Neutrinos in JUNO @IIHE

Marta Colomer Molla On behaf of the JUNO group at IIHE Barbara, Yifang,Feng, P.A., Hui, Noah

Belgium neutrino meeting – March 2024 - UCL

The JUNO detector

UNIVERSIT

LIBRE DE BRUXELLES

ULB

The JUNO detector

Central detector (CD): 20 kton of Liquid Scintillator (LS) Accrylic vessel (\u035.4 m) Steel structure (\u035.4 m)

Light detection system: >40000 PMTs in 2 sub-systems: large (20-inch) and small (3-inch) PMTs Water cherenkov detector: 35 kton ultra-pure water 2400 20-inch PMTs

> ULB UNIVERSITÉ LIBRE DE BRUXELLES

fn's iil

Marta Colomer Molla, "JUNO @IIHE" - Belgium neutrino meeting - UCL

Top Tracker: 3 plastic scintillator layers Precision muon tagging (veto)

44 m

Status of JUNO – focus on back-end electronics

- JUNO electronics in two sub-systems:
 - \rightarrow underwater and outside water
- IIHE JUNO group responsible of the production, design and test of the BEC
 → BEC= back-end electronics cards
- BEC status: all outside water electronics in place → under commissioning

- Upper hemisphere completed: acrylic sphere
 + underwater electronics installed
- First LS batch has been filled into OSIRIS (small JUNO) this week for requirements qualifications → LS characterisation soon
- Lower hemisphere completed + water filling before the end of the year
- First commissioning and physics data in 2025

3

ULB

fn^rs *ii*

JUNO physics program

Where does JUNO stand?

fn^rs

ULB UNIVERSITÉ LIBRE DE BRUXELLES 5

Core-collapse supernova neutrinos in JUNO (<100 MeV)

fn^rs *iik*

UNIVERSITÉ LIBRE DE BRUXELLES

ULB

6

Identifying an astrophysical transient signal

- Real-time monitoring based on a localised increase (in time) of the detected rate.
- Two strategies to trigger a transient event:
 - Sliding window method
 - Bayesian blocks algorithm

If transient astrophysical signal triggered:

 \rightarrow All (triggerless) data are stored to obtain the most physics reach in offline analysis

- Prompt Monitor:
 - Higher energy threshold (~8MeV)
 - Faster alerts
- Online monitor:
 - IBD candidates (Eth ~ 1MeV)
 - Lower background
- Multi-messenger (MM) trigger:
 - Lower energy threshold (<0.1 MeV)
 - Increase signal statistics

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

Core-collapse supernova neutrinos physics in JUNO

CCSN neutrino spectrum

Identification of the different interaction channels – flavor dependent physics:

Discriminating CCSN models

- → Why?
 - Only 24 neutrino events from 1987A
 + only 1-2 CCSN per century in our Galaxy
 - Hundreds of models in the market
 - Understanding of physics in the core and unveil progenitor properties

→ Results:

→ JUNO will identify the true CCSN model in over ~67% of the cases for CCSN @40 kpc (only IBD) (no detector effects included yet)

- → How to do it?
 - → Large signal statistics in the detector
 - Time and energy model dependency: good time and energy resolution
 - Poisson likelihood approach

fn^rs

UNIVERSITÉ LIBRE DE BRUXELLES

ULB

	true model	Bollig	Fornax	Nakazato	Sukhbold	Tamborra	Warren	
-	Bollig	69%	0.0 %	0.0 %	2.3 %	12.2 %	16.5 %	
	Fornax	0.1 %	99.8 %	0.0 %	0.0 %	0.1 %	0.0 %	
	Nakazato	0.0 %	0.0 %	100%	0.0%	0.0 %	0.0%	
PROGRESS	Sukhbold	2.6 %	0.0%	0.0%	92.3 %	0.3 %	4.8 %	
	Tamborra	11.3 %	0.2 %	0.0 %	0.4 %	81.5 %	6.6 %	
	Warren	21.3 %	0.0 %	0.0 %	4.1 %	8.1 %	66.5 %	

Neutrino physics with CCSN: neutrino mass ordering

- Different observed neutrino time profile depending on the NMO
- Make it **model independent**: focus in time window [-20ms,+20ms] around core collapse
- Poisson χ^2 with free parameter: starting time of the neutrino signal (T0)
- Key: neutral current (NC) interactions (insensitive to flavor transformations)
 - \rightarrow Neutronisation peak unchanged with NMO for NC events \rightarrow much accurate T0
 - \rightarrow JUNO will have a large sample of NC events (p-ES interactions, 100keV-2 MeV)
 - \rightarrow Boost the sensitivity by combining all neutrino interactions

Result:

Expected sensitivity ~2.5-3o @10 kpc (no detector effects included yet, asimov)

ULB

UNIVERSITÉ LIBRE DE BRUXELLES

Core-Collapse Supernova multi-messenger signal

- Multi-messenger (MM) signal: neutrinos, GWs and EM radiation
- Neutrinos = early alert for the follow-up

- Alert time (latency): 15-20 ms @10 kpc
- Signal arrival time uncertainty: 2-3 ms @10 kpc
- Distance uncertainty: <10% for CCSN up to 6kpc

ULB UNIVERSITÉ LIBRE DE BRUXELLES

Source direction uncertainty: ~25deg @10kpc

Atmospheric neutrinos in JUNO (>100 MeV)

→ Complementary channel to study neutrino oscillations wrt reactor neutrinos → synergies
 → JUNO will have large statistics (as big as SK)
 → Scintillator has enhanced PID capabilities:
 → neutron tagging in v interactions for free

Marta Colomer Molla, "JUNO @IIHE" - Belgium neutrino meeting - UCL

(13)

Signal & background: selection

Challenge: ~4 cosmic muons per second (background) VS ~4 atmospheric neutrinos per day

Online event classification:

Energy cut + time difference between CD and WP trigger + TT veto used to remove muons

- Remaining muon contamination O(10-5): → S/N ~ 1 Signal efficiency ~78%

Offline: going further with ML approach

- Events not fully contained in JUNO at large energy \rightarrow separate fully VS partially contained
- Improve the signal efficiency once the contamination has been reduced online
- Uses PMT waveform features as input

Pred. true	μ	ν-FC	ν -PC
μ	99.74	0	0.26
ν -FC	0	100	0
<i>ν</i> -PC	1.31	0	98.69

ULB

Neutron identification: PID

 \rightarrow Neutrons are localised in time and energy with respect to the other secondary triggers

- **Results:** Efficiency cuts: 93.1%
 - Efficiency machine learning: 99.7%

- Matter effects on neutrino oscillations depend on the neutrino flavor, and are swapped between neutrino and anti-neutrino for IO/NO
- It is critical to separate neutrino flavors and $\nu/\bar{\nu}$

The number of neutrons produced on atmospheric neutrino interactions help for this PID classification

UNIVERSITÉ LIBRE DE BRUXELLES

ULB

15

Event reconstruction

Challenge: many not fully contained events, part of the energy deposited outside the detector

Method: Use PMT detected light pattern to reconstruct the light emission probability

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

16

Sensitivity to the NMO with atmospheric neutrinos

Detector response: event reconstruction + PID

fn^rs

UNIVERSITÉ LIBRE DE BRUXELLES

ULB

Sensitivity to the NMO with atmospheric neutrinos

- Systematics currently implemented: dominated by 20% normalisation error
- Expected sensitivity (Asimov) evaluated for 10 years of data taking:
- → $\Delta \chi 2 \sim 7-8$ (NO/IO) → biggest impact comes from the PID
- Full MC sensitivity with all final systematics will be coming soon

fn^rs *ii*

ULB UNIVERSITÉ LIBRE DE BRUXELLES (18)

Heavy neutal lepton searches

- HNLs at MeV mass range can shed light into the matter-anti-matter asymmetry in the Universe + origin of neutrino masses
- Reactor neutrino experiments are ideal to search for MeV HNLs in the laboratory:

 → HNLs produced in the reactor beta decays via HNL-ve mixing
- Collaboration between ULB, VUB, UAntwerp and UCL:
 - → Pheno paper with sensitivity estimates for SoLid + JUNO + TAO arXiv:2403.04662
- Reactor experiments can explore a complementary parameter space to peak beam searches and solar neutrinos, providing best current limits

fn^rs

UNIVERSITÉ LIBRE DE BRUXELLES

ULB

19

Conclusions

- JUNO (the biggest liquid scintillator detector built) is at half its construction
 - Electronics installed and under commissioning

JUNO

- JUNO will bring the most precise measurement of most oscillation parameters using reactor neutrinos (main goal)
- JUNO will have good potential as a neutrino telescope for CCSN and MM searches
- JUNO will also be a great atmospheric neutrino experiment \rightarrow synergies with reactor
- JUNO will start to be filled at the end of 2024, and first data will come next year

JUNO – A NEUTRINO EXPERIMENT WITH AN INCREDIBLE PHYSICS POTENTIAL

The JUNO detector

Primary goals:

- precise measurement of oscillation parameters
- determination of the neutrino mass ordering

Requirements:

- High statistics (~10⁵ events in 6 yr)
- Energy resolution: ~3% @1MeV
- Energy scale uncertainty < 1%

How?

\rightarrow Largest and most precise ever built LS detector

- Large LS volume (20 kton)
- High LS light yield & transparency
- High PMT coverage and efficiency
- Two complementary PMT systems
- Complementary calibration systems
- Using JUNO + close-by detector

	Target Mass	Coverage	Energy resolution	Light yield [PE/MeV]
Daya Bay	20 ton (x8)	12%	8% @ 1 MeV	160
Borexino	300 ton	34%	5% @ 1 MeV	500
KamLAND	1 kton	34%	6% @ 1 MeV	250
JUNO*	20 kton	78%	3% @ 1 MeV	>1300

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

Reactor neutrino detection

JUNO

Atmospheric neutrino osicllations: sencisitivity

With coarse binning

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

fn^rs *iik*

CCSN neutrinos: pointing

- Pointing to the source with neutrinos is key for a successful MM follow-up
- But direction reconstruction is difficult at MeV energies: point-like emission...
- ➤ Two possible ways to go:

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

Triangulation

"The time delay between the signal at different detectors defines a sky region"

JUNO IBD: anisotropic interactions

"The direction between the IBD prompt (positron) and delayed (neutron capture) reconstructed vertexes gives v direction"

CCSN neutrino lightcurve

Example of interesting lightcurve feature to study: SASI oscillations

- SASI = standing accretion shock instability: predicted by 3D CCSN simulations
- Why is it interesting:
 - It appears in failed explosions
 - It can explain neutron star kicks observed
 - It would be accompanied by GW emission

fn^rs

ULB

• **Observable:** fast-time variations of the detected rates, with a characteristic oscillation frequency (~80Hz) \rightarrow Spectral analysis of the neutrino data

CCSN neutrino lightcurve

Example of interesting lightcurve feature to study: SASI oscillations

20 Msun, Tambora 2014

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

Multi-messenger astronomy

Timing the neutrino signal arrival

How? Using the high-significance Prompt CCSN Monitor trigger time

But... Trigger time will be biased with respect to the truth arrival time

Bias correction: Fit the relation between the expected trigger time and the expected number of events in the first 50 ms, N50

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

Multi-messenger astronomy

Distance estimate

Based on: arXiv:2101.10624 **Observable:** Nevents in the first 50ms, N50

Methods:

- 1. Using the expected signal weighted over initial mass function (IMF)
- Lower stat. uncertainty, larger systematic
- 2. Using the linear relation between N50 and $f\Delta = N50/N(100-150)$
- Larger stat. uncertainty, lower systematic

Figure: Statistical uncertainties (solid lines). The bands include the model (IMF) and T0 systematic uncertainties on top.

UNIVERSITÉ

LIBRE DE BRUXELLES

ULB

Multi-messenger astronomy

