

Neutrino Astronomy: Physics, Status & Outlook Part I Markus Ahlers Niels Bohr Institute Georges Lemaître Chair 2023

(* 12) **(* 1**2)

The Elusive Neutrino

three neutrino flavours

- very small masses (unknown origin)
- large mixing between flavour and mass states (unknown mechanism)
- 2nd most abundant particle in the Universe (impact on cosmology)
- unique probe of high-energy astrophysics

Standard Model of Particle Physics

(+ Higgs boson)

Neutrino Astronomy

Unique abilities of **cosmic neutrinos**:

no deflection in magnetic fields (unlike cosmic rays)

coincident with photons and gravitational waves

no absorption in cosmic backgrounds (unlike gamma-rays)

smoking-gun of unknown sources of cosmic rays

BUT, very difficult to detect!

Markus Ahlers (NBI)

Multi-Messenger Interfaces

Acceleration of **cosmic rays** (CRs) especially in the aftermath of cataclysmic events, sometimes visible in **gravitational waves** (GW).

Secondary **neutrinos** and **gamma-rays** from pion decays:

$$\begin{array}{ccc} \pi^+ \rightarrow \mu^+ + \nu_\mu & \pi^0 \rightarrow \gamma + \gamma \\ & & \downarrow \quad e^+ + \nu_e + \overline{\nu}_\mu \end{array}$$

Markus Ahlers (NBI)

Pion Production Efficiency

- pion production depend on **target opacity** $\tau = \ell \sigma n$
- "bolometric" **pion production efficiency** (with inelasticity κ):

$$f_{\pi} = 1 - e^{-\kappa\tau}$$

- inelasticity per pion: $\kappa_{\pi} = \kappa / \langle N_{\pi} \rangle \simeq 0.17 0.2$
- "bolometric" relation of the production rates Q:

$$E_{\pi}^2 Q_{\pi^{\pm}} \simeq \frac{\langle N_{\pi^{\pm}} \rangle}{\langle N_{\pi^0} \rangle + \langle N_{\pi^{\pm}} \rangle} \left[f_{\pi} E_N^2 Q_N(E_N) \right]_{E_N = E_{\pi}/\kappa_{\pi^{\pm}}}$$

• with charged-to-neutral pion ratio K_{π} :

$$E_{\pi}^{2}Q_{\pi^{\pm}} \simeq \frac{K_{\pi}}{1+K_{\pi}} \left[f_{\pi}E_{N}^{2}Q_{N}(E_{N}) \right]_{E_{N}=E_{\pi}/\kappa_{\pi}} \qquad K_{\pi} = \frac{\langle N_{\pi^{\pm}} \rangle}{\langle N_{\pi^{0}} \rangle} = \begin{cases} 2 & \text{pp} \\ 1 & \text{p} \gamma \end{cases}$$

Sidenote: Clebsch-Gordan

Note: A square-root sign is to be understood over *every* coefficient, *e.g.*, for -8/15 read $-\sqrt{8/15}$.

- For Δ^+ resonance: $|j_1, j_2, J, M\rangle = |1, 1/2, 3/2, 1/2\rangle$
 - coefficient for $|j_1, j_2, m_1, m_2\rangle = |1, 1/2, 0, 1/2\rangle : Br(p + \pi^0) = 2/3$
 - coefficient for $|j_1, j_2, m_1, m_2\rangle = |1, 1/2, 1, -1/2\rangle : Br(n + \pi^+) = 1/3$

Average Energies

• Average energy fraction of pions from CR nucleons:

$$\langle x_{\pi} \rangle = \kappa_{\pi} \simeq 20 \%$$

• Average energy fraction from relativistic pions $(r_{\pi} = (m_{\mu}/m_{\pi})^2)$

$$\langle x_{\nu_{\mu}} \rangle = \frac{1 - r_{\pi}}{2} \simeq 21 \%$$

$$\langle x_{\overline{\nu}_{\mu}} \rangle = \frac{3 + 4r_{\pi}}{20} \simeq 26 \%$$

$$\langle x_{\nu_{e}} \rangle = \frac{2 + r_{\pi}}{10} \simeq 26 \%$$

• Approximately:

[e.g. Lipari, Lusignoli & Meloni '07]

Markus Ahlers (NBI)

Georges Lemaître Chair 2023

 $\langle E_{\nu} \rangle \simeq \frac{1}{2} \langle E_{\gamma} \rangle \simeq \frac{1}{20} E_{\rm N}$

Neutrinos in the Standard Model

Neutrinos are part of weak isospin doublets and anti-doublets:

$$\begin{pmatrix} \nu_e \\ e^- \end{pmatrix}_L \quad \begin{pmatrix} \nu_\mu \\ \mu^- \end{pmatrix}_L \quad \begin{pmatrix} \nu_\tau \\ \tau^- \end{pmatrix}_L \quad \begin{pmatrix} e^+ \\ \overline{\nu}_e \end{pmatrix}_R \quad \begin{pmatrix} \mu^+ \\ \overline{\nu}_\mu \end{pmatrix}_R \quad \begin{pmatrix} \tau^+ \\ \overline{\nu}_\tau \end{pmatrix}_R$$

Participate in charged (W) and neutral (Z) current interactions:

Neutrino Interactions

- Low-energy (<10GeV) neutrino interaction with matter in coherent, quasi-elastic or resonant interactions.
- High-energy neutrinos interact with nuclei via deep inelastic scattering.

Neutrino Astronomy

Neutrino charged and neutral current (CC & NC) interactions are visible by Cherenkov emission of relativistic secondaries in transparent media.

minimum detector size: 1km³

Optical Cherenkov Telescopes

Optical Cherenkov Signals

IceCube Observatory

- Giga-ton optical Cherenkov telescope at the South Pole
- IceCube Array Collaboration of about 300 scientists at more than 50 international institutions
 - 60 digital optical modules (DOMs) attached to strings
 - 86 IceCube strings
 instrumenting 1 km³ of clear
 glacial ice
 - 81 IceTop stations for cosmic ray shower detections

Neutrino Selection I

Neutrino Selection II

- Outer layer of optical modules used as virtual veto region.
- Atmospheric muons pass through veto from above.
- Atmospheric neutrinos coincidence with atmospheric muons.
- **Cosmic neutrino** events can start inside the fiducial volume.
- High-Energy Starting Event (HESE) analysis

High-Energy Neutrinos

First observation of high-energy astrophysical neutrinos by IceCube in 2013.

"track event" (e.g. ν_{μ} CC interactions)

"cascade event" (*e.g.* NC interactions)

Diffuse TeV-PeV Neutrinos

Isotropic Diffuse Flux

Isotropic Diffuse Flux

[ANTARES, PoS (ICRC2019) 891 & PoS (ICRC2021) 1121; Baikal-GVD, arXiv:2210.01650]

- Independent probe of diffuse flux by Baikal-GVD and KM3NeT.
- Complementary field of view allows to decipher anisotropies, e.g. by Galactic diffuse emission.

Neutrino Mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\frac{\alpha_1}{2}} & 0 & 0 \\ 0 & e^{i\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

"atmospheric" CP Dirac phase "solar" CP Majorana mixing phases

flavour transition probability (in vacuum):

$$P_{\nu_{\alpha} \to \nu_{\beta}}(\mathscr{C}) = \sum_{i=1}^{3} \sum_{j=1}^{3} U_{\alpha i} U^*_{\beta i} U^*_{\alpha j} U_{\beta j} \exp\left(i\frac{\Delta m_{ij}^2 \mathscr{C}}{2E_{\nu}}\right)$$

notation: $c_{ij} \equiv \cos \theta_{ij} \& s_{ij} \equiv \sin \theta_{ij} \& \Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

Cosmic neutrinos visible via their oscillation-averaged flavour.

[IceCube, arXiv:2011.03561]

tau neutrino candidate

- Tau neutrino charged current interactions can produce delayed hadronic cascades from tau decays.
- Arrival time of Cherenkov photons is visible in individual DOMs.

Markus Ahlers (NBI)

Very-High Energy Cosmic Rays

Status of Neutrino Astronomy

No significant steady or transient emission from known Galactic or extragalactic high-energy sources, but **several interesting candidates.**

Status of Neutrino Astronomy

- High neutrino intensity compared to other cosmic backgrounds.
- Open questions:
 - ★ origin?
 - ★ spectral features?
 - * consistent MM emission?
- Some strong indications for individual sources:
 - ★ blazar TXS 0506+056
 - ★ Seyfert II galaxy NGC 1068
 - ★ Galactic plane
- Many interesting (but weak) correlations with other candidate sources.

Markus Ahlers (NBI)

Galactic Cosmic Rays

 Standard paradigm: Galactic CRs accelerated in supernova remnants

[Baade & Zwicky'34] [Ginzburg & Sirovatskii'64]

diffusive shock acceleration:

 $n_{\rm CR} \propto E^{-\Gamma}$

 rigidity-dependent escape from Galaxy:

$$n_{\rm CR} \propto E^{-\Gamma - \delta}$$

• Interaction of CRs with interstellar medium creates hadronic $\gamma \& \nu$ emission.

Gamma-Ray vs. Neutrinos

• neutrino emission from charged pion decay:

$$\frac{1}{3} \sum_{\alpha} E_{\nu} Q_{\nu_{\alpha}}(E_{\nu}) \simeq \left[E_{\pi} Q_{\pi^{\pm}}(E_{\pi}) \right]_{E_{\pi} \simeq 4E_{\nu}}$$

$$\pi^+ \to \mu^+ + \nu_\mu$$
$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu$$

• γ -ray emission from neutral pion decay:

$$\frac{1}{2} E_{\gamma} Q_{\gamma}(E_{\nu}) \simeq \left[E_{\pi} Q_{\pi^0}(E_{\pi}) \right]_{E_{\pi} \simeq 2E_{\gamma}}$$

• **intrinsic relation** between neutrino and γ -ray emission:

$$\frac{1}{3} \sum_{\alpha} E_{\nu}^2 Q_{\nu_{\alpha}}(E_{\nu}) \simeq \frac{1}{4} K_{\pi} \left[E_{\gamma}^2 Q_{\gamma}(E_{\gamma}) \right]_{E_{\gamma} \simeq 2E_{\nu}}$$

• observable γ -ray emission is attenuated in sources and, in particular, in extragalactic background radiation.

Galactic Neutrino Emission

Galactic diffuse ν emission at 4.5 σ based on template analysis.

[IceCube **Science** 380 (2023)]

Galactic Neutrino Emission

Best-fit normalization of spectra

Templates with different resolution

[IceCube **Science** 380 (2023)]

[templates: Fermi'12; Gaggero, Grasso, Marinelli, Urbano & Valli '15]

Markus Ahlers (NBI)

Point-Source Significance Map

Markus Ahlers (NBI)

Point-Source Significance Map

Markus Ahlers (NBI)

LHAASO Diffuse Emission for the fit ----

LHAASO observes enhanced 0.1-1 PeV diffuse γ-ray emission along Galactic Plane. [LHAASO PRL 131 (2023) 15]

 10^{2}

E (TeV)

 10^{-1}

10⁻⁹

10⁻¹⁰

10⁻¹

 $E^{2.5}Flux (TeV^{1.5} cm^{-2} s^{-1} sr^{-1})$

(a)

γ

 10^{2}

E (TeV)

 10^{3}

10⁻¹¹

[LHAASO PRL 131 (2023) 15]

 10^{1}

 10^{3}

Analysis Sample

Analysis is based on novel cascade event selection and reconstruction using deep neutral networks (DNNcascade).

Markus Ahlers (NBI)

Analysis Sample

Analysis is based on novel cascade event selection and reconstruction using deep neutral networks (DNNcascade).

Template and Catalog Searches

	Flux sensitivity Φ	P value	Best-fitting flux Φ
Diffuse Galactic plane analysis			
π^{0}	5.98	1.26 × 10 ⁻⁶ (4.71σ)	21.8 ^{+5.3} -4.9
KRA^5_γ	0.16 × MF	6.13 × 10 ⁻⁶ (4.37σ)	$0.55^{+0.18}_{-0.15} imes { m MF}$
KRA_{γ}^{50}	0.11 × MF	3.72 × 10 ⁻⁵ (3.96σ)	$0.37^{+0.13}_{-0.11}\times \text{MF}$
Catalog stacking analysis			
SNR		$5.90 \times 10^{-4} (3.24\sigma)^*$	
PWN		$5.93 \times 10^{-4} (3.24\sigma)^*$	
UNID		$3.39 \times 10^{-4} (3.40\sigma)^*$	
	Other analyses		
Fermi bubbles		0.06 (1.52σ)	post-trial p-value
Source list		0.22 (0.77σ)	template search:
Hotspot (north)		0.28 (0.58σ)	4.5σ
Hotspot (south)		0.46 (0.10σ)	

*Significance values that are consistent with the diffuse Galactic plane template search results.

[IceCube Science 380 (2023)]

Galactic Neutrino Populations

azimuthally symmetric distribution following SNRs (Case et al.)

+ modulation with spiral arms

Galactic Neutrino Populations

azimuthally symmetric distribution following SNRs (Case et al.)

Hidden Galactic Sources?

Contribution of neutrino from "freshly" accelerated CRs most likely to dominate at highest observed energy ($\simeq 100$ TeV).

[Ambrosone, Groth, Peretti & MA'23]

Point-Source Sensitivities

[lceCube **Science** 380 (2023)]

Effective Field of View

Markus Ahlers (NBI)

Point-Source Discovery Horizon

[Ambrosone, Groth, Peretti & MA'23]

Point Source vs. Quasi-Diffuse Flux

Populations of galactic neutrino sources visible as individual sources and by the combined isotropic emission. The relative contribution can be parametrized (*to first order*) by the average source surface density Σ_{\odot} and

source luminosity $L_{100\text{TeV}}$

[Ambrosone, Groth, Peretti & MA'23]

Point Source vs. Quasi-Diffuse Flux

sensitivity scaling:
$$\Phi_{\rm DP}(E_{\nu}, \delta, \sigma_{\rm src}) \simeq \sqrt{\frac{\sigma_{\rm PSF}^2 + \sigma_{\rm src}^2}{\sigma_{\rm PSF}^2}} \Phi_{\rm DP}(E_{\nu}, \delta),$$

Multi-Messenger Fits

Contribution of unresolved Galactic sources **improve MM fits**.

[Schwefer, Mertsch & Wiebusch '23; see also Shao, Lin & Yang'23]

Multi-Messenger Fits

LHAASO Diffuse Emission for the fit ----

LHAASO observes enhanced 0.1-1 PeV diffuse γ-ray emission along Galactic Plane. [LHAASO PRL 131 (2023) 15]

 10^{2}

E (TeV)

Markus Ahlers (NBI)

 10^{-1}

10⁻⁹

10⁻¹⁰

10⁻¹

 $E^{2.5}Flux (TeV^{1.5} cm^{-2} s^{-1} sr^{-1})$

(a)

γ

 10^{2}

E (TeV)

Georges Lemaître Chair 2023

 10^{3}

10⁻¹¹

[LHAASO PRL 131 (2023) 15]

 10^{1}

 10^{3}

Cygnus Region

• LHAASO observes extended γ -ray emission from Cygnus region.

[LHAASO, Sci.Bull. 69 (2024) 4 '23]

- Soft spectrum ($\Gamma \simeq 2.7$) with "hot spots" correlated to molecular clouds.
- Emission reaches PeV, indicating CR PeVatron(s) in the central region.