Hunting ultra-high-energy neutrinos with the Radio Neutrino Observatory in Greenland (RNO-G)

Felix Schlüter for the RNO-G group @ IIHE

Belgium Neutrino Meeting - 11.03.24

Ultra-high energies: Uncharted territory!

- Ultra-high-energy (UHE) neutrinos: 100 PeV - 10 EeV
 - We need 100 x IceCube
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux

Ultra-high energies: Uncharted territory!

- Ultra-high-energy (UHE) neutrinos: 100 PeV - 10 EeV
 - We need 100 x IceCube
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux
- UHE neutrinos in the Northern Hemisphere
 - Earth absorption matters above ~100 TeV
 - **Overlapping FOV with IceCube** -
 - Complementary FOV to future -IceCube-Gen2

Strong gamma ray sources

Ultra-high energies: Uncharted territory!

- Ultra-high-energy (UHE) neutrinos: 100 PeV - 10 EeV
 - We need 100 x IceCube
 - Cutoff in astrophysical spectrum
 - Test models of 2. astrophysical component
 - Test cosmogenic GZK neutrino flux
- UHE neutrinos in the Northern Hemisphere
 - Earth absorption matters above ~100 TeV
 - **Overlapping FOV with IceCube** -
 - Complementary FOV to future -IceCube-Gen2

Strong gamma ray sources

Hybrid station with 24 antennas

More pictures later 😇

Hybrid station with 24 antennas

- Hybrid design with 24 antennas (3 different antenna types)
- Solar powered & wireless communication

More pictures later 😇

- Hybrid design with 24 antennas (3 different antenna types)
- Solar powered & wireless communication

- Each station acts as independent detector

More pictures later 😇

7 stations already in operation Fully funded (3 more seasons)

- Hybrid design with 24 antennas (3 different antenna types)
- Solar powered & wireless communication

- Each station acts as independent detector

More pictures later 😇

7 stations already in operation Fully funded (3 more seasons)

- +3km of natural clean ice
- Existing infrastructure
- 10 months of sunlight per year

depth

Particle cascade

 $E_{min} \text{ to detect radio} \\ emission \gtrsim 10 \text{ PeV} \\$

Radio emission pattern has cone shape due to interference

Particle cascade

 E_{min} to detect radio emission $\gtrsim 10 \text{ PeV}$

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice Attenuation length O(1 km)

Particle cascade

 E_{min} to detect radio emission $\gtrsim 10 \text{ PeV}$

Charge asymmetry produces "Askaryan" emission in MHz - GHz

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice Attenuation length O(1 km)

 $\theta_{\rm view} - \theta_{\rm Che}$

Particle cascade

Emin to detect radio emission \gtrsim 1-10 PeV

6

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice

 $\theta_{\rm view} - \theta_{\rm Che}$

Attenuation length O(1 km)

Particle cascade

E_{min} to detect radio emission \gtrsim 1-10 PeV

Radio emission pattern has cone shape due to interference

Bend trajectory due to refractive index of ice

 $\theta_{\rm view} - \theta_{\rm Che}$

Attenuation length O(1 km)

Particle cascade

E_{min} to detect radio emission \gtrsim 1-10 PeV

Simulations with NuRadioMC Eur. Phys. J. C 80, 77 (2020)

- Developed reconstructions
 - Energy (EPJC 82, 147 (2022)) & Arrival direction (EPJC 83 (2023) 5)

Used to determine sensitivity (RNO-G, JINST 16 (2021) 03)

Assuming no background

M. Muzio for RNO-G, PoS (ICRC23) 1485

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component

M. Muzio for RNO-G, PoS (ICRC23) 1485

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic **GZK** neutrino models

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic **GZK** neutrino models
- Testing extension of astrophysical flux measured by IceCube

- Assuming no background
- World leading sensitivity @ 1 EeV
- Testing 2. (hard) astrophysical component
- Testing optimistic cosmogenic **GZK** neutrino models
- Testing extension of astrophysical flux measured by IceCube

Sensitivity: Transient events

RNO-G, JINST 16 (2021) 03

- Location in Greenland very suitable for multimessenger campaigns
- Large FOV of ~ 40 deg in zenith

Case study: RNO-G (full array) sensitivity to a particular bright GRB 221009A

RNO-G was off not taking data at the time!

IIHE Efforts

Production / Testing of Digitiser Boards Data commissioning and calibration

- ► RADIANT: 24 channel, low power, 3.2 GHz digitiser board
- Joint effort between IIHE and Desy (Germany)
- Currently producing and testing 7 boards for next season

- Detecting the galactic emission with the upward facing antennas
 - Standard candle \rightarrow proof of concept
 - Requires data cleaning and low-pass filtering

Deployment - including IIHE staff

Drilling 100m deep, 28 cm diameter hole

Shallow antennas are deployed in trenches ...

Next deployment season

- 2 IIHE members (Me and Jethro)
- 3 drilling teams, 2 deployment teams, 1 calibration team (1 month each)
- Tentative plan:
 - Installing 8+ new stations
 - Installing ~10 wind turbines (!!!)
 - Retrofitting 7 existing stations
 - Additional calibration measurements

Mast climbing training

Completed stations

Testing wind turbines for all-year uptime

First look into the data: Solar flares

S. Hallmann for RNO-G, Pos (ICRC23) 1043

- For 3 solar flares, reconstruct position of Sun
- Allowed correction / calibration of station geometry

Summary

7 station already in operation in Greenland; Fully funded for in total 35 stations RNO-G will have world leading sensitivity for 1 EeV neutrinos

- Potential to discover the first UHE neutrino!
- RNO-G observes northern sky for UHE neutrinos complementary to IceCube

Contributing from IIHE to various activities:

- Data analysis (Neutrino searches,)
- Hardware production & testing
- Data commissioning & Deployment support

30%

Summary

- 7 station already in operation in Greenland; Fully funded for in total 35 stations
- RNO-G will have world leading sensitivity for 1 EeV neutrinos
 - Potential to discover the first UHE neutrino!
- RNO-G observes northern sky for UHE neutrinos complementary to IceCube

- Contributing from IIHE to various activities:
 - Data analysis (Neutrino searches,)
 - Hardware production & testing
 - Data commissioning & Deployment support

Picture by Ben Young

IIHE Efforts: Other tasks

- Data commissioning
- Coding
- Voltage calibration

Backup

Summary & Outlook

- RNO-G is currently deploying at Summit Station in Greenland
- When completed, RNO-G will have world leading sensitivity for 1 EeV neutrinos
 - Potential to discover the first UHE neutrino!
- RNO-G will be contributing with UHE neutrino observation to multi-messenger campaigns in the Northern Hemisphere
- Current efforts focus on calibration & commissioning
- We are preparing for neutrino searches!
 - Developing a rapid follow up analysis
 - We have developed reconstruction algorithms -
 - <u>10 contributions at ICRC23</u>

Neutrinos from the northern sky

- Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!
- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

Neutrinos from the northern sky

- Earth is opaque for UHE neutrinos
- Observatory in northern hemisphere relevant for multi-messenger observation!
- RNO-G eff. area for full 35 station array
- Largest aperture just above the horizon

GRB 20221009A in the FOV of RNO-G

- Extremely bright GRB
- Detector was off (winter mode) at that time!
 - But what if!
- Perfectly in FOV of RNO-G
 - 24h visible, alert at favourable zenith angle band 70 80 deg

Sensitivity: GRB 20221009A

RNO-G eff. area for 3h time window

Sensitivity: GRB 20221009A

- RNO-G eff. area for 3h time window
- Sensitivity on time integrated E⁻² flux over several decades in energy
 - RNO-G with competitive sensitivity at higher energies

over several decades in energy ner energies

First look into the data

Hardware performance

Deployment

Drilling 100m deep, 28 cm diameter hole

Shallow antennas are deployed in trenches ...

Completed stations

Testing wind turbines for all-year uptime

- Use natural glacier ice as target
- Radio waves are less attenuated in ice
 - A single radio station can monitor a cubic kilometer of ice
- Radio is a cost effective solution
 - In hardware & deployment (do not have to be deployed in 3 km depth; 100 - 200 m is sufficient)

First look into the data: Solar flares

S. Hallmann for RNO-G, Pos (ICRC23) 1043

- For 3 solar flares, reconstruct position of Sun
- Allowed correction / calibration of station geometry

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

- Polarisation of electric field allows localisation on cone
- Several possible ray trajactories

The radio emission ... • is produced by >PeV cascades

- illuminates a spherical (Cherenkov) cone
- gets bend in shallow ice
- propagates over km distances
- Signal features (frequency spectrum polarisation) allow to reconstruct neutrino properties

direction from triangulation

Using cross-correlation to determine signal (time) in each antenna.

Using forward folding technique to determine vertex position / signal arrival direction.

Requires signals in several strings

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

1. Reconstruct vertex position / signal arrival

Using cross-correlation to de

Using forward folding technic signal arrival direction.

Requires signals in several si

direction from triangulation 2. Reconstruct viewing angle from frequency spectrum

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

1. Reconstruct vertex position / signal arrival direction from triangulation

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

econstruct viewing angle from frequency

S. Bouma for IceCube-Gen2, Pos (ICRC23) 1045

Energy reconstruction

Shower energy

RNO-G, EPJC 82, 147 (2022) RNO-G, JINST 16 (2021) 03

- 35 stations on 1.25km grid
 - 7 already deployed & taking data
 - 3 4 more deployment seasons
- Stations are solar powered & communicate wireless

RNO-G Planned Layout

Z	
0	
C)
Ľ)
S	2
0	i
Þ	

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation
 reconstruction
- Multiple coincidence
 threshold trigger

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation reconstruction
- Multiple coincidence
 threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

- 24 antennas
 - 3 types; 80 650 MHz
- 3 calibration pulsar
- Informed by pilot experiments (ARA & ARIANNA)
- Will inform IceCube-Gen2 radio array design

Phased array

 Signal of 4 Vpols combined by phasing into 8 beams in real time

Shallow component

- Upward- & downwardfacing LPDA antennas
- CR detection + veto
- Accurate polarisation
 reconstruction
- Multiple coincidence
 threshold trigger

Deep component

- 100m deep
- "Overlook" larger volume
- Low threshold trigger

Antenna sensitivity

LPDA is more sensitive but can not be deployed in borehole

- 2 orthogonal LPDAs \rightarrow Polarisation

LPDA

Hpol

Vpol

Combination of Vpol and Hpol gives polarisation

- Hpols is less sensitive because of narrow diameter of borehole

Calibration

The ice is part of our detector

- Refractive index profile of crucial importance
- See Talk by Bob Oeyen this afternoon

Expected number of neutrinos

Several models predict at least one neutrino when integrating over the energy

Background

1. Direct air shower emission

Different polarisation pattern, possible veto

2. Huge energy loss from high energy muon

Same signal signature as neutrino but different energy spectrum an arrival direction distribution

Background

L. Pyras et al. PoS (ICRC2023) 1076 + arxiv

Ice Properties

Part of the detector -> needs to be calibrated

Signals from secondary leptons

Phased array

- Trigger runs on lower bandwidth (< 250 MHz), 8 beams are formed</p>
- Design goal for threshold: amplitude_signal / sigma_noise = 2
- Technique demonstrated at South Pole by ARA ARA, PRD 105

50 MHz), 8 beams are formed _signal / sigma_noise = 2 ole by ARA <u>ARA, PRD 105</u>

Solar flare

LPM effect

Earth attenuation

