

Cosmic ν 's as a Probe of Fundamental Physics

VILLUM FONDEN

Markus Ahlers Niels Bohr Institute Georges Lemaître Chair 2023

KØBENHAVNS UNIVERSITET

The Elusive Neutrino

- small masses with uncertain origin and scale
- **large mixing** between flavour and mass states
- potential source of CP
 violation (*leptogenesis?*)
- **Dirac or Majorana** fermions
- susceptible to
 beyond-the-SM effects

Standard Model of Particle Physics

(+ Higgs boson)

Probe of Fundamental Physics

[Ackermann, MA, Anchordoqui, Bustamante+ Bull.Am.Astron.Soc. 51 (2019)]

Markus Ahlers (NBI)

Neutrino Cross Section

Neutrino Cross Section

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

Neutrino Mixing

Superpositions of mass eigenstates!

- 3 **flavour eigenstates** $|\nu_{\alpha}\rangle$ with greek index ($\alpha = e, \mu, \tau$)
 - 3 mass eigenstates $|\nu_i\rangle$ with roman index (i = 1,2,3)

Mixing is parametrized by unitary mixing matrix *U*:

$$|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i}^{*} |\nu_{i}\rangle$$

Two-Flavour Neutrino Oscillation

• Considering only two flavour oscillations (e.g. $\nu_{\mu} \leftrightarrow \nu_{\tau}$)

$$P_{\nu_{\beta} \to \nu_{\alpha}}(\ell) \simeq \sin^2(2\theta) \, \sin^2\left(\frac{(m_2^2 - m_1^2)\ell}{4E_{\nu}}\right)$$

• Similarly, the muon neutrino survival probability is given as:

$$P_{\nu_{\beta} \to \nu_{\beta}}(\ell) = 1 - P_{\nu_{\beta} \to \nu_{\alpha}}(\ell)$$

Oscillation phase depends on mass-squared difference:

$$\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$$

• Can be expressed as:

$$\frac{\Delta m_{ij}^2 \ell}{4E_{\nu}} \simeq 1.27 \left(\frac{\Delta m_{ij}^2}{\mathrm{eV}^2}\right) \left(\frac{\ell}{\mathrm{km}}\right) \left(\frac{E_{\nu}}{\mathrm{GeV}}\right)^{-1}$$

Oscillation Probes

Oscillation measurement are based on **reactor**, **solar**, **accelerator** and **atmospheric neutrinos** looking for the **appearance and disappearance**.

Source	Type of ν	$\overline{E}[MeV]$	$L[\mathrm{km}]$	$\min(\Delta m^2)[eV^2]$
Reactor	$\overline{ u}_e$	~ 1	1	$\sim 10^{-3}$
Reactor	$\overline{ u}_e$	~ 1	100	$\sim 10^{-5}$
Accelerator	$ u_{\mu}, \overline{ u}_{\mu}$	$\sim 10^3$	1	~ 1
Accelerator	$ u_{\mu}, \overline{ u}_{\mu}$	$\sim 10^3$	1000	$\sim 10^{-3}$
Atmospheric ν 's	$ u_{\mu,e}, \overline{ u}_{\mu,e}$	$\sim 10^3$	10^{4}	$\sim 10^{-4}$
Sun	$ u_e$	~ 1	1.5×10^8	$\sim 10^{-11}$

(source: pdg.lbl.gov)

In practice, the destructive interference from the limited energy resolution of the detector or size of the neutrino source, require L/\overline{E} to lie within the range of the first few oscillations.

Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\frac{\alpha_1}{2}} & 0 & 0 \\ 0 & e^{i\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"atmospheric" CP Dirac phase "solar" CP Majorana mixing contaiton: $c_{ij} \equiv \cos \theta_{ij} \& s_{ij} \equiv \sin \theta_{ij} \& \Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

best-fit values (NuFIT 5.2): $\sin^2 \theta_{12} \simeq 0.303$ $\sin^2 \theta_{13} \simeq 0.022$ $\sin^2 \theta_{23} \simeq 0.57$ $\Delta m_{21}^2 \simeq 7.41 \times 10^{-5} \text{eV}^2$ $\Delta m_{32}^2 \simeq \pm 2.5 \times 10^{-3} \text{eV}^2$

Neutrino Mass Ordering

colours show relative contribution of $\nu_{e'}$, ν_{μ} and ν_{τ}

Neutrino Selection

Atmospheric Neutrino Oscillation

Atmospheric Neutrino Oscillation

90% C.L. allowed region for atmospheric neutrino oscillation parameters

Tau Neutrino Appearance

- 86% of ν_{τ} global data from IceCube
- High statistics of ν_{τ} allow to make precision tests of the 3-flavour oscillation paradigm.
- Tau neutrino appearance at 3σ level with normalization 0.49 - 1.03.

 v_{o}^{CC}

 μ_{Atmo}

Data

 10^{2}

L/E (km/GeV)

ν^{CC}

v

 10^{1}

Markus Anlers (NBI)

 10^{0}

3500

3000

2500

1500

1000

500

Events 2000

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices,
 - incorporating les decade of IceCuł efforts
- In parallel, IceTo enhancements (s radio antennas) fe
- Aim: deploymen[•]

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

IceCube Work in Progress

- Precision measurement of atmospheric neutrino oscillations and tau neutrino appearance
- Improved energy and angular reconstructions of IceCube data

DeepCore 3 yr (1 σ)

IceCube Upgrade 1 yr sensitivity (1 σ)

OPERA (1σ)

SuperK (1 σ)

Matter Effects

Markus Ahlers (NBI)

Matter Effects

Matter effects in atmospheric ν oscillations are **sensitive to mass ordering**:

[Choubey & Roy'06]

$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} \theta_{2} (\sin^{2} 2\Theta_{13}) \sin^{2} \frac{\Delta \mathbf{M}_{31}^{2} \ell}{4E_{\nu}}$$

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - \sin^{2} 2\theta_{23} \cos^{2} \Theta_{13} \sin^{2} \left(\frac{(\Delta m_{31}^{2} + \Delta \mathbf{M}_{31}^{2})\ell}{8E_{\nu}} + \frac{\mathbf{A}\ell}{4} \right)$$

$$-\sin^{2} 2\theta_{23} \sin^{2} \Theta_{13} \sin^{2} \left(\frac{(\Delta m_{31}^{2} - \Delta \mathbf{M}_{31}^{2})\ell}{8E_{\nu}} + \frac{\mathbf{A}\ell}{4} \right)$$

$$-\sin^{4} \theta_{2} (\sin^{2} 2\Theta_{13}) \sin^{2} \frac{\Delta \mathbf{M}_{31}^{2} \ell}{4E_{\nu}}$$

$$\sin^{2} 2\Theta_{13} \equiv \sin^{2} 2\theta_{13} \left(\frac{\Delta m_{31}^{2}}{\Delta \mathbf{M}_{31}^{2}} \right)^{2} \qquad \Delta \mathbf{M}_{31}^{2} \equiv \sqrt{(\Delta m_{31}^{2} \cos 2\theta_{13} - 2E_{\nu}A)^{2} + (\Delta m_{31}^{2} \sin 2\theta_{13})}$$

Maximal mixing $\sin^2 2\Theta_{13} \rightarrow 1$ at energies $E_{\text{res}} \simeq (4-8) \text{ GeV}$.

Sensitivity to Mass Ordering

Markus Ahlers (NBI)

Neutrino Cross Section

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

WIMP Dark Matter

Weakly Interacting Massive Particles (WIMPs) are well-motivated DM candidates that appear in extensions of the Standard Model, *e.g.*, by supersymmetry.

Annihilation and Decay

• Neutrino emission from DM annihilation ($\rho_{\chi} = m_{\chi} n_{\chi}$) at a rate:

$$Q_{\nu_{\alpha}}^{\text{ann}}(\mathbf{r}) = \frac{1}{2} \rho_{\chi}^{2}(\mathbf{r}) \frac{\langle \sigma_{A} \nu \rangle}{m_{\chi}^{2}} \frac{\mathrm{d}N_{\nu_{\alpha}}}{\mathrm{d}E_{\nu}} \qquad Q_{\nu_{\alpha}}^{\text{dec}}(\mathbf{r}) = \rho_{\chi}(\mathbf{r}) \frac{\Gamma_{\chi}}{m_{\chi}} \frac{\mathrm{d}N_{\nu_{\alpha}}}{\mathrm{d}E_{\nu}}$$

- Neutrino flux observed per solid angle from Earth's location \mathbf{r}_\oplus :

$$\phi_{\nu_{\beta}}(E_{\nu}) = \sum_{\nu_{\alpha}} P_{\nu_{\alpha} \to \nu_{\beta}} \left[\int_{0}^{\infty} d\ell \, \rho_{\chi}^{2}(\mathbf{r}_{\oplus} + \ell \, \mathbf{\hat{n}}) \right] \frac{\langle \sigma_{A} \nu_{\lambda}}{8\pi m_{\chi}^{2}} \frac{dN_{\nu_{\alpha}}}{dE_{\nu}}$$
$$\phi_{\nu_{\beta}}(E_{\nu}) = \sum_{\nu_{\alpha}} P_{\nu_{\alpha} \to \nu_{\beta}} \left[\int_{0}^{\infty} d\ell \, \rho_{\chi}(\mathbf{r}_{\oplus} + \ell \, \mathbf{\hat{n}}) \right] \frac{\Gamma_{\chi}}{4\pi m_{\chi}} \frac{dN_{\nu_{\alpha}}}{dE_{\nu}}$$
$$"\mathcal{D}\text{-factor"}$$

Galactic DM Distribution

Distribution of neutrino flux depends on the "cuspiness" of the Milky Way dark matter distribution, in particular for the annihilation signal (J-factor).

Neutrino Spectra from DM

Neutrino energy distribution from dark matter decay or annihilation.

Lower limits on the dark matter lifetime.

Cosmic Neutrinos & PeV DM

[Murase, Laha, Ando & MA'15]

[Feldstein, Kusenko, Matsumoto & Yanagida'13; Esmaili & Serpico'13; Zavala'14]

Markus Ahlers (NBI)

DM Annihilation in the Sun

• Evolution of the DM density in compact celestial objects:

$$\dot{n}_{\chi} = Q_C - 2\langle \sigma_A v \rangle \frac{n_{\chi}^2}{2}$$

• DM equilibrium density:

$$n_{\chi,\text{eq}} = \sqrt{\frac{Q_C}{\langle \sigma_A v \rangle}}$$

• The neutrino emission proportional to **capture rare**:

$$Q_{\nu_{\alpha}}^{\text{ann}}(\mathbf{r}) = \frac{Q_C}{2} \frac{\mathrm{d}N_{\nu_{\alpha}}}{\mathrm{d}E_{\nu}} \propto \sigma_{\chi N}$$

Probe of Fundamental Physics

[Ackermann, MA, Anchordoqui, Bustamante+ Bull.Am.Astron.Soc. 51 (2019)]

Markus Ahlers (NBI)

Sterile Neutrinos

 Sterile O(1) eV neutrino motivated by anomalous data of accelerator, reactor, and radioactive source experiments:

 $u_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \text{ appearance}$ (LSND & MiniBooNE) $\nu_{e} \& \bar{\nu}_{e} \text{ disappearance}$ (reactor, GALLEX & SAGE)

 IceCube is sensitive to the "3+1" sterile neutrino model:

 $U_{4\times 4} = R_{34}R_{24}R_{14}U_{\rm PMNS}$

• Energy-dependent distortions of atmospheric $\nu_{\mu} \& \bar{\nu}_{\mu}$ disappearance in matter-enhanced oscillations.

Sterile Neutrinos

 $|U_{\mu4}|^2 = \sin^2 \theta_{24} \quad \& \quad |U_{e4}|^2 = |U_{\tau4}|^2 = 0$

[IceCube, PRL 125 (2020) 14; PRD 102 (2020) 5]

Sterile Neutrino Searches

Best-fit contours in for stable (left) and unstable (right) sterile neutrinos.

[IceCube, PRL 125 (2020) 14; PRD 102 (2020) 5]

[IceCube, PRL 129 (2022) 1]

Nonstandard Neutrino Interactions

Hamiltonian including nonstandard interactions with matter:

$$H_{\text{mat}}(x) = V_{\text{CC}}(x) \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^* & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^* & \epsilon_{\mu\tau}^* & \epsilon_{\tau\tau} \end{pmatrix}$$

Probe of Fundamental Physics

IceCube neutrinos test new energy and distance regime.

Lorentz Invariance Violation

• Quantum gravity could modify dispersion relations of neutrinos (or photons, CRs, etc.) inducing Lorentz Invariance Violation (LIV):

[e.g. Alves Batista et al.'23]

$$E^2 = \mathbf{p}^2 \left[1 \pm \left(\frac{E}{\Lambda}\right)^n \right]$$

Modification of the neutrino velocity:

$$v(E) = \frac{\partial E}{\partial p} \simeq 1 \pm \frac{n+1}{2} \left(\frac{E}{\Lambda}\right)^n$$

This causes energy-dependent time delays of cosmic neutrinos:

$$\Delta t = \pm \frac{n+1}{2} \frac{E_0^n - E_1^n}{\Lambda^n} \int_0^z dz' \frac{(1+z')^n}{H(z')}$$

• TXS 0506+056 ν - γ coincidence constrains $\Lambda \gtrsim 3 \times 10^{16} \text{ GeV}$ (n = 1).

[Ellis, Mavromatos, Sakharov & Sarkisyan-Grinbaum'18; Laha'18]

Lorentz Invariance Violation

- LIV can also modify neutrino oscillations via an anomalous energy dependence of the effective Hamiltonian.
- For **isotropic LIV effects** we can make the ansatz for the effective Hamiltonian of flavour states: [Kostelecky & Mewes'12]

$$H \simeq \frac{m^2}{2E_{\nu}} + \mathring{a}^{(3)} - E\mathring{c}^{(4)} + E^2\mathring{a}^{(5)} - E^3\mathring{c}^{(6)} + \dots$$

- The LIV 3×3 matrices $a^{(d)}$ are CPT odd and $c^{(d)}$ are CPT even with mass dimension 4 d.
- The flavour eigenstates can now be expressed as superpositions of LIV Hamiltonian eigenstates $|\nu_{a}\rangle$:

$$|\nu_{\alpha}\rangle = \sum_{\mathfrak{a}} U^{*}_{\alpha\mathfrak{a}}(E_{\nu}) |\nu_{\mathfrak{a}}\rangle$$

Atmospheric Neutrinos & LIV

Atmospheric Neutrinos & LIV

Limits on LIV operators using atmospheric neutrinos

dim.	method	type	sector	limits	ref.
3	CMB polarization	astrophysical	photon	$\sim 10^{-43} { m GeV}$	[5]
	He-Xe comagnetometer	tabletop	neutron	$\sim 10^{-34} { m GeV}$	[10]
	torsion pendulum	tabletop	electron	$\sim 10^{-31} { m GeV}$	[12]
	muon g-2	accelerator	muon	$\sim 10^{-24} \text{ GeV}$	[13]
	neutrino oscillation	atmospheric	neutrino	$\begin{aligned} \operatorname{Re}(\mathring{a}^{(3)}_{\mu\tau}) , \operatorname{Im}(\mathring{a}^{(3)}_{\mu\tau}) &< 2.9 \times 10^{-24} \text{ GeV } (99\% \text{ C.L.}) \\ &< 2.0 \times 10^{-24} \text{ GeV } (90\% \text{ C.L.}) \end{aligned}$	this work
4	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-38}$	[6]
	Laser interferometer	LIGO	photon	$\sim 10^{-22}$	[7]
	Sapphire cavity oscillator	table top	photon	$\sim 10^{-18}$	[8]
	Ne-Rb-K comagnetometer	tabletop	neutron	$\sim 10^{-29}$	[11]
	trapped Ca^+ ion	table top	electron	$\sim 10^{-19}$	[14]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\overset{\circ}{c}{}^{(4)}_{\mu\tau}) , \operatorname{Im}(\overset{\circ}{c}{}^{(4)}_{\mu\tau}) < 3.9 \times 10^{-28} (99\% \text{ C.L.}) < 2.7 \times 10^{-28} (90\% \text{ C.L.})$	this work
5	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-34} { m GeV^{-1}}$	[6]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-22}$ to $10^{-18} \text{ GeV}^{-1}$	[9]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\overset{\circ}{a}{}^{(5)}_{\mu\tau}) , \operatorname{Im}(\overset{\circ}{a}{}^{(5)}_{\mu\tau}) < 2.3 \times 10^{-32} \text{ GeV}^{-1} (99\% \text{ C.L.}) < 1.5 \times 10^{-32} \text{ GeV}^{-1} (90\% \text{ C.L.})$	this work
6	GRB vacuum birefringene	astrophysical	photon	$\sim 10^{-31} \mathrm{GeV}^{-2}$	[6]
	ultra-high-energy cosmic ray	astrophysical	proton	$\sim 10^{-42}$ to 10^{-35} GeV ⁻²	[9]
	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-31} { m GeV}^{-2}$	[15]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\hat{c}_{\mu\tau}^{(6)}) , \operatorname{Im}(\hat{c}_{\mu\tau}^{(6)}) < 1.5 \times 10^{-36} \text{ GeV}^{-2} (99\% \text{ C.L.}) < 9.1 \times 10^{-37} \text{ GeV}^{-2} (90\% \text{ C.L.})$	this work
7	GRB vacuum birefringence	astrophysical	photon	$\sim 10^{-28} { m GeV}^{-3}$	[6]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\overset{\circ}{a}{}^{(7)}_{\mu\tau}) , \operatorname{Im}(\overset{\circ}{a}{}^{(7)}_{\mu\tau}) < 8.3 \times 10^{-41} \text{ GeV}^{-3} (99\% \text{ C.L.}) < 3.6 \times 10^{-41} \text{ GeV}^{-3} (90\% \text{ C.L.})$	this work
8	gravitational Cherenkov radiation	astrophysical	gravity	$\sim 10^{-46} { m GeV}^{-4}$	[15]
	neutrino oscillation	atmospheric	neutrino	$ \operatorname{Re}(\hat{c}_{\mu\tau}^{(8)}) , \operatorname{Im}(\hat{c}_{\mu\tau}^{(8)}) \leq 5.2 \times 10^{-45} \text{ GeV}^{-4} (99\% \text{ C.L.}) \\ < 1.4 \times 10^{-45} \text{ GeV}^{-4} (90\% \text{ C.L.})$	this work

[IceCube, Nature Phys. 14 (2018) 9]

Cosmic neutrinos visible via their oscillation-averaged flavour.

Markus Ahlers (NBI)

Limits on LIV operators using cosmic neutrinos

dim	coefficient	limit	dim	coefficient	limit	$(\phi_e^i:\phi_\mu^i:\phi_\tau^i)_S$
3	$\operatorname{Re}(\overset{\circ}{a}{}^{(5)}_{e\mu})$	$6 \times 10^{-26} \text{ GeV}$	4	$\operatorname{Re}(\overset{\circ(6)}{c_{e\mu}})$	2×10^{-31}	$(0:1:0)_S$
	$\operatorname{Re}(\mathring{a}_{e\tau}^{(5)})$	$3 \times 10^{-27} \text{ GeV}$		$\operatorname{Re}(\mathring{c}_{e\tau}^{(\acute{6})})$	7×10^{-33}	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}{}^{(5)}_{\mu\mu})$	$3 \times 10^{-27} \text{ GeV}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(6)}_{\mu\mu})$	4×10^{-33}	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{\tau\tau}^{(5)})$	$5 \times 10^{-27} \text{ GeV}$		$\operatorname{Re}(\overset{\circ(6)}{c_{\tau\tau}})$	1×10^{-32}	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{ee}^{(3)})$	$4 \times 10^{-28} \text{ GeV}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(4)}_{ee})$	6×10^{-33}	$(1:0:0)_S$
	$\operatorname{Re}(\mathring{a}_{\mu\tau}^{(3)})$	$6 \times 10^{-27} \text{ GeV}$		$\operatorname{Re}(\mathring{c}_{\mu\tau}^{(4)})$	7×10^{-34}	$(1:0:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{\tau\tau}^{(3)})$	$2 \times 10^{-27} \text{ GeV}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(4)}_{\tau\tau})$	8×10^{-34}	$(1:0:0)_S$
5	$\operatorname{Re}(\overset{\circ}{a}_{e\mu}^{(5)})$	$3 \times 10^{-36} \text{ GeV}^{-1}$	6	$\operatorname{Re}(\mathring{c}_{e\mu}^{(6)})$	$4 \times 10^{-41} \text{ GeV}^{-2}$	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{e\tau}^{(5)})$	$9 \times 10^{-39} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(6)}_{e\tau})$	$3 \times 10^{-44} \text{ GeV}^{-2}$	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}{}^{(5)}_{\mu\mu})$	$8 \times 10^{-39} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(6)}_{\mu\mu})$	$7 \times 10^{-45} \text{ GeV}^{-2}$	$(0:1:0)_S$
	$\operatorname{Re}(a_{\tau\tau}^{\circ(5)})$	$3 \times 10^{-38} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ}{c}\overset{\circ}{}^{(6)}_{\tau\tau})$	$1 \times 10^{-43} \text{ GeV}^{-2}$	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{\tau\tau}^{(5)})$	$2 \times 10^{-35} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(6)}_{\tau\tau})$	$3 \times 10^{-36} \text{ GeV}^{-2}$	$(1/3:2/3:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{ee}^{(5)})$	$7 \times 10^{-40} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(6)}_{ee})$	$2 \times 10^{-44} \text{ GeV}^{-2}$	$(1:0:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}{}^{(5)}_{\mu\tau})$	$4 \times 10^{-39} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ(6)}{c_{\mu\tau}})$	$6 \times 10^{-45} \text{ GeV}^{-2}$	$(1:0:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{\tau\tau}^{(5)})$	$2 \times 10^{-38} \text{ GeV}^{-1}$		$\operatorname{Re}(\overset{\circ}{c}\overset{\circ}{}_{\tau\tau}^{(6)})$	$6 \times 10^{-45} \text{ GeV}^{-2}$	$(1:0:0)_S$
7	$\operatorname{Re}(\overset{\circ}{a}^{(7)}_{e\mu})$	$5 \times 10^{-46} \text{ GeV}^{-3}$	8	$\operatorname{Re}(\overset{\circ}{c}{}^{(8)}_{e\mu})$	$1 \times 10^{-50} \text{ GeV}^{-4}$	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{e\tau}^{(7)})$	$4 \times 10^{-50} \text{ GeV}^{-3}$		$\operatorname{Re}(\overset{\circ(8)}{c_{e\tau}})$	$6 \times 10^{-56} \text{ GeV}^{-4}$	$(0:1:0)_S$
	$\operatorname{Re}(\mathring{a}_{\mu\mu}^{(7)})$	$4 \times 10^{-50} \text{ GeV}^{-3}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(8)}_{\mu\mu})$	$5 \times 10^{-56} \text{ GeV}^{-4}$	$(0:1:0)_S$
	$\operatorname{Re}(a_{\tau\tau}^{(7)})$	$2 \times 10^{-49} \text{ GeV}^{-3}$		$\operatorname{Re}(\overset{\circ}{c}_{\tau\tau}^{(8)})$	$6 \times 10^{-55} \text{ GeV}^{-4}$	$(0:1:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{\tau\tau}^{(7)})$	$3 \times 10^{-45} \text{ GeV}^{-3}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(8)}_{\tau\tau})$	$3 \times 10^{-49} \text{ GeV}^{-4}$	$(1/3:2/3:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}^{(7)}_{ee})$	$8 \times 10^{-51} \text{ GeV}^{-3}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(8)}_{ee})$	$3 \times 10^{-55} \text{ GeV}^{-4}$	$(1:0:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}{}^{(7)}_{\mu\tau})$	$2 \times 10^{-49} \text{ GeV}^{-3}$		$\operatorname{Re}(\overset{\circ}{c}{}^{(8)}_{\mu\tau})$	$5 \times 10^{-55} \text{ GeV}^{-4}$	$(1:0:0)_S$
	$\operatorname{Re}(\overset{\circ}{a}_{\tau\tau}^{(7)})$	$3 \times 10^{-49} \text{ GeV}^{-3}$		$\operatorname{Re}(\dot{c}_{\tau\tau}^{(8)})$	$8 \times 10^{-56} \text{ GeV}^{-4}$	$(1:0:0)_S$

[IceCube, Nature 18 (2022) 11]

Limits on the **dimension-six operator**.

Neutrino Decoherence

 Quantum gravity could also induce decoherence in the evolution of the neutrino density operator:

 $\dot{\rho} = -i[H,\rho] - \mathcal{D}[\rho]$

- The non-unitary decoherence term
 D[ρ] can be parametrized via
 Lindblad operators.
- For instance, uniform decoherence in the basis of mass eigenstates:

$$\mathscr{D}(\rho) = \Gamma_0 \left(\frac{E_{\nu}}{E_0}\right)^n \begin{pmatrix} 0 & \rho_{12} & \rho_{13} \\ \rho_{21} & 0 & \rho_{23} \\ \rho_{31} & \rho_{32} & 0 \end{pmatrix}$$

[lceCube, arXiv:2308.00105]

Visible Neutrino Decay

Slow decay of neutrino mass states $\nu_i \rightarrow \nu_j + X$ over cosmological time scales impacts neutrino **flavour fractions** (left) and **spectra** (right).

[Bustamante, Beacom & Murase'17]

Visible Neutrino Decay

Energy-dependent flavour ratios testable with IceCube-Gen2.

[Valera, Fiorillo, Esteban & Bustamante'23]

IceCube-Gen2 Flavour Sensitivity

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

Markus Ahlers (NBI)

Neutrino Self Interactions

Neutrino self interactions can modify cosmic neutrino emission, for instance, by resonant scattering on the $C\nu B$.

[Bustamante, Rosenstroem, Shalgar & Tamborra'20]

[Blinov, Bustamante, Kell & Zhang'22]

Neutrino "Echos" in TXS 0506+056

Exotic Signatures: Monopoles

Markus Ahlers (NBI)

Limits on Primordial Monopoles

Neutrino telescopes sets meaningful limits on primordial monopoles below the *Parker bound* (short-circuit of Galactic magnetic fields).

[IceCube PRL 128 (2022) 5]

Summary

- High-energy cosmic radiation has been a powerful probe of particle physics in the 20th century (discovery of *positron, muon, pion, ...*).
- Neutrino astronomy offers complementary and unique probes of fundamental physics.
- Long propagation baselines and large neutrino energies beyond the reach of accelerator facilities.
- This allows us to study:
 - atmospheric neutrino oscillations and neutrino interactions in SM
 - dark matter in Milky Way, Sun, Earth, nearby galaxies, etc.
 - neutrino decay, feeble interactions, non-standard oscillations
 - etc.
- We only highlighted a few selected topics and probes!