Using solar neutrinos to bound the mass and coupling parameter of Heavy Neutral Leptons

Valentin Weber

March 2024

Motivations for Heavy Neutral Leptons :

- Right handed neutrinos
- Leptogenesis

$$\mathcal{L} \supset -\frac{m_{W}}{v}\bar{N}\theta_{\alpha}^{*}\gamma^{\mu}e_{L\alpha}W_{\mu}^{+} - \frac{m_{Z}}{\sqrt{2}v}\bar{N}\theta_{\alpha}^{*}\gamma^{\mu}e_{L\alpha}Z_{\mu} - \frac{M}{v}\theta_{\alpha}h\bar{\nu}_{L\alpha} + \text{h.c.}$$

Goal : Constraints on $|\theta_{\alpha}^*\theta_{\alpha}| \equiv |U_{\alpha}|^2$ and M_N

Constraints on HNLs i

We look at the case where the ration is $|U_e|^2 : |U_{\mu}|^2 : |U_{\tau}|^2 = 1 : 0 : 0$.

Procedure i

Procedure ii

Procedure iii

Procedure iv

Solar neutrinos i

Solar neutrinos ii

Solar neutrino spectra

Heavy Neutral Lepton flux i

Solar neutrino flux

Heavy Neutral Lepton flux ii

HNL decay

 $N \rightarrow 3\nu$

$$\Gamma_{N\to 3\nu} = \frac{G_F^2 M_N^5}{96\pi^3} |U_e|^2$$

Opens at : $M_N \approx 0 MeV$

Convention :

We need to distinguish between the different quantities : those in the rest frame of the HNL and those in the rest frame of the sun.

- Tilted quantities are in the rest frame of the sun : \tilde{E} , $\cos{\tilde{\theta}}$, etc.
- Non-tilted quantities are in the rest frame of the HNL : E, $\cos \theta$, etc.

Electron production ii

Propagation of the HNL flux :

$$\phi_{HNL}(\tilde{E}_N, \tilde{R}) = \exp\left(-\frac{\tilde{R}}{\sqrt{\frac{\tilde{E}_N^2}{M_N^2}} - 1}\Gamma\right)\phi_{HNL,sun}(\tilde{E}_N).$$

Electron production iii

$$\phi_{N \to e^+ e^- \nu}(\tilde{E}_N, \tilde{R}) = -\frac{d\phi_N}{d\tilde{R}}(\tilde{E}_N, \tilde{R})\frac{\Gamma_e}{\Gamma}$$

As such, we can get the electron emission rate as the following expression,

$$\frac{d\phi_e}{d\tilde{E}_e d\tilde{E}_N d\tilde{R} d\cos\tilde{\theta}}(\tilde{E}_e, \tilde{E}_N, \tilde{R}, \cos\tilde{\theta}) = \frac{1}{\beta} \frac{d\tilde{\Gamma}_e}{d\tilde{E}_e d\cos\tilde{\theta}}(\tilde{E}_N, \tilde{E}_e, \cos\tilde{\theta})\phi_{HNL}(\tilde{E}_N, \tilde{R})$$

To get the total flux, we need to integrate over every variable,

$$\phi_{e} = \int d\tilde{E}_{e} \int d\tilde{E}_{N} \int_{0}^{R} dR \frac{1}{\beta} \frac{d\tilde{\Gamma}_{e}}{d\tilde{E}_{e}} (\tilde{E}_{N}, \tilde{E}_{e}) \phi_{N}(\tilde{E}_{N}, \tilde{R}) \Theta_{\text{limits}}$$

Do the Electrons reach us all the way from the decay to the detector? Two main ways on how the particles won't reach the detector :

- Loss of energy during gyromagnetic radiation
- Absorption/ collision with solar wind particles

Total electron flux i

Total electron flux ii

Total electron flux iii

Space probes / detectors i

Solar Orbiter i

Solar Orbiter ii

Solar Orbiter iii

Solar Orbiter iv

Solar and Heliospheric Observatory i

Solar and Heliospheric Observatory ii

Constraint Plot i

Background electrons i

Background electrons ii

Background electrons iii

- \cdot We only studied U_e , what about U_μ and $U_ au$
- Remove the background
- Study it with Parker Solar Probe
- Proper turbulent electron propagation

- Solar neutrinos can be used to probe HNLs
- The decay $N
 ightarrow e^+ e^-
 u$ is studied
- Propagation of charged particles is not disturbed by magnetic field or collisions
- Constraints through Solar Orbiter and SOHO

Additional slides i

Additional slides ii

Additional slides iii

Additional slides iv

Additional slides v

Channel	Opens at	Relevant from	Relevant to	Max BR	Reference
	[MeV]	[MeV]	[MeV]	[%]	in text
$N \rightarrow \nu_{\alpha} \nu_{\beta} \bar{\nu}_{\beta}$	$\sum m_{\nu} \approx 0$	$\sum m_{\nu} \approx 0$		100	(3.5)
$N \rightarrow \nu_{\alpha} e^+ e^-$	1.02	1.29		21.8	(3.4)
$N \rightarrow \nu_{\alpha} \pi^0$	135	136	3630	57.3	(3.7)
$N \rightarrow e^{-}\pi^{+}$	140	141	3000	33.5	(3.6)
$N \rightarrow \mu^{-} \pi^{+}$	245	246	3000	19.7	(3.6)
$N \rightarrow e^- \nu_\mu \mu^+$	106	315		5.15	(3.1)
$N \rightarrow \mu^- \nu_e e^+$	106	315		5.15	(3.1)
$N \rightarrow \nu_{\alpha} \mu^{+} \mu^{-}$	211	441		4.21	(3.4)
$N \rightarrow \nu_{\alpha} \eta$	548	641	2330	3.50	(3.7)
$N \rightarrow e^- \pi^+ \pi^0$	275	666	4550	10.4	(B.42)
$N \rightarrow \nu_{\alpha} \pi^{+} \pi^{-}$	279	750	3300	4.81	(B.43)
$N \rightarrow \mu^- \pi^+ \pi^0$	380	885	4600	10.2	(B.42)
$N \rightarrow \nu_{\alpha} \omega$	783	997	1730	1.40	(3.9)
$N \rightarrow \nu_{\alpha}(3\pi)^0$	$\gtrsim 405$	$\gtrsim 1000$?	?	No
$N \rightarrow e^-(3\pi)^+$	$\gtrsim 410$	$\gtrsim 1000$?	?	No
$N \rightarrow \nu_{\alpha} \eta'$	958	1290	2400	1.86	(3.7)

Additional slides vi

Additional slides vii

The rate of energy lost during this process is given by [James J. Condon and Scott M. Ransom] :

$$P = -\frac{dE}{dt} = \frac{4}{3}\sigma_T\beta^2\gamma^2 cU_B$$

with σ_T the Thompson cross-section and U_B the magnetic energy density $U_B = \frac{B^2}{2\mu_0}$.

- Energy loss is small enough to be neglected
- Any directional information gets lost!

Additional slides ix

The mean free path is given by [Kuznetsova et al. 0911.0118]

$$L = \frac{1}{\langle \sigma v_{\rm rel} \rangle n_{\rm SW}}$$

L being the mean free path and n_e being the solar wind particle density.

We need the following formula :

$$\langle \sigma v_{\rm rel} \rangle n_{\rm SW} = \frac{\int d^3 p_e \int d^3 p_{\rm SW} \sigma_{ee} v_{\rm rel} f_e(\vec{p}_e) f_{\rm SW}(\vec{p}_{\rm SW})}{\int d^3 p_e f_e(\vec{p}_e)} \tag{1}$$

- $f_{SW}(p_{SW}) = e^{-E_{SW}/T}$ being a Boltzmann distribution (Solar wind particles (electrons))
- $f_{e^+}(p_{e^+}) = \frac{\delta^3(\vec{p}_{e^+} \vec{k})}{V}$ electron from a HNL decay and V being a test volume

We have that,

$$\langle \sigma v_{\rm rel} \rangle n_e = g_1 \frac{1}{(2\pi)^2} \frac{1}{4k_0} \frac{1}{2k} \int_{4m_e^2}^{\infty} ds \sigma(s) \lambda^{1/2}(s) T(e^{-E_-/T} - e^{-E_+/T})$$

with $E_{\pm} = \sqrt{\frac{\left(k(s-2m^2)\pm k_0\sqrt{s(s-4m^2)}\right)^2}{4m^4}} + m^2$, with k^{μ} the external momentum, $\lambda^{1/2}(s) = \sqrt{s}\sqrt{s-4m_e^2}$.

Thermal Möller/Bhabha cross-section for low temperatures $T < m_e$ [Kuznetsova et al. 1109.3546],

$$\sigma(s) = \frac{64\pi\alpha^2}{(s - 4m_e^2)^2} \frac{m_e^4}{m_\gamma^2}$$

with $m_{\gamma} = 8\pi \alpha \frac{n_e}{m_e}$.