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Status of Neutrino Astronomy
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No significant steady or transient emission from known Galactic or 
extragalactic high-energy sources, but several interesting candidates.
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Statistical Hypothesis Tests
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Typical problem in physics and astronomy: 

You have collected data with your experiment or observatory                      
and want to test a theory (signal hypothesis ). 

• How can you judge if the hypothesis is correct or wrong? 

• How does the alternative hypothesis (null hypothesis ) look like? 

• How confident can you be that your conclusions are correct? 

• In most cases there is a chance that your decision is wrong: 

• You decided that  is correct, but it is actually wrong. (type I error) 

• You decided that  is wrong, but it is actually correct. (type II error)

H1

H0

H1

H1
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Statistical Hypothesis Tests
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• A statistical hypothesis test is based on a quantity called test statistic that 
allows us to quantify the degree of confidence that your decision was 
right or wrong. 

• A useful test statistic: 

• is sensitive to the signal hypothesis  (that’s a must!) 

• is efficiently calculable (e.g. fast calculation on your computer) 

• has a well-known behaviour for data following the null hypothesis  

• If we apply the statistical test to the observed data we can quantify the 
"false positive" (type I) and "false negative" (type II) errors by comparing 
to the expected test statistic distribution,  and , of data following 
background ( ) and signal ( ) hypothesis, respectively.

H1

H0

p0 p1
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Statistical Hypothesis Tests
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Test Statistic Distribution
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In a hypothesis test we have to choose a critical t-value to either
reject or accept the hypothesis.
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In a hypothesis test we have to choose a threshold test 
statistic value to either reject or accept the hypothesis.
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Statistical Hypothesis Tests
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• significance ( ): 

probability that background creates outcome with  or larger: 

• Note: It is a convention that t increases for a more "signal-like" 
outcome. If not, just define a new test statistic . 

• power of test ( ): 

probability that signal creates outcome with  or less:

α

tthr

t′ ≡ − t

1 − β

tthr

α = ∫
∞

tthr

dt p0(t)

β = ∫
tthr

−∞
dt p1(t)

(type I error)

(type II error)
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Statistical Hypothesis Tests
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• A good statistical test will have good "separation" of  and  to allow to 
minimize type I/II errors. Separation from background allows to quantify 
significance of event excesses: 

• discovery (in particle physics): 

• evidence (in particle physics): 

• Often, we want to estimate the performance of a statistical test prior to a 
measurement by simulations. We can determine this by tuning the signal 
strength, e.g. the IceCube experiment uses: 

• discovery potential: 

• sensitivity level:

p0 p1

90 %

α = 5.7 × 10−7 (5σ)

α = 2.7 × 10−3 (3σ)

α = 5.7 × 10−7 β = 0.5

α = 0.5 β = 0.1
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Example: Excess in Binned Data
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Recap: Maximum Likelihood Ratio

• Consider data (Ntot “events”) distributed in Nbins bins.

• Question: Is there an excess or deficit in the data?
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• Consider data (  "events") distributed in  bins. 

• Question: Is there an excess or deficit in the data?

Ntot Nbins
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Likelihood Function
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• Likelihood function  for data vector  and parameter vector . 

• Assuming(!) Poisson statistics in our bins: 

• Background hypothesis ("no signal"): 

• Signal hypothesis ("signal (excess or deficit) in bin 1"): 

• Note that, in general: 

ℒ(θ |x) x θ

μbg ≠ μ*bg

ℒ(μ |x) =
Nbins

∏
i=1

1
xi!

μxi
i e−μi

μi = μbg = const

μi = {
μsig + μ*bg i = 1
μ*bg else



Markus Ahlers (NBI) Georges Lemaître Chair 2023

Maximum-Likelihood
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• For (mathematical) convenience  ("log-likelihood"): 

• In general, maximum of  (or ) can only be determined numerically. 

• This example is easy enough to solve analytically. 

• maximum  of background hypothesis is at: 

• maximum  of signal hypothesis is at:

ℒ → ln ℒ

ℒ ln ℒ

̂μbg

( ̂μ*bg, ̂μsig)

ln ℒ(μ |x) =
Nbins

∑
i=1

(xi ln μi − μi) + const

̂μbg =
Ntot

Nbins

̂μ*bg =
Ntot − x1

Nbins − 1
̂μsig = x1 − ̂μ*bg
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Maximum-Log-Likelihood Ratio
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• We now define the test statistic  as the maximum likelihood ratio: 

• After some algebra using the solutions for ,  and : 

• For  we can simplify this to:

λ

̂μ*bg ̂μbg ̂μsig

̂μ*bg ≃ ̂μbg

λ(x) ≡ − 2 ln
ℒ( ̂μbg,0 |x)

ℒ( ̂μ*bg, ̂μsig |x)

λ(x) = 2x1 ln( Nbins

Ntot
x1) + 2(Ntot − x1)ln( Nbins

Ntot

Ntot − x1

Nbins − 1 )

λ(x) ≃ 2x1(ln x1 − ln ̂μbg) − 2(x1 − ̂μbg) ̂μbg =
Ntot

Nbins



Markus Ahlers (NBI) Georges Lemaître Chair 2023

Maximum-Log-Likelihood Ratio
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• Example python notebooks can be found here: 

• You can use Google Colaboratory to execute the python notebook: 

• If you want to explore the exact solution of the maximum likelihood TS 
for binned data, have a look at this example: 

• In the interest of time we will go straight to real IceCube data:

https://github.com/mahlers77/KSETA2023

https://colab.research.google.com

max_LH_example.ipynb

IceCube_allsky.ipynb
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Example: IceCube 10-yr Data
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• We can devise a simplified version of this analysis by a binned maximum 
likelihood test with an energy threshold. 

• Analysis of IceCube PS data from '08-'18 : IceCube_allsky.ipynb 

• We can estimate the background expectation  via RA scrambling: 

• The maximum log-likelihood ratio for a point-source in each pixel  can 
be approximated as: 

• Using Wilks' theorem the -value and significance  (units of ) is: 

μbg,i

i

p S σ

λi = − 2 ln
ℒ0,i

ℒi
≃ 2xi(ln xi − ln μbg,i) − 2(xi − μbg,i)

RA → RA + θrnd

p = 1 − erf( λi/2) S = λi
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Example: IceCube 10-yr Data
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IceCube_allsky.ipynb

Equatorial

IceCube 2012-2018 with log10(E/GeV) > 0.00 : local significance (smax = 4.70)

-4.7 4.7



Markus Ahlers (NBI) Georges Lemaître Chair 2023

Unbinned Max-Likelihood 
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• The previous maximum-likelihood test required that we binned events. 

• We can incorporate the uncertainty of the event reconstruction in an 
unbinned maximum likelihood test for  signal events: 

• For instance, in a neutrino analysis with uncertainties of event location  
and energy  described by probability distributions , the signal and 
background weights are: 

ns

Ω
E wi

ℒ(ns, θ |x) =
Ntot

∏
i=1

[ ns

Ntot
Si(θ) + (1 −

ns

Ntot )Bi]

Si(θ) = ∫ dΩ∫ dE wi(Ω, E)Tsig(Ω, E, θ)

Bi = ∫ dΩ∫ dE wi(Ω, E)Tbg(Ω, E)
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Unbinned Max-Likelihood 
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• Normalized signal template : 

• point-source analysis:   

• stacking of  (identical) PSs:  

• extended sources:  

• Normalized background template : 

• background of atmospheric muons and neutrinos with spectrum  
(conventional) and  (prompt) components; azimuthally symmetric 

• derived from MC simulations or from background scrambling, i.e. 
randomized arrival times (corresponding to right ascension scrambling 
at Southpole). 

Tsig(Ω, E, θ)

θ = {γsrc, nsrc}

M θ = {γsrc, n1, …, nM, w1, …, wM}

θ = {γsrc, nsrc, σsrc}

Tbg(Ω, E)

E−3.7

E−2.7
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Example: IceCube 10-year
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IceCube "all-sky" point-like source search: 
each location tested for an excess!

12

FIG. 5: Left: The 2D distribution of events in one year of data for the final event selection as a function of
reconstructed declination and estimated energy. The 90% energy range for the data (black), as well as simulated

astrophysical signal Monte-Carlo (MC) for an E�2 and an E�3 spectrum are shown in magenta and orange
respectively as a guide for the relevant energy range of IceCube. Right: The e↵ective area as a function of neutrino
energy for the IC86 2012-2018 event selection averaged across the declination band for several declination bins using

simulated data.

FIG. 6: Skymap of -log10(plocal), where plocal is the local pre-trial p-value, for the sky between ±82� declination in
equatorial coordinates. The Northern and Southern hemisphere hotspots, defined as the most significant plocal in

that hemisphere, are indicated with black circles.

125 hrs of MAGIC observations and about 4 hrs of H.E.S.S. observations [31, 39, 40] in Fig. 9.
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FIG. 5: Left: The 2D distribution of events in one year of data for the final event selection as a function of
reconstructed declination and estimated energy. The 90% energy range for the data (black), as well as simulated

astrophysical signal Monte-Carlo (MC) for an E�2 and an E�3 spectrum are shown in magenta and orange
respectively as a guide for the relevant energy range of IceCube. Right: The e↵ective area as a function of neutrino
energy for the IC86 2012-2018 event selection averaged across the declination band for several declination bins using

simulated data.

FIG. 6: Skymap of -log10(plocal), where plocal is the local pre-trial p-value, for the sky between ±82� declination in
equatorial coordinates. The Northern and Southern hemisphere hotspots, defined as the most significant plocal in

that hemisphere, are indicated with black circles.

125 hrs of MAGIC observations and about 4 hrs of H.E.S.S. observations [31, 39, 40] in Fig. 9.

[IceCube, PRL 124 (2020) 5]

NGC 1068



Markus Ahlers (NBI) Georges Lemaître Chair 2023

Trial Correction
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• What happens if we want to find a signal not just in the first bin but in any 
of the  bins? 

• We can simply repeat the test over all bins and identify the bin with 
minimal p-value . 

• Problem: There are many bins ("hypothesis") and we have to account for 
the fact that there can be a chance fluctuation in the local p-values. 

• If  are independent of each other (as in our example) then we can 
define a post-trial p-value as: 

• Number of independent "trials" ( ) is often difficult to estimate.

Nbins

pmin

Nbins

Ntrials

ppost = 1 − (1 − p*)Nbins ≃ Nbinsp*

background probability
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Example: IceCube 7-year
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• Trial factor:  

• IceCube procedure: choose maximal  in sky map as a new test 
statistic and compare against maximal  of randomly generated maps.

Ntrials ∼ Nbins ∼ 𝒪(10000)

plocal
plocal

All-sky neutrino point source searches in IceCube 11
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Figure 7. Trial correction of the most significant spots in the
sky that were observed in the seven year search. Solid verti-
cal lines indicate the pre-trial p-value of the most significant
spots in each half of the sky; crosses show the distribution
of spots similarly obtained in scrambled data trials. The tri-
als are modeled by an analytic parameterization of the trial
correction (Equation 5, black dashed line) that corresponds
to 1.9× 105 independent trials per half of the sky.

Due to the large number of tested locations in the sky,
the two most significant locations in the sky have to be
trial corrected with the trial correction in Eq. 5 that
is estimated by repeating the full-sky scan on scram-
bled data trials, as shown in Fig. 7. This yields post-
trial p-values of 29%, 17% for northern and southern
sky, respectively. Hence, the full-sky results are in
agreement with a pure background assumption, and
no significant clustering is observed. For an unbro-
ken E−2 power-law spectrum, the 90% upper-limits of
the two most significant positions are E2

νdφ/dEν =
4.49 × 10−12 TeV cm−2 s−1 in the northern sky, and
E2

νdφ/dEν = 2.92 × 10−11 TeV cm−2 s−1 in the south-
ern sky. For softer spectra of E−3, the 90% upper-
limits yield E3dφ/dEν = 5.08 × 10−11 TeV2 cm−2 s−1

and E3dφ/dEν = 1.29 × 10−8 TeV2 cm−2 s−1 for the
northern and southern spot, respectively. In Fig. 8, the
solid blue line indicates the 90% upper-limit established
by the hottest spot results. A neutrino source at any
declination δ that would emit a steady flux higher than
this curve, would be detected 90% of the time as having
a greater significance than that actually observed for the
hottest spots found in the analysis (whose 90% upper-
limits are highlighted as stars on the blue line).
Besides the results of the full-sky scan, there are two

neutrino events detected with IceCube that are worth
commenting on here. The first one is the highest en-
ergetic neutrino event detected (4.5 ± 1.2 PeV) so far
with IceCube (Schoenen & Rädel 2015; Aartsen et al.
2016b), a neutrino-induced up-going muon track with
very precise angular resolution. This neutrino event is
part of the through-going track sample (Section 2.2). At
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Figure 8. Discovery potential (5σ, solid red) and sensitiv-
ity (dashed red) for a νµ + ν̄µ unbroken E2

νdφ/dEν flux
shown against declination δ. The gray line shows the re-
sults of (Adrian-Martinez et al. 2014) in the south. Upper
limits of source candidates in Tab. 2 and Tab. 3 are depicted
by red crosses. The blue line represents the upper limit for
the observed most significant spots in each half of the sky for
all declinations, the actual declination position of the spots
is indicated by a star.

its position (α = 110◦, δ = 11.5◦), no significant cluster-
ing is observed (pre-trial 5.2%). A slight excess is indeed
observed, but originates from the PeV event alone. The
second interesting event is a straight down-going start-
ing track at 430 TeV deposited energy (Aartsen et al.
2015f). Not only does it start inside of the IceCube de-
tector, but the reconstructed track points back to the
IceTop surface detector and no atmospheric shower is
observed in coincidence with the event. This event is
part of the starting track sample (Section 2.3), but no
clustering of events apart from the track itself is ob-
served at the location in the sky (α = 218◦, δ = −86◦)
and the pre-trial p-value is 0.6%.

4.2. Hotspot population

The search for populations of weak sources in the
full-sky in Fig. 6 did not reveal any significant outcome
above background expectation. In Fig. 9, the number
of spots versus pre-trial p-value − log10 pmin threshold is
shown for northern (left) and southern sky (right). The
observed number of spots is shown versus background
expectation with shaded areas indicating 1σ, 2σ, and
3σ intervals. This is then converted to a local p-value P
according to Eq. 6.
In the northern sky, the most significant excess is ob-

served above a threshold of − log10 pmin ≥ 3.35 with
72 spots above a scrambled data expectation of 56.7.
The local p-value of such an excess is P = 2.8% and
increases to 25% after trial correction. For the south-
ern sky, 7 spots above an expectation of 2.1 spots at
− log10 pmin ≥ 4.66 are reported. The probability of this
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Binomial Test
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• Consider a sorted list of p-values  ( ). Trial-corrected p-value is: 

• We can ask, how likely it is that the background yields at least two p-
values with :  

• In general, the background probability for at least k p-values with : 

• We can define yet another test statistic as :  ("binomial test").

pi ≤ pj i < j

p ≤ p2

p ≤ pk

t ≡ min{p′ k}

p′ 1 = 1 − (1 − p1)N

p′ k = 1 −
k−1

∑
n=0

(N
n) pn

k (1 − pk)N−n ≃ 1 −
Γ(k, Npk)

Γ(k)

p′ 2 = 1 − (1 − p2)N − Np2(1 − p2)N−1
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Example: IceCube
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IceCube_allsky.ipynb
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Example: IceCube
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IceCube_allsky.ipynb
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Galactic Cosmic Rays
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• Standard paradigm: 
Galactic CRs accelerated 
in supernova remnants 

• diffusive shock 
acceleration: 

• rigidity-dependent escape 
from Galaxy: 

• Arrival directions of 
cosmic rays are scrambled 
by magnetic fields.

[Baade & Zwicky'34] 
[Ginzburg & Sirovatskii'64]

nCR ∝ E−Γ

nCR ∝ E−Γ−δ

illustration of Milky Way 
[Credit: NASA]
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Galactic Cosmic Rays Anisotropy

32NDINTERNATIONALCOSMICRAYCONFERENCE,BEIJING2011

Figure1:Two-dimensionalrelativeintensitymapintheequatorialcoordinatesystemof5TeVgalacticcosmicrays
observedbytheTibetair-showerexperiment.
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Figure2:(a)ThesiderealdailyvariationobservedbytheTi-
betexperimentat6.2TeVfromDecember2001toNovember
2003.Thebest-fitfunctionwiththreeFouriercomponentsis
shownbytheblackline.(b)Theanti-siderealdailyvariation
observedbytheTibetexperimentat6.2TeVfromDecem-
ber2001toNovember2003.Thebest-fitsinusoidalcurveis
shownbytheblackline.
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Figure3:TimedependenceofthemaximumdepthofLoss-
ConeobservedbytheTibetexperimentat4.4,6.2,12TeV
(a)andtheMatsushiroundergroundmuonobservatoryat
0.6TeV(b)[4],alongwithMilagro’sdatarepresentedby
blueopeninversetrianglesandthebest-fitlinearfunctionto
Milagro’sdata.ThedataandtheirerrorsbytheMatsushiro
undergroundmuonobservatoryaremultipliedbythree,to
compensatefortheattenuationoftheamplitudeinthesub-
TeVenergyregion.Alltheerrorbarsin(a)and(b)arethe
linearsumsofthestatisticalandsystematicerrors.

Vol.1,64

Tibet

IceCube

5 TeV

13 TeV
Equatorial

Mollweide view

-0.002 0.002

360o 0o

[e.g. MA & Mertsch'16]

Cosmic ray anisotropies up to the level of one-per-mille at various energies  
(Super-Kamiokande, Milagro, ARGO-YBJ, EAS-TOP, Tibet AS , IceCube, HAWC)γ

anisotropy map
δI = FCR

⟨FCR⟩4π
− 1
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Galactic Cosmic Rays Anisotropy

IceCube & 
IceTop

Milagro

HAWC

Pierre Auger 

Observatory

KASCADE

EAS-TOP & 
MACRO

Super-
Kamiokande

Tibet-AS  & 

ARGO-YBJ
γ

LHAASO

GRAPES

Telescope 
Array

Baksan

Cosmic ray anisotropies up to the level of one-per-mille at various energies  
(Super-Kamiokande, Milagro, ARGO-YBJ, EAS-TOP, Tibet AS , IceCube, HAWC)γ
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Ground-Based Observations

Equatorial

North

East

South

West

ZenithZenith

relative acceptance at 09:00 LST

0.82 1.65

Field of View (FoV) of ground-based detector (e.g. HAWC at 
geographic latitude ) sweeps across the Sky over 24h.19∘

East West
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Issues with Reconstructions

True CR dipole is defined by amplitude  and direction . 

Observable dipole is projected onto equatorial plane: 

A (α, δ)
A′ = A cos δ

Equatorial

60±120±180±300± 240±

60±

30±

°30±

°60±

North

East

South

West

Zenith

dipole anisotropy

-0.0003 0.0003

[Iuppa & Di Sciascio’13; MA et al.’15]
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Issues with Reconstructions

Equatorial

60±120±180±300± 240±

60±

30±

°30±

°60±
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True CR dipole is defined by amplitude  and direction . 

Observable dipole is projected onto equatorial plane: 

A (α, δ)
A′ = A cos δ

[Iuppa & Di Sciascio’13; MA et al.’15]
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Issues with Reconstructions
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True CR dipole is defined by amplitude  and direction . 

Observable dipole is projected onto equatorial plane: 

A (α, δ)
A′ = A cos δ

[Iuppa & Di Sciascio’13; MA et al.’15]
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Dipole Anisotropy
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Example: Pierre Auger >8 EeV
COSMIC RAYS

Observation of a large-scale anisotropy
in the arrival directions of cosmic
rays above 8 × 1018 eV
The Pierre Auger Collaboration*†

Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies
observed in nature. Clues to their origin come from studying the distribution of their
arrival directions. Using 3 × 104 cosmic rays with energies above 8 × 1018 electron
volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km2

sr year, we determined the existence of anisotropy in arrival directions. The anisotropy,
detected at more than a 5.2s level of significance, can be described by a dipole with an
amplitude of 6:5þ1:3

"0:9 percent toward right ascension ad = 100 ± 10 degrees and declination
dd = "24þ12

"13 degrees. That direction indicates an extragalactic origin for these ultrahigh-
energy particles.

P
articles with energies ranging from below
109 eV up to beyond 1020 eV, known as cos-
mic rays, constantly hit Earth’s atmosphere.
The flux of these particles steeply decreases
as their energy increases; for energies above

10 EeV (1 EeV ≡ 1018 eV), the flux is about one
particle per km2 per year. The existence of cosmic
rayswith suchultrahigh energies has been known
for more than 50 years (1, 2), but the sites and
mechanisms of their production remain a mys-
tery. Information about their origin can be ob-
tained from the study of the energy spectrum
and the mass composition of cosmic rays. How-
ever, the most direct evidence of the location of
the progenitors is expected to come from studies
of the distribution of their arrival directions. In-
dications of possible hot spots in arrival direc-
tions for cosmic rays with energies above 50 EeV
have been reported by the Pierre Auger and Tel-
escope Array Collaborations (3, 4), but the statis-
tical significance of these results is low.We report
the observation, significant at a level ofmore than
5.2s, of a large-scale anisotropy in arrival direc-
tions of cosmic rays above 8 EeV.
Above 1014 eV, cosmic rays entering the atmo-

sphere create cascades of particles (called exten-
sive air-showers) that are sufficiently large to reach
the ground. At 10 EeV, an extensive air-shower
(hereafter shower) contains ~1010 particles spread
over an area of ~20 km2 in a thin disc moving
close to the speed of light. The showers contain an
electromagnetic component (electrons, positrons,
and photons) and a muonic component that can
be sampled using arrays of particle detectors.
Charged particles in the shower also excite ni-
trogen molecules in the air, producing fluores-
cence light that can be observed with telescopes
during clear nights.
The Pierre AugerObservatory, located near the

city of Malargüe, Argentina, at latitude 35.2°S, is
designed to detect showers produced by primary

cosmic rays above 0.1 EeV. It is a hybrid system, a
combination of an array of particle detectors and
a set of telescopes used to detect the fluorescence
light. Our analysis is based on data gathered from
1600 water-Cherenkov detectors deployed over
an area of 3000 km2 on a hexagonal grid with
1500-m spacing. Each detector contains 12metric
tons of ultrapure water in a cylindrical container,
1.2mdeepand 10m2 inarea, viewedby three9-inch
photomultipliers. A full description of the obser-
vatory, together with details of the methods used
to reconstruct the arrival directions and energies
of events, has been published (5).
It is difficult to locate the sources of cosmic

rays, as they are charged particles and thus in-
teract with themagnetic fields in our Galaxy and
the intergalactic medium that lies between the
sources and Earth. They undergo angular deflec-
tionswith amplitude proportional to their atomic
number Z, to the integral along the trajectory of
themagnetic field (orthogonal to the direction of
propagation), and to the inverse of their energy
E. At E ≈ 10 EeV, the best estimates for the mass
of the particles (6) lead to a mean value for Z be-
tween 1.7 and 5. The exact number derived is
dependent on extrapolations of hadronic physics,
which are poorly understood because they lie
well beyond the observations made at the Large
Hadron Collider. Magnetic fields are not well
constrained bydata, but if we adopt recentmodels
of the galactic magnetic field (7, 8), typical values
of the deflections of particles crossing the galaxy
are a few tens of degrees forE/Z= 10 EeV, depend-
ing on the direction considered (9). Extragalactic
magnetic fields may also be relevant for cosmic
rays propagating through intergalactic space (10).
However, even if particles from individual sources
are strongly deflected, it remains possible that an-
isotropies in the distribution of their arrival di-
rectionswill be detectable on large angular scales,
provided the sources have a nonuniform spatial
distribution or, in the case of a single dominant
source, if the cosmic-ray propagation is diffusive
(11–14).

Searches for large-scale anisotropies are con-
ventionally made by looking for nonuniformities
in the distribution of events in right ascension
(15, 16) because, for arrays of detectors that op-
erate with close to 100% efficiency, the total expo-
sure as a function of this angle is almost constant.
The nonuniformity of the detected cosmic-ray flux
in declination (fig. S1) imprints a characteristic
nonuniformity in the distribution of azimuth
angles in the local coordinate systemof the array.
From this distribution it becomes possible to ob-
tain information on the three components of a
dipolar model.

Event observations, selection,
and calibration

We analyzed data recorded at the Pierre Auger
Observatory between 1 January 2004 and 31
August 2016, from a total exposure of about
76,800 km2 sr year. The 1.2-m depth of the water-
Cherenkov detectors enabled us to record events
at a useful rate out to large values of the zenith
angle, q.We selected eventswith q <80° enabling
the declination range −90° < d < 45° to be ex-
plored, thus covering 85% of the sky.We adopted
4 EeV as the threshold for selection; above that
energy, showers falling anywhere on the array
are detectedwith 100% efficiency (17). The arrival
directions of cosmic rays were determined from
the relative arrival times of the shower front at
each of the triggered detectors; the angular res-
olution was better than 1° at the energies con-
sidered here (5).
Twomethods of reconstruction have beenused

for showers with zenith angles above and below
60° (17, 18). These have to account for the effects
of the geomagnetic field (17, 19) and, in the case
of showers with q < 60°, also for atmospheric ef-
fects (20) because systematic modulations to the
rates could otherwise be induced (see supple-
mentary materials). The energy estimators for
both data sets were calibrated using events de-
tected simultaneously by the water-Cherenkov
detectors and the fluorescence telescopes, with
a quasi-calorimetric determination of the energy
coming from the fluorescencemeasurements. The
statistical uncertainty in the energy determina-
tion is <16% above 4EeV and <12%above 10 EeV,
whereas the systematic uncertainty on the abso-
lute energy scale, common to both data sets, is
14% (21). Evidence that the analyses of the events
with q < 60° and of those with 60° < q < 80° are
consistentwith each other comes from the energy
spectra determined for the two angular bands.
The spectra agree within the statistical uncer-
tainties over the energy range of interest (22).
We consider events in twoenergy ranges, 4EeV<

E < 8 EeV and E ≥ 8 EeV, as adopted in previous
analyses [e.g., (23–25)]. The bin limits follow those
chosenpreviously in (26, 27). Themedian energies
for these bins are 5.0EeVand 11.5EeV, respectively.
In earlier work (23–25), the event selection re-
quired that the station with the highest signal
be surrounded by six operational detectors—a
demanding condition. The number of triggered
stations is greater than four for 99.2%of all events
above 4 EeV and for 99.9% of events above 8 EeV,

RESEARCH

The Pierre Auger Collaboration, Science 357, 1266–1270 (2017) 22 September 2017 1 of 5

*Author names and affiliations appear at the end of this paper.
†Email: auger_spokespersons@fnal.gov
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Table 2: Three dimensional dipole reconstruction. Directions of dipole components are shown
in equatorial coordinates.

Energy

[EeV]

Dipole

component dz

Dipole

component d?
Dipole

amplitude d
Dipole

declination dd [
�
]

Dipole right

ascension ad [
�
]

4 to 8 �0.024 ± 0.009 0.006+0.007
�0.003 0.025+0.010

�0.007 �75+17
�8 80 ± 60

8 �0.026 ± 0.015 0.060+0.011
�0.010 0.065+0.013

�0.009 �24+12
�13 100 ± 10

studies that found that the effects of higher-order multipoles are not significant in this energy
range [25, 29, 30], the dipole components and its direction in equatorial coordinates (ad, dd) can
be estimated from

d? ' ra

hcos di , dz '
bj

cos `obshsin qi , ad = ja, tan dd =
dz
d?

, (3)

[25], where hcos di is the mean cosine of the declinations of the events, hsin qi is the mean sine of
the zenith angles of the events, and `obs ' �35.2� is the average latitude of the Observatory. For
our data set, we find hcos di = 0.78 and hsin qi = 0.65.

The parameters describing the direction of the three-dimensional dipole are summarized in
Table 2. For 4 EeV < E < 8 EeV, the dipole amplitude is d = 2.5+1.0

�0.7%, pointing close to the celes-
tial south pole, at (ad, dd) = (80�,�75�), although the amplitude is not statistically significant.
For energies above 8 EeV, the total dipole amplitude is d = 6.5+1.3

�0.9%, pointing toward (ad, dd) =
(100�,�24�). In Galactic coordinates, the direction of this dipole is (`, b) = (233�,�13�). This
dipolar pattern is clearly seen in the flux map in Fig. 2. To establish whether the departures from
a perfect dipole are just statistical fluctuations or indicate the presence of additional structures at
smaller angular scales would require at least twice as many events.
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�0.9%, pointing toward (ad, dd) =
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studies that found that the effects of higher-order multipoles are not significant in this energy
range [25, 29, 30], the dipole components and its direction in equatorial coordinates (ad, dd) can
be estimated from
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cos `obshsin qi , ad = ja, tan dd =
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[25], where hcos di is the mean cosine of the declinations of the events, hsin qi is the mean sine of
the zenith angles of the events, and `obs ' �35.2� is the average latitude of the Observatory. For
our data set, we find hcos di = 0.78 and hsin qi = 0.65.

The parameters describing the direction of the three-dimensional dipole are summarized in
Table 2. For 4 EeV < E < 8 EeV, the dipole amplitude is d = 2.5+1.0

�0.7%, pointing close to the celes-
tial south pole, at (ad, dd) = (80�,�75�), although the amplitude is not statistically significant.
For energies above 8 EeV, the total dipole amplitude is d = 6.5+1.3

�0.9%, pointing toward (ad, dd) =
(100�,�24�). In Galactic coordinates, the direction of this dipole is (`, b) = (233�,�13�). This
dipolar pattern is clearly seen in the flux map in Fig. 2. To establish whether the departures from
a perfect dipole are just statistical fluctuations or indicate the presence of additional structures at
smaller angular scales would require at least twice as many events.
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Reconstruction
Reconstruction Methods

8 data is strongly time-dependent:

• detector deployment/maintenance
• atmospheric conditions

(day/night, seasons)
• power outages,. . .

8 local anisotropies of detector:

• detector geometry
• mountains
• geo-magnetic fields,. . .

• two analysis strategies:

• Monte-Carlo & monitoring
(limited by systematic uncertainties)

• data-driven likelihood methods
(limited by statistical uncertainties)

Searching for All-Scale Anisotropies in the Arrival Directions of Cosmic Rays above the Ankle 5

nti with a Gaussian beam with an appropriate angu-
lar size. This procedure will only affect the small-scale
anisotropy that is present in the data, but undistinguish-
able from the noise introduced by Poisson fluctuations.

Instead of smoothing the original event map to ac-
count for the limited statistics in cosmic ray data above
the ankle, it is also possible to adapt the maximum-
likelihood method to account for a smoothing scale in
the relative intensity. This can be done by an expansion
of the anisotropy into spherical harmonics (13) that is
truncated at a maximum moment `max. We discuss the
case of a general truncation scale `max in Appendix B
and concentrate hear on the dipole anisotropy, `max = 1.
In this case, it is convenient to work with the expansion

dIdipole(a, d) = dxx(a, d) + dyy(a, d) , (21)

where x(a, d) = cos a cos d and y(a, d) = sin a cos d.
These basis functions correspond to the projection of
the unit vector n into the equatorial plane. The relation
to spherical harmonics is x =

p
2p/3(Y1�1 � Y11) and

y = i
p

2p/3(Y1�1 + Y11) and therefore a1�1 = �a�
11 =

p
2p/3(dx + idy). Note that the third component of n

perpendicular to the equatorial plane is proportional to
Y10, which is not accessible by this data-driven method
as explained in section 3. The dipole (21) automatically
satisfies the normalisation condition Âa dIa = 0.

With this ansatz for the relative intensity, the maxi-
mum likelihood solution (d?

x, d?
y , N ?, A?) for a d?

x � 1
and d?

y � 1 is given by Eqs. (19) and (20) together with
the simple matrix equation (see Appendix A for details)

Â
ti

nti

✓
x2

ti xtiyti
xtiyti y2

ti

◆ ✓
d?

x
d?

y

◆

' Â
ti

✓
(nti � N ?

t A?
i )xti

(nti � N ?
t A?

i )yti

◆
. (22)

Here, we again make use of the notation xti ⌘

x(R(tt)n0(Wi)), etc. As before, the non-linear system of
equations (19), (20), and (22) can only be solved via an it-
erative reconstruction method outlined in Appendix A.

Another advantage of the likelihood-based dipole
reconstruction method is the simplicity of estimating
the significance of the observation. The maximum-
likelihood ratio between the best-fit dipole anisotropy
and the null hypothesis, I = 1, defines the maximum-
likelihood test statistic

l = 2 ln
L(n|d?

x, d?
y , N ?

t , A?
i )

L(n|0, 0, N (0)
t , A(0)

i )
. (23)

According to Wilks (1938), data following the null hy-
pothesis has a distribution in l that follows a two-
dimensional �2-distribution. The p-value of the ob-
served data, i.e., the probability of a false positive iden-
tification of the dipole anisotropy, is simply given by
p = e�l/2.
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FIG. 1.— Arrival time of events with E > 8 EeV in terms of modified
Julian days (top) and sideral time (bottom). The horizontal thin line in
the lower plot indicates the mean number of events per 20min.

We can also use the maximum likelihood (15) to es-
timate the parameter uncertainties, sx/y, of the dipole
amplitudes d?

x/y. The derivation for the covariance ma-
trix for general `max is discussed in Appendix B. For
the case of the dipole anisotropy it can be well approxi-
mated as

s�2
x ' Â

ti
nti(xti)

2
� Â

t

(N ?
t )2

Âi nti

✓
Â

j
A

?
j xt j

◆2
, (24)

with an analogous equation for the uncertainty sy of
the second component dy. The first term of expres-
sion (24) is approximately Ntot/2, where Ntot is the to-
tal event number. This corresponds to the naive first
order approximation

p
2/Ntot of the uncertainty. How-

ever, the second term increases the error in the dipole
reconstruction. It is accounting for the fact that the sta-
tistical power of the data is also used to separately deter-
mine the background rate. As we will see in the follow-
ing, this will lead to a weaker significance of the Auger
dipole reconstruction compared to the original analysis
in Aab et al. (2017).

5. ANALYSIS OF AUGER DATA

We will now apply the previously discussed methods
to the Auger data at energies above 8 EeV. The Pierre
Auger Observatory (Aab et al. 2015) is located near the
city of Malargüe, Argentina, at a geographic latitude of
F ' 35.2�S and longitude � ' 69.5�W. The 32187 cos-
mic ray events used in this analysis has been recorded

example: Auger data > 8 EeV
[MA’18]
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• data has strong time dependence 
• detector deployment/

maintenance 
• atmospheric conditions (day/

night, seasons) 
• power outages, etc. 

• local anisotropy of detector: 
• non-uniform geometry 

• two analysis strategies: 
• Monte-Carlo & monitoring 

(systematic limited) 
• data-driven LH methods 

(statistics limited)

Example: Auger data > 8 EeV

[Pierre Auger Observatory'17; MA'18]
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• Strong time variation of CR background level can be compensated by 
differential methods. 

• East-West asymmetry: 

• For instance, Auger data > 8EeV: 

34

East-West MethodData-Driven: East-West Method

• Strong time variation of cosmic ray background level can be compensated by
di↵erential methods. [e.g. Bonino et al.’11]

• East-West asymmetry:

AEW(t) ⌘
NE(t) � NW(t)
NE(t) + NW(t)

' Da
∂

∂a
dI(a, 0)

| {z }
if dipole!

+ const| {z }
local asym.

• For instance, Auger data > 8 EeV:
Auger E > 8 EeV
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• best-fit dipole from EW method: d? = (8.2 ± 1.4)% and ad = 135� ± 10�
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AEW(t) ≡
NE(t) − NW(t)
NE(t) + NW(t)

≃ Δα
∂

∂α
δI(α,0)

assuming dipole!

+ const
⏟

local asym.

[e.g. Bonino et al.'11]
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Likelihood Reconstruction
• East-West method introduces cross-talk between higher multipoles, 

regardless of the field of view. 
• Alternatively, data can be analyzed to simultaneously reconstruct: 

• relative acceptance  (in local coordinates) 

• relative intensity  (in equatorial coordinates) 

• background rate  (in sidereal time) 

• expected number of CRs in sidereal time bin  and local "pixel" : 

• reconstruction likelihood: 

• Maximum LH can be reconstructed by iterative methods.

𝒜(φ, θ)
ℐ(α, δ)
𝒩(t)

τ i

μτi = μ(ℐτi, 𝒩τ, 𝒜i)

ℒ(n |ℐ, 𝒩, 𝒜) = ∏
τi

1
nτi!

(μτi)nτie−μτi

[MA et al.'15]
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Iterative Method
• Expected number of events: 

• Maximum LH values can be solved implicitly: 

• Start from  and progressively iterate steps (a), (b) & (c). ̂I𝔞 = const

μτi = ℐτi𝒩τ𝒜i

̂I𝔞 = ∑
τ

nτ𝔞/ ∑
κ

�̂�κ𝔞�̂�κ

[MA et al.'15]

�̂�τ = ∑
i

nτi/ ∑
j

�̂�j
̂Iτj

�̂�i = ∑
τ

nτi/ ∑
κ

�̂�κ
̂Iκi

(a)

(b)

(c) (  : pixel in local map)i

(  : sidereal bin)τ

(  : pixel EQ map)𝔞
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Likelihood Reconstruction
Data-Driven: Likelihood Reconstructions

Equatorial

60�120�180�300� 240�

60�

30�

�30�

�60�

anisotropy (E > 8 EeV, 45� smoothing)

-0.059 0.059

[MA’18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.
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Auger_anisotropy_2017.ipynb
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Likelihood Reconstruction
Data-Driven: Likelihood Reconstructions

Equatorial

60�120�180�300� 240�

60�

30�

�30�

�60�

pre-trial significance (E > 8 EeV, 45� smoothing, smax = 4.86)

-5 5

[MA’18]

Method can also be applied to high-energy data beyond the knee, e.g. Auger.
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Auger_anisotropy_2017.ipynb
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Maximum-Log-Likelihood Ratio
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Wilks Theorem (1938)

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

(. . . )

bonus exercise: Try to find this publication online.

Markus Ahlers (NBI, Copenhagen) Statistical Hypothesis Tests March 3, 2020 slide 17

[Wilks, Annals Math.Statist. 9 (1938) 1]
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• Prerequisites: 

• Let  be data that follows a probability function . 

• Unconstrained likelihood  has maximum at . 

• True hypothesis is  with . 

• Constrained likelihood  has maximum 

at . 

• For a large number of samples , the distribution of the test statistic: 

approaches a  distribution with  in the limit of large .

x f(x |θ1, …, θn)

ℒ(θ1, …, θn |x) ̂θ1, …, ̂θn

θ(0)
1 , …, θ(0)

m m < n

ℒ(θ(0)
1 , …, θ(0)

m , θm+1, …, θn |x)
̂θ′ m+1, …, ̂θ′ n

x

χ2
k k = n − m Ntot

λ(x) ≡ − 2 ln
ℒ(θ(0)

1 , …, θ(0)
m , ̂θ′ m+1, …, ̂θ′ n |x)

ℒ( ̂θ1, …, ̂θn |x)
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• Definition of the  distribution: 

• degrees of freedom in our example: 

• integral over  distribution is related to the integrated probability of a           
-variate normal distribution:

χ2
k

χ2
k

k

χ2
k =

xk/2−1e−x/2

2k/2Γ(k/2)

k = 2 − 1 = 1

∫
λobs

dλ χ2
k (λ) = ∫

rTΣ−1r>λobs

dr1…drk
1

(2π)k det Σ
exp(−rTΣ−1r/2)
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α = ∫
λobs

dλ χ2
1(λ) = 1 − erf( λobs/2)

39. Statistics 29

where erf is the Gaussian error function, which is rewritten in the final equality using
Φ, the Gaussian cumulative distribution. Fig. 39.4 shows a δ = 1.64σ confidence interval
unshaded. The choice δ = σ gives an interval called the standard error which has
1− α = 68.27% if σ is known. Values of α for other frequently used choices of δ are given
in Table 39.1.

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 39.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a Gaussian-distributed measurement of a single quantity. Integrated probabilities,
defined by α = 0.1, are as shown.

Table 39.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 39.1.

The relation (39.70) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (39.71)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be seen as the n = 1 curve in
Fig. 39.1 or obtained by using the ROOT function TMath::Prob.

June 5, 2018 19:58
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• For large  we can apply Wilks' theorem and calculate the "p-value" of 
an observed excess: 

• From signal simulations ( , ), we can determine the 
median test statistic and corresponding significance level, e.g.: 

•          Wilks' theorem:   

•        Wilks' theorem:   

• The  discovery threshold corresponds to  events.

Ntot

μbg = 1000 Nbins = 100

μsig = 100 → λmed ≃ 9.8 → pmed ≃ 0.0017

μsig = 200 → λmed ≃ 38.0 → pmed ≃ 7.1 × 10−10

5σ μsig ≃ 162

p =
∞

∫
λobs

dλ χ2
k (λ) = 1 − erf( λobs/2)
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• discovery potential: 

Level of  such that  of samples have a chance probability of less 

than  to be generated by background only. 

• This is a challenge for brute-force background simulation – you need 
 for accuracy! 

• Wilks' theorem allows to extrapolate the background distribution much 
simpler: 

Level of  such that  of samples have              

. 

μsig 50 %
5.7 × 10−7

Nsamples ≫ 107

μsig 50 %
λ ≥ λthreshold = 52 = 25
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ABSTRACT 
The current procedures for analyzing results of y-ray astronomy experiments are examined 

critically. We propose two formulae to estimate the significance of positive observations in 
searching y-ray sources or lines. The correctness of the formulae are tested by Monte Carlo 
simulations. 
Subject headings: gamma-rays: general — numerical methods 

I. INTRODUCTION 
Evaluation of the statistical reliability of positive results in searching discrete y-ray sources or lines is an important 

problem in y-ray astronomy. Since both the signal-to-background ratio and detector sensitivity are generally limited 
in this energy range, one must carefully analyze the observed data to determine the confidence level of a candidate 
source or line, that is, the probability that the count rate excess is due to a genuine source or line rather than to 
a spurious background fluctuation, even though all systematic effects are believed to have been removed. 

Figure 1 shows a typical observation in y-ray astronomy. A photon detector points in the direction of a suspected 
source for a certain time ton and counts Non photons, and then it turns for background measurement for a time 
interval ioff and counts No{{ photons. The quantity a is the ratio of the on-source time to the off-source time, 
a = ion/i0ff (in some cases of searching for lines, Non is the number of counts under a peak in an energy spectrum, 
and the peak is taken to be ns channels wide; Nof{ is the number of counts in nb channels adjacent to the peak; 
then a = ns/nb). Then we can estimate the number of background photons included in the on-source counts Non: 

ÑB = aNoff. (1) 
The observed signal, the probable number of photons contributed by the source, is 

Ns — Non — ÑB = Non — otNo{{. (2) 
For a positive observation of an emission source, the excess counts Non — NB may have been caused only by a 
statistical fluctuation in the background rate. That the background is not known exactly in a y-ray astronomy 
experiment generally and can be inferred only from the limited background counts is a basic difficulty in evaluating 
the statistical reliability of an observational result. 

There have been various procedures adopted by different experimenters to estimate statistical reliability. The 
significances of the published positive results have often been overestimated by the observers because of the 
incorrectness of their methods of analysis. Hearn (1969) has suggested a relative likelihood method for consistent 
analysis of y-ray astronomy experiments. O’Mongâin (1973) applied this approach to the early observations of 
high-energy y-ray sources and found that a very large number of reported y-ray sources could reasonably be 
explained as background fluctuations. Cherry et al (1980) improved the evaluation of relative likelihood and 
used it to reanalyze the reported y-ray lines with similar results. But from the point of view of mathematical 
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On general condition the maximum likelihood estimates of <VB> and (Ns) can be computed by equations (1) and (2), 
respectively; they are <VB) = ÑB = aVoff and <VS) = Ns — Non — olNo{{. On the other hand, if null hypothesis is 
true, or <VS) = 0, the conditional maximum likelihood estimate of <VB) should be computed by equation (7); that is, 
(ÑBy = [a/(l + a)](Von + A/off). Then we can express the likelihood functions as follows: 

L(X\E0ifc) = Pr 
a 

= Pr 

Non, Nof{\(Nsy = 0, <ATb) = (Non + No{{) 

Non\<N0n>=T^raL(Non + No[[) 

lNon INon'\ exp 

+ a 

Pr 

1 + a 

x exp 

(Non + No{{) 

1 

^off|<^off>=ï— (^on + ^off) 

1 
1 + a (Kn + No{{) 1 + a (Non + Nof() 

IVoff 
'JVoff! 

(Non + N0ff) 1 +a 
L(X\Ê, f) = Pr(Non, Noi(\(Ns) = Noa - aNofi, <NB) = aNo{{) 

= Pr(Non\(Non} = NjPr(Noíí\<Noíí> = N0[f) 
XfHon K[No({ 

"" exp ( — Non) —~ exp ( - No{f) ; 
M off Í N 1 i^on* 

and the maximum likelihood ratio 
WCjEoJj Â = l(x\e, T) 

« ¡Non + N0ÍA |*°» [_1_ ÍNon + NofA 
1+4 TVon )\ [l + a \ iVoff ) 

Noff 
(14) 

In this case only one parameter, <iVs), is involved in null hypothesis; thus r = 1. According to the theorem above, if 
the null hypothesis is true and both Non and N0{f are not too few, —2 In A will approximately follow a x2 distribution 
with 1 degree of freedom: 

-2\nA~x2(i), or ,/-2 In A ~ *(1). (15) 
As we know, if w is a standard normal variable, then u2 will follow a x2 distribution with 1 degree of freedom: 

^(i), or |h|~x(1). (16) 
Comparing equation (15) with equation (16), we can see that if the null hypothesis (Nsy = 0 is true, in other words, 

if all counts come from the background, the variable ( — 2 In 2)1/2 will be equivalent to the absolute value of a 
standard normal variable; hence, we can directly take the value of ( — 2 In 2)1/2 as the significance of the observed 
result 

+ AU ln (1 + a) / AU \ 
\Non + AU/ 

1/2 
(17) 

If an event (Non, AU) was obtained by a single observation where Non and No{{ are not too few, and the value 
of the significance of this event evaluated by equation (17) (or by eq. [9]) is 5, then one can say that an 
“5 standard deviation event” has been observed. In the case that only emission sources or lines are interesting, that 
is, just the case of ATS > 0 is considered (or for an absorption case, Ns < 0), the significance level of the event, 
or the probability that an event with a significance which is not less than S is produced by background, denoted 
by p, can be evaluated by the Gaussian probability 

p = N(u = S;0, 1), (18) 

where N(u; 0, 1) is the standard normal distribution function, that is, the distribution function of the normal 
variable u with zero mean and unit variance. Then the probability that a real source exists, that is, the confidence 
level, denoted by £, is 

£=l-p. (19) 

The confidence level for an event obtained from many observations will be discussed in § V. 
In the relative likelihood method used by Hearn (1969), O’Mongain (1973), and Cherry et al. (1980), the confidence 

level of a single observation is evaluated by 

£=1-A', (20) 
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Non → x1

α−1 → Nbins − 1

Noff → Ntot − x1

[Li & Ma, ApJ 272 (1983) 317]


