IceCube research at UCLouvain

Belgian Neutrino meeting Monday 11 March 2024

IceCube

5160 DOMs with PMTs to observe Cherenkov radiation

DeepCore: 8 strings (6 have quantum efficiency about 35% higher) separated 40-70 m with vertical spacing of 7 m for the lowest 50 DOMs. (+7 surrounding strings)

The ELOWEN selection

Lowest energy for observing single neutrino events

Specialized for 0.5 - 5 GeV

Consists of several hard cuts on low-level variables to remove both noise and high-energy events (position, timing and charge of hits)

Improving ELOWEN noise reduction

NoiseEngine filters on:

- Number of hit-pairs necessary
- Velocity window
- Time window

Combine many settings to train a BDT

can reach nearly 10⁴ reduction in noise

Direction reconstruction

- Single string reconstruction
 - Zenith direction
- Using 2 boosted decision trees
 - 77% ассигасу

Direction classification of 0.5-5 GeV neutrinos

ELOWEN HESE follow-up

Motivation

- Astropysical flux observed at TeV-PeV
- Short transient origin possible
 - Can also produce GeV neutrinos

Analysis plan

- Check possible impact of HESE on ELOWEN precursors
- Counting analysis in window around HESE event
 - Check stable background etc
- Time series analysis
- HESE subgroup clustering

Sub-GeV emission

Bridge energy gap between ELOWEN and SNDAQ

Differentiate between

- Noise
- Atmospheric muons
- Neutrinos

More on that from Jonathan :)

그는 그는 그는 것은 것은 것을 하는 것을 수 있는 것을 하는 것을 수 없다. 그는 것은 것을 가지 않는 것을 가지 않는 것을 하는 것을 수 있다.
--

Solar neutrinos

Solar flare: MeV-GeV, from atmosphere, transient

Photosphere

Dark matter: GeV-TeV, from core, continuous

All-energy Solar WIMP Search

Probed 3 orders of magnitude of WIMP masses

World leading limits on spin-dependent WIMP-nucleon cross section for most annihilation channels >100 GeV

Solar neutrinos: Next

Go to 10 orders of magnitude!

- Probe different neutrino production modes
- Help answer solar anomalies

Solar neutrinos: Next

Single out solar neutrinos

 \rightarrow Direction reconstruction

Eliot Genton

Time windows for different analyses for GRB221009A

T0 2022-Oct-09 13:16:59.99 UTC T90 start: T0 + 221.1s ELOWEN: T0 ±500s Coordinated: GRECO, GFU GRB, ELOWEN: T0 [-200, +2000] s

Gravitational wave follow up

Neutrinos from Gamma-Ray burst following merger

Low-energy neutrinos emitted from pp/pn interactions inside photosphere

O4 follow up

Currently ongoing

2 Time Windows:

- ± 500 s around merger time
- 3 s starting at merger time
 Only for BNS and NSBH

So far no significant deviation from background

14

Searching for AGN neutrinos and gravitational waves

Multi messenger search for common source of GW and neutrinos

Non-GW emission from BBH mergers:

No clear singular model prediction

Localization alone can already probe this by counting AGN

Binaries in AGN accretion disks

Bartos et al. [1602.03831] McKernan et al. [1907.03746] Kimura et al. [2103.02461] Tagawa et al. [2303.02172]

- \checkmark Many (heavy) black holes
 - Frequent mergers
- ✓ Gas-rich environment

Joint *v*-GW search for BBH in AGN disks

Spatial distribution of GWs and AGNs

LIGO and Virgo Collab. [1602.03837] The IceCube Collab. [1602.05411]

Time window: standard 1000s First High-energy sample (>100GeV) add lower-energy samples in future

add lower-energy samples in future (GRECO, ELOWEN)

AGNs

Need uniform and complete catalog:

enough events, but not to many to lose sensitivity:

TOOK EXTENSIVE LITERATURE SEARCH

Settled on Quaia, best coverage

Neutrino Follow Up

Storey-Fisher et al. [2306.17749]

Joint *v*-GW search for BBH in AGN disk:

IceCube Upgrade

Lower energies, different DOMs

Planned to deploy 2025-2026

ICECUBE UPGRADE OPTICAL SENSORS

IceCube Upgrade

BSM:

- Probe lower energies of Dark Matter
- Calculate improvements in sensitivity
- Expand DM limits to m < 20 GeV

ELOWEN:

- Creating new simulations using two different photon propagators and comparing results for low energies
- Calculate improvements in sensitivity
- Plan transient searches for after deployment

Summary and Outlook

Working on many different activities

- Event selection and reco
 - ELOWEN
 - Sub-GeV
 - TeV
 - Upgrade
- Study different sources
 - Sun
 - Gravitational Waves
 - GRBs

Much planned for the future

• Also DOM building (together with ULB)