

Neutrino Astronomy: Physics, Status & Outlook Part II Markus Ahlers Niels Bohr Institute Georges Lemaître Chair 2023

(* 172) **(* 1**72)

Extragalactic Populations

Populations of extragalactic neutrino sources visible as **individual sources** and by **combined isotropic emission.**

The relative contribution can be parametrized (*to first order*) by the average **local source density** $\rho_{\rm eff}$ and

source luminosity L_{ν}

"Observable Universe" with far (faint) and near (bright) sources.

Hubble-Lemaître horizon

Point Source vs. Diffuse Flux

[Murase & Waxman'16; Ackermann *et al.'19*]

Rare sources - blazars, high-luminosity GRBs or jetted TDEs - can not be the dominant sources of TeV-PeV neutrino emission (magenta band).

Gamma-Ray Bursts

High-energy neutrino emission is predicted by cosmic ray interactions with radiation at various stages of the GRB evolution.

Markus Ahlers (NBI)

GRB Neutrino Limits

• IceCube routinely follows up on γ -ray bursts.

[IceCube, ApJ 843 (2017) 2]

[Waxman & Bahcall '97]

- Search is most sensitive to "prompt" (<100s) neutrino emission.
- Contribution to diffuse flux below 1% for "prompt" phase and below 27% for neutrino emission within 3h.
 [IceCube, ApJ 939 (2022) 2]

GRB 221009A - The "BOAT"

GRB seen by Fermi-LAT over 10h

Neutrino Upper Limits from IceCube

[γ-ray observations by Fermi **ApJL** 952 (2023) & LHAASO **Science** 9 (2023)]

- "Brightest-Of-All-Time" GRB 221009A $(D_L \simeq 740 \text{ Mpc but } E_{iso} \simeq 10^{55} \text{erg})$
- MM observations in ApJL focus issue
- broadband limits on ν 's: 10MeV 1PeV

"Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory" [IceCube ApJL 946 (2023)] [IceCube PoS-ICRC2023-1511]

GRB 221009A - The "BOAT"

Predicted neutrino spectra for internal shock model (left) and ICMART (right)

[Bahcall & Waxman'99; Zhang & Yan'11; Hummer, Baerwald & Winter'11; MA, Gonzalez-Garcia & Halzen'11]

- "Brightest-Of-All-Time" GRB 221009A $(D_L \simeq 740 \text{ Mpc but } E_{iso} \simeq 10^{55} \text{erg})$
- MM observations in ApJL focus issue
- broadband limits on ν 's: 10MeV 1PeV

"Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory" [IceCube ApJL 946 (2023)] [IceCube PoS-ICRC2023-1511]

GRB 221009A - The "BOAT"

Predicted neutrino spectra for internal shock model (left) and ICMART (right)

[IceCube PoS-ICRC2023-1511; Murase, Mukhopadhyay, Kheirandish, Kimura & Fang, ApJL 941 (2022) 1]

- "Brightest-Of-All-Time" GRB 221009A $(D_L \simeq 740 \text{ Mpc but } E_{iso} \simeq 10^{55} \text{erg})$
- MM observations in ApJL focus issue
- broadband limits on ν 's: 10MeV 1PeV

"Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory" [IceCube ApJL 946 (2023)] [IceCube PoS-ICRC2023-1511]

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Hadronic Gamma-Rays

EM cascades from interactions in cosmic radiation backgrounds:

$$\gamma + \gamma_{\rm bg} \rightarrow e^+ + e^- \quad (PP)$$

 $e^{\pm} + \gamma_{\rm bg} \rightarrow e^{\pm} + \gamma \quad (ICS)$

Markus Ahlers (NBI)

Hadronic Gamma-Rays

Neutrino production via cosmic ray interactions with gas (pp) or radiation (p γ) saturate the isotropic diffuse gamma-ray background.

[see also Murase, MA & Lacki'13; Tamborra, Ando & Murase'14; Ando, Tamborra & Zandanel'15] [Bechtol, MA, Ajello, Di Mauro & Vandenbrouke'15; Palladino, Fedynitch, Rasmussen & Taylor'19]

Markus Ahlers (NBI)

Isotropic Diffuse γ-ray Background

• There is little room in the isotropic diffuse γ -ray background (IGRB) for "extra" γ -ray contributions.

IGRB composition with MW SF model

Hidden Sources?

Efficient production of 10 TeV neutrinos in pγ scenarios require sources with **strong X-ray backgrounds** (e.g. AGN core models).

High pion production efficiency implies
strong internal γ-ray
absorption in Fermi-LAT energy range:

$$\tau_{\gamma\gamma} \simeq 1000 f_{p\gamma}$$

[Guetta, MA & Murase'16]

Excess from NGC 1068

Northern hot spot in the vicinity of Seyfert II galaxy NGC 1068 has now a significance of 4.2σ (trial-corrected for 110 sources).

Inoue et al $\nu_{\mu} + \bar{\nu}_{\mu}$

 10^{-12}

[IceCube, PRL 124 (2020) 5 (2.9σ post-trial); Science 378 (2022) 6619 (4.2σ post-trial)]

 10^{-15}

 10^{-9}

 10^{-10}

 10^{-11}

 10^{-12}

 10^{-13}

 10^{-14}

 s^{-1}

 $E^2 \phi ~[{\rm TeV}~{\rm cm}^{-2}]$

Multi-Messenger Interfaces

The high intensity of the neutrino flux compared to that of γ -rays and cosmic rays offers many interesting multi-messenger interfaces.

Waxman-Bahcall Limit

• UHE CR proton emission rate density:

[e.g. MA & Halzen'12]

$$[E_p^2 Q_p(E_p)]_{10^{19.5} \text{eV}} \simeq 8 \times 10^{43} \text{erg Mpc}^{-3} \text{ yr}^{-1}$$

• Neutrino flux can be estimated as (ξ_z : redshift evolution factor) :

$$E_{\nu}^{2}\phi_{\nu}(E_{\nu}) \simeq f_{\pi} \frac{\xi_{z}K_{\pi}}{1+K_{\pi}} \underbrace{\frac{1.5 \times 10^{-8} \text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}}_{\text{IceCube diffuse level}}$$

- Limited by pion production efficiency: $f_{\pi} \lesssim 1$ [Waxman & Bahcall'98]
- Similar UHE nucleon emission rate density (local minimum at $\Gamma \simeq 2.04$) :

$$[E_N^2 Q_N(E_N)]_{10^{19.5} \text{eV}} \simeq 2.2 \times 10^{43} \text{erg Mpc}^{-3} \text{ yr}^{-1}$$

[Auger'16; see also Jiang, Zhang & Murase'20]

• **Competition** between pion production efficiency (*dense target*) and CR acceleration efficiency (*thin target*).

Cosmic Ray Calorimeters

- Competing requirements for efficient CR acceleration and subsequent interaction can be accommodated in **multi-zone models**.
- Magnetic confinement in CR calorimeters, such as **starburst galaxies**, could provide a unified origin of UHE CRs and TeV–PeV neutrinos.

[Loeb & Waxman '06]

• "*Grand Unification*" of UHE CRs, γ -rays and neutrinos?

Markus Ahlers (NBI)

Starburst Galaxies

- High rate of star formation and SN explosions enhances (UHE) CR production.
- Low-energy cosmic rays remain magnetically confined and eventually collide in dense environment.
- In time, efficient conversion of CR energy density into γ-rays and neutrinos. [Loeb & Waxman '06]
- Power-law neutrino spectra with high-energy softening from CR leakage and/or acceleration.

[Romero & Torres'03; Liu, Wang, Inoue, Crocker & Aharonian'14; Tamborra, Ando & Murase'14][Palladino, Fedynitch, Rasmussen & Taylor'19; Peretti, Blasi, Aharonian, Morlino & Cristofari'19][Ambrosone, Chianese, Fiorillo, Marinelli, Miele & Pisanti'20]

Markus Ahlers (NBI)

GZK Cutoff

- UHE CR spectrum expected to show *GZK cutoff* due to interactions with cosmic microwave background. [Greisen & Zatsepin'66; Kuzmin'66]
- resonant interactions $p + \gamma_{\rm CMB} \rightarrow \Delta^+ \rightarrow X$ lead to $E_{\rm GZK} \simeq 40$ EeV
- UHE CR propagation limited to less than about 200 Mpc.

Markus Ahlers (NBI)

Composition of UHE CRs is uncertain; depends on details of CR interactions in atmosphere.

Cosmogenic Neutrinos

- Cosmogenic (GZK) neutrinos produced in UHE CR interactions peak in the EeV energy range.
- Target of proposed in-ice **Askaryan** (ARA & ARIANNA), air shower **Cherenkov** (GRAND) or **fluorescence** (POEMMA & Trinity) detectors.
- Optimistic predictions based on high proton fraction and high maximal energies.
- Absolute flux level serves as independent measure of UHE CR composition beyond 40EeV.

[IceCube-Gen2 Technical Design Report]

Outlook: Baikal-GVD

- GVD Phase 1: 8 clusters with 8 strings each were completed in 2021
- status March 2024: 11(+1) clusters
- final goal: 27 clusters ($\sim 1.4 \text{ km}^3$)

Outlook: KM3NeT/ARCA

- **ARCA :** 2 building blocks of 115 detection units (DUs)
- status March 2024: 28 (ARCA) DUs
- **ORCA** : optimized for low-energy (GeV) and oscillation analyses

- Improved angular resolution for water Cherenkov emission.
- 5σ discovery of **diffuse flux** with full ARCA within one year
- Complementary field of view ideal for the study of point sources.

Markus Ahlers (NBI)

Outlook: RNO-G

- Detection principle of **ANITA**, **ARA & ARIANNA** (Antarctica)
- Under construction: Radio Neutrino Observatory-Greenland (RNO-G)
- status March 2024: 7 of 35 stations deployed

Askaryan effect:

Neutrino emission above 10 PeV can be observed via **coherent radio emission of showers** in radio-transparent media.

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

- 7 new strings in the DeepCore region (~20m inter-string spacing)
- New sensor designs, optimized for ease of deployment, light sensitivity & effective area
- New calibration devices,
 - incorporating les decade of IceCuł efforts
- In parallel, IceTo enhancements (s radio antennas) fe
- Aim: deploymen[•]

Markus Ahlers (NBI)

Outlook: IceCube Upgrade

IceCube Work in Progress

- Precision measurement of atmospheric neutrino oscillations and tau neutrino appearance
- **Improved energy and angular** reconstructions of IceCube data

DeepCore 3 yr (1 σ)

IceCube Upgrade 1 yr sensitivity (1 σ)

OPERA (1σ)

SuperK (1 σ)

Vision: GRAND

Vision: TRIDENT

- Multi-component facility (low- and high-energy & multi-messenger)
- In-ice optical Cherenkov array with 120 strings and 240m spacing
- Surface array (scintillators & radio antennas) for PeV-EeV CRs & veto
- Askaryan radio array for >10PeV neutrino detection

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

Markus Ahlers (NBI)

Markus Ahlers (NBI)

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]

0

Vision: TeeCube-Gen2

[IceCube-Gen2 Technical Design Report: icecube-gen2.wisc.edu/science/publications/tdr/]