselines 

and time segments 

• Clean Map 

• Dirty Map 

• Fisher Information Matrix 



Broadband Map-making

𝒫p( f ) = H( f ) 𝒫p

�̂�p = Γ−1
pp′ 

Xp′ 

Xp = ∑
f

H( f ) Xp( f )

Γpp′ 
= ∑

f

H2( f )Γpp′ 
( f )

12

• Decomposing spatial and spectral dependence defined by power law 
with spectral index  

• Clean Map 

• Dirty Map 

• Fisher Information Matrix 

α
H( f ) = ( f

fref )
α−3

Deconvolution Problem

Narrowband Dirty Map 
& FIM



My Past Activities
Narrowband Search Broadband Search

Phys. Rev. D105  122001  (2022)
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My Past Activities
Narrowband Search Broadband Search

Phys. Rev. D105  122001  (2022)

Phys. Rev. D108  023011  (2023)
Constraints on (C95%

ℓ )1/2 sr−1
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My Past Activities
Narrowband Search Broadband Search

Phys. Rev. D105  122001  (2022)

Phys. Rev. D108  023011  (2023)
Constraints on (C95%

ℓ )1/2 sr−1

Inversion ProblemPhys. Rev. D104 123018 (2021)

Component Separation 
Phys. Rev. D104 102003 (2021) 

Targeted Search 
Phys. Rev. D106 043019 
(2022) 
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Narrowband Anisotropy 
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• Known Pulsars 

• Unknown Neutron Stars 

• Accreting neutron Stars in low-mass X-ray binaries
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Source: https://www.spaceaustralia.com/news/cosmic-lighthouses-
and-continuous-gravitational-waves

Source: https://astrobites.org/2018/01/29/hunting-for-
gravitational-waves-from-spinning-neutron-stars/

https://www.spaceaustralia.com/news/cosmic-lighthouses-and-continuous-gravitational-waves
https://www.spaceaustralia.com/news/cosmic-lighthouses-and-continuous-gravitational-waves


ASAF: Point Sources

• 9 HWI like isolated neutron stars. 

• 8 injections were detected within 
diffraction limited sky region and in the 
nearest frequency bin to injection. 

• 1 weak injection was classified as follow 
up candidate.
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O2 Hardware Injection (HWI) Study

DA as part of  LVK collaboration Phys. Rev. D105  122001  (2022)



ASAF : Point Sources
O1+O2+O3 (HLV) Real Data

• No significant outlier for 
anisotropic narrowband source. 

• 515 sub-threshold candidates 
identified for CW follow up.
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DA as part of  LVK collaboration Phys. Rev. D105  122001  (2022)



O1+O2+O3 HLV data

• Upper limits lie in range 
. 

• Bayesian upper limit with 95% 
confidence. 

• Marginalization on calibration 
uncertainty. 

• Uniform prior on the effective 
strain.

h0,eff ≤ (0.030 − 9.6) × 10−24
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ASAF : Point Sources
DA as part of  LVK collaboration Phys. Rev. D105  122001  (2022)



ASAF: Extended Sources 

• Average over universe realisations 

• Variance Term 
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A statistically isotropic Gaussian 
Anisotropy can be characterised by mean 

and variance.

⟨𝒫ℓm( f )⟩U = 4π �̄�( f ) δℓ0

Monopole Term

Cov[𝒫ℓm( f )𝒫ℓ′ m′ 
( f )]U = ( 2π2f3

3H2
0 )

−2

Cℓ( f ) δℓℓ′ 
δmm′ 

Narrowband Angular Power Spectrum

DA, J. Suresh, S. Mitra and A. Ain.     arXiv:2302.12516 [gr-qc]

doi: https://doi.org/10.1371/
journal.pone.0044439.g012

https://doi.org/10.1371/journal.pone.0044439.g012
https://doi.org/10.1371/journal.pone.0044439.g012


ASAF: Extended Sources
MLE and Angular power Spectrum
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�̂�ℓm( f ) = (Γ−1
R )ℓm,ℓ′ m′ 

( f ) Xℓ′ m′ 
( f )

̂Cℓ( f ) = ( 2π2f3

3H2
0 )

2
1

2ℓ + 1 ∑
m

[|�̂�ℓm( f ) |2 − [Γ−1
R ΓΓ−1

R ]ℓm,ℓm
( f )]

DA, J. Suresh, S. Mitra and A. Ain.     arXiv:2302.12516 [gr-qc]



ASAF: Extended Sources
O3 HLV Data Significance

• We set . 

• The null distribution for SNR is fitted with 
modified chi-squared distribution. 

• The Data is found to be consistent with Noise.

ℓmax = 15
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P(y = ρℓ( f )) dy = 2k χ2
k (y 2k + k) dy

DA, J. Suresh, S. Mitra and A. Ain.     arXiv:2302.12516 [gr-qc]



ASAF: Extended Sources
Constraints on  (C95%

ℓ )1/2 sr−1

• Bayesian Upper limits with 95% 
confidence. 

• Upper limits lie in range 
 

• Consistent with the predictions!

C1/2
ℓ ≤ (3.0 × 10−9 − 0.73) sr−1
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DA, J. Suresh, S. Mitra and A. Ain.     arXiv:2302.12516 [gr-qc]



Broadband Anisotropy
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Broadband SGWB Sources
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Credit: Alexander C. Jenkins

https://inspirehep.net/literature/2031052


Broadband Map-making

𝒫p( f ) = H( f ) 𝒫p

�̂�p = Γ−1
pp′ 

Xp′ 

Xp = ∑
f

H( f ) Xp( f )

Γpp′ 
= ∑

f

H2( f )Γpp′ 
( f )

28

• Decomposing spatial and spectral dependence defined by power law 
with spectral index  

• Clean Map 

• Dirty Map 

• Fisher Information Matrix 

α
H( f ) = ( f

fref )
α−3

Deconvolution Problem

DA, J. Suresh, S. Mitra and A. Ain.    Phys. Rev. D104 123018 (2021)

Narrowband Dirty Map 
& FIM



Deconvolution Problem

• Observed Dirty Map 
 

• MLE   

• Regularization of matrix is required!

Xp = Γpp′ 
𝒫p′ 

+ np

�̂�p = Γ−1
pp′ 

Xp′ 
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Bias-Variance Trade-off

Injected Point Source
Dirty Map without Noise Dirty Map with Noise

DA, J. Suresh, S. Mitra and A. Ain.    Phys. Rev. D104 123018 (2021)



Effect of Regularisation

• SVD Regularisation   

• Norm Regularisation  

• Metric to estimate quality of 
inversion : NMSE  

 

• Injection of SNR 3-4, 

Γ′ = UΣ′ V†

Γ′ = Γ + λI

=
| | Injection − Recovery | |

| | Injection | |

α = 3
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DA, J. Suresh, S. Mitra and A. Ain.    Phys. Rev. D104 123018 (2021)



Effect on Significance

• Injection of realistic SNR 3-4,  

• Computed p-value using regularized 
clean map and their covariance 
matrices. 

• Compared with the standard Method. 

• The norm regularised clean map with 
condition number 15 and the dirty map 
works better than SVD regularised 
clean map.
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DA, J. Suresh, S. Mitra and A. Ain.    Phys. Rev. D104 123018 (2021)



Effect on Upper Limits

• Injection with SNR~2.5 in each pixel 
of 3072 pixels in a map at a time. 

• Upper limit comparison with 
Conventional method, Norm 
regularised clean map with 
diagonals of NCVM and full NCVM 

• We can continue setting upper 
limits with conventional method.
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DA, J. Suresh, S. Mitra and A. Ain.    Phys. Rev. D104 123018 (2021)



Component Separation
• Estimates from searching for a source at a 

time might be biased (overestimated). 

• But uncertainty increases as number of 
source population included in joint-
estimation increase.
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⟨𝒞ℐ⟩ = τ∑
α

Hα( f ) γI
ft,u 𝒫α

u

J. Suresh, DA, S. Mitra   Phys. Rev. D104 102003 (2021) 

α = 0 α = 2/3

α = 3 Altogether

We observe the integrated effect of all sources.
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Injection Study

Dirty Map

SC clean map

MC clean map�̂�α
u ≡ �̂� = Γ−1 ⋅ X

X ≡ Xα
u = ∑

Ift

γI*
ft,u

Hα( f )
Pℐ1

(t; f )Pℐ2
(t; f )

𝒞I(t; f )

Γ ≡ Γαβ
uu′ 

= ∑
Ift

Hα( f )Hβ( f )
Pℐ1

(t; f ) Pℐ2
(t; f )

γI*
ft,u γI

ft,u′ 

J. Suresh, DA, S. Mitra   Phys. Rev. D104 102003 (2021) 



35

Amplitude 

Uncertainty 

Upper Limits

J. Suresh, DA, S. Mitra   Phys. Rev. D104 102003 (2021) 
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Results from O1+O2+O3a HL data 
J. Suresh, DA, S. Mitra   Phys. Rev. D104 102003 (2021) 



Targeted Search

• Decompose source PSD                     

• MLE for scalar quantity                         

• Increase in SNR is expected. Immune to deconvolution problem due 
to forward modelling.

𝒫p( f ) = A H̄f �̂�p

̂A =
X†�̂�

�̂�†Γ�̂�
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Only Unknown

DA, J. Suresh, V. Mandic et. al. Phys. Rev. D106 043019 (2022) 



Targeted Search for Galactic Millisecond Pulsars

𝒫( f, Ω̂) = Nobs⟨ϵ2⟩s

A

f 4 p( f )

H̄f

32 π4 G2 ⟨I2⟩s

5c8
⟨r−2⟩s p(Ω̂)
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Adopted PDF for Spin Frequency

Adopted PDF for Spatial Distributions 

Gaussian Radial                   Exponential Radial

DA, J. Suresh, V. Mandic et. al. Phys. Rev. D106 043019 (2022) 
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Targeted Search for Galactic Millisecond Pulsars
Data Significance

DA, J. Suresh, V. Mandic et. al. Phys. Rev. D106 043019 (2022) 



40

Targeted Search for Galactic Millisecond Pulsars
Upper Limits

• Bayesian Upper limits on the in-band 
numbers and averaged ellipticity. 

• The best Bayesian upper limit with 
95% confidence for the parameters 
are  and 

 

• Comparable to the bounds on mean 
ellipticity with the GW observations 
of the individual pulsars.

Nobs ≤ 8.8 × 104

μϵ ≤ 1.4 × 10−6

DA, J. Suresh, V. Mandic et. al. Phys. Rev. D106 043019 (2022) 
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Targeted Search for Galactic Millisecond Pulsars
Future Predictions

• For plausible case of ,  

• One year of observations 

•  The one-sigma sensitivity on  might 
reach  

•  for the second-
generation detector network having 
A+ sensitivity  

•  for third-generation 
detector network

Nobs = 4 × 104

μϵ

1.5 × 10−7

4.1 × 10−8

One Sigma sensitivity of future detector network in  
Plane 

Nobs − μϵ

DA, J. Suresh, V. Mandic et. al. Phys. Rev. D106 043019 (2022) 



Conclusions

• During my PhD, I have been involved in various searches for the SGWB. 

• My thesis can be broadly summarised as 

• All-sky-all-frequency searches for the point-like and extended narrowband 
sources of SGWB. 

• Tackling with issues involved in mapmaking for broadband SGWB. 

• Constraints on astrophysical and cosmological quantities.
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Extra Slides
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O2 HWI Parameters Recovery
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Romano+ 2017

https://link.springer.com/article/10.1007/s41114-017-0004-1
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