An overview of the CMS high level trigger upgrade for the HL-LHC era

Soham Bhattacharya (DESY, Hamburg)

28th November, 2023

CP3, UC Louvain

The high luminosity LHC (HL-LHC) era

- Significant increase in beam luminosity (intensity)
 - Higher pileup (pp interactions per bunch crossing)
 - Higher particle flux

CMS

- Increased radiation damage (detector ageing)
- New challenges for data acquisition and triggering

		${\cal L}$	$\langle PU \rangle$
Run 4	Baseline	$5\cdot 10^{34}{ m cm^{-2}s^{-1}}$	140
Run 5	Ultimate	$7.5 \cdot 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	200

Redesign to cope with data rate

The CMS trigger system

DESY.

- Two-level trigger system
- Level-1 trigger (L1T)
 - Hardware level
 - Implemented (mostly) using FPGAs
 - 40 MHz \rightarrow 100 kHz (Phase-1)
- High level trigger (HLT)
 - Software level computing farms
 - 100 kHz → 1 kHz (Phase-1)
- HLT path:
 - A sequence of selections (filters) on physics objects (electrons, photons, jets, etc.) that determines whether an event is accepted or not

	LHC	HL-	LHC	
CMS detector	Phase-1	Pha	se-2	
Peak $\langle PU \rangle$	60	140	200	
L1 accept rate (maximum)	100 kHz	500 kHz	750 kHz	
Event Size at HLT input	2.0 MB ^a	6.1 MB	8.4 MB	
Event Network throughput	1.6 Tb/s	24 Tb/s	51 Tb/s	
Event Network buffer (60 s)	12 TB	182 TB	379 TB	
HLT accept rate	1 kHz	5 kHz	7.5 kHz	
HLT computing power ^b	0.7 MHS06	17 MHS06	37 MHS06	
Event Size at HLT output ^c	1.4 MB	4.3 MB	5.9 MB	
Storage throughput ^d	2 GB/s	24 GB/s	51 GB/s	
Storage throughput (Heavy-Ion)	12 GB/s	51 GB/s	51 GB/s	
Storage capacity needed (1 day ^e)	0.2 PB	1.6 PB	3.3 PB	

[HLT TDR]

This talk will focus on the algorithmic developments for Phase-2 HLT

Physics object reconstruction: Tracking

- New tracker for Phase-2
 - OT equipped with p_T modules that produce valid "stubs"

[mm]

- Tracker information (stubs) to be used for L1T
 - Unlike Phase-1
- Run-2 (legacy):
 - Kalman Filter based: iterative procedure
- Need improved (faster) algorithms for Phase-2

Patatrack pixel tracks

- New procedure for reconstructing pixel tracks (IT)
 - Cellular Automaton (CA) based
 - Create graph of all possible connections
 - Form doublets (in parallel)
 - Check compatibility of doublets if they share a hit
 - Highly parallelizable
 - Well suited for GPUs
- Physics performance comparable to legacy (Run-2) algorithm

Line segment tracking (LST)

- New algorithm for reconstructing tracks in the OT
 - Form a line segment (LS) from 2 compatible doublets
 - Link line-segments to form triplets, quintuplets, etc.
- Physics performance comparable to Run-2 algorithm (baseline)
 - LST has better efficiency for displaced tracks
 - Beneficial for long-lived particle search programs

Physics object reconstruction: Electron and photons

A new endcap calorimeter

DESY.

- The endcap calorimeters (electromagnetic and hadronic) get replaced
- New endcap calorimeter for Phase-2
 - High granularity calorimeter (HGCal)
 - Longitudinal segmentation
 - Silicon layers closer to the beam line (high radiation)
 - Scintillator layers further away from the beam line

New clustering for a new calorimeter: TICL

- Clustering hits in layers
 - CLUE algorithm (density-based, parallelizable)
 - Form layer clusters (LC)
- Clustering in 3D
 - CLUE3D: group LCs to form 3D energy blobs (tracksters)
 - TICL: geometrical linking of compatible tracksters to reconstruct the shower
- Final shower classified as electromagnetic/hadronic using a deep neural network (DNN) based classifier
- Good reconstruction efficiency even at high pileup

Electron and photon reconstruction at HLT

Electron/photon performance at HLT

Dedicated regression to correct the energy CMS Boosted decision tree (BDT) based – lightweight and fast Obtains good response and resolution over a wide energy range arbitrary unit 10^{-1} Good performance for electron and photon HLT paths CMS Phase-2 Simulation (14 TeV) CMS Phase-2 Simulation (14 TeV) per electron efficiency efficiency **_** 10^{-3} 0.5 0.8 0.8 photon ۲ ۲ 0.6 0.6 L1+HLT Efficiency L1+HLT Efficiency per HLT DoubleIsoEle23 12 HLT DoubleIsoPho30 23 40<p_<500 GeV 0.4 40<p_<500 GeV 0.4 Z'(ee) M=6 TeV Z'(ee) M=6 TeV lea1. PU=200 lea1. PU=200 leg2, PU=200 lea2. PU=200 0.2 0.2 lea1. PU=140 leg1, PU=140 leg2, PU=140 leg2, PU=140 0 0 2 -2 3 -3 0 -3 -2 0 2 3 genn genn

Physics object reconstruction: Muons

Muon reconstruction at HLT

- Starts from muons reconstructedat the Level-1 trig
- Level-2 (L2) reconstruction:
 - Standalone: only using the muon system
 - Refines the L1 muon trajectory in the muon system
 - Seeds the track reconstruction in the outer layers of OT (for the outside-in tracking)
- Level-3 (L3) reconstruction
 - Combines information from tracker as well as muon system
 - Computationally heavy cannot perform over entire tracker
 - Outside-in: seeded by L2 muons
 - Inside-out: seeded by L1 muon tracks

Muon performance at HLT

- Muon momentum resolution critical for sharp efficiency turn-on
 - Good resolution (low residual) over a large momentum range
- Muon HLT paths show a sharp turn-on

Improvements to muon reconstruction

Outside-in reconstruction Inside-out reconstruction DNN to optimize seed selection BDT to select tracker seeds Significantly reduces processing time Significantly reduces processing time w/o efficiency loss w/o efficiency loss PU 200 /14 To PU 200 (14 TeV PU 200 (14 TeV 1.2 a.u CMS OI (L3)/L1TkMuon efficiency efficiency "> 24 GeV 1.6 CMS CMS 10² Phase-2 Simulation CMS Number of HB+HL seeds = Phase-2 Simulation Phase-2 Simulatio 1.15 Phase-2 Simulation Single L1TkMuon with p₂ > 22 GeV Number of HB+HL seeds = 2 nlimited (average # of hit triplet seeds per event = 317 L1TkMuon p_> 24 GeV 1.1 10 ROI: $\eta \times \phi = 0.07 \times 0.04$ Track fitting mber of HB+HL seeds = 3 OI from I 2 mean time = 31 m Number of HB+HL seeds = 4 reconstruction OI from L1TkMuons, mean time = 21 ms Unlimited (average # of hit triplet seeds per event = 31) .05 Number of HB+HL seeds = 5 from L1TkMuons after Optimization, mean time = 10 ms Maximum # of hit triplet seeds = 100 Number of HB+HL seeds = 6 10 Maximum # of hit triplet seeds = 50 10 Maximum # of hit triplet seeds = 10 0.95 0.8 10 0.9 က 0.6 0.85 10-3 0.4 10 0.8 10 0.2 0.75^t -2 2 10 20 30 60 80 100 120 140 160 180 200 10 Outside-In step Processing Time (ms) 20 60 80 100 120 140 160 180 200 0 40 p₇^{gen} [GeV] processing time [ms]

Physics object reconstruction: Tau leptons

0.4

0.3 -

0.2 -

- 0.1 - 0.2 - 0.3

- 0.4

 $\phi - \phi^{ au_{
m h}}$

Tau reconstruction and identification at HLT

- Hadronic tau decays reconstructed with the hadrons-plus-strips (HPS) algorithm
 - Hadrons: (mostly) charged pions
 - Strips: photons from neutral pion decays form a strip like pattern in the ECAL
 - Select combinations of hadrons and strips that are compatible with tau decay
- Two approaches for identification (against quark/gluon jets)
 - Isolation based
 - Measure energy deposits in a cone around the HPS tau

Applied similarly for inner and outer cell

- DNN based (DeepTau)
 - Use a convolutional neural network (CNN) ~1M trainable parameters

Applied similarly for inner and outer cell

Decay mode	Meson resonance	B[%]
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$		17.8
$\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$		17.4
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5
$\tau^- \rightarrow h^- \pi^0 \nu_{\tau}$	$\rho(770)$	26.0
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_{\tau}$	a ₁ (1260)	9.5
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	a ₁ (1260)	9.8
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$		4.8
Other modes with hadrons		3.2
All modes containing hadrons		64.8

Y

h[±] π^0 : 0.3 < m_{τ_h} < 1.72 $\sqrt{p_T/100 \text{ GeV}}$. The upper limit on the mass window is constrained to be at least 1.72 and at most 4.2 GeV.

h[±] $\pi^0\pi^0$: 0.4 < m_{τ_h} < 1.72 $\sqrt{p_T/100 \text{ GeV}}$. The upper limit on the mass window is constrained to be at least 1.72 and at most 4.0 GeV.

$$\begin{split} \mathbf{h}^{\pm}\mathbf{h}^{\mp}\mathbf{h}^{\pm} &: 0.8 < m_{\tau_{\mathbf{h}}} < 1.6\,\text{GeV}.\\ \mathbf{h}^{\pm}\mathbf{h}^{\mp}\mathbf{h}^{\pm}\pi^{0} &: 0.9 < m_{\tau_{\mathbf{h}}} < 1.6\,\text{GeV}. \end{split}$$

Tau performance at HLT

- Better efficiency turn-on using DeepTau paths
 - Can achieve lower thresholds for the same rate

Physics object reconstruction: Hadronic jets

Hadronic jet reconstruction at HLT

DESY.

- Quarks and gluons hadronize to form collimated beams of particles (jets)
- CLUE+TICL used for clustering energy deposits in the HGCal (endcap)
 - Used in the ParticleFlow (PF) algorithm to identify charged/neutral hadrons, electrons and photons
- PF objects clustered using the anti- k_{T} algorithm with a radius of 0.4 (AK4)
- Overall, good jet finding efficiency and low mistag rate
 - Better in the barrel lower pileup

- Good stability versus pileup
 - Jet energy resolution
 - Jet HLT path efficiencies
 - Single jet
 - Scalar sum of jet transverse momenta (H_T)

B-jet identification at HLT

- Jets from bottom quarks differ from light quarks and gluons
 - B hadron decay produces a secondary vertex
- AK4 jets identfied as b-jets using a DNN (DeepCSV)
 - Combines information from jet constituents and secondary vertices
- Similar approach as Phase-1, but potential gain from precision timing
 - MIP timing detector
 - HGCal
 - ECAL

The simplified HLT menu

- **Current Phase-2 HLT menu is** "simplified"
 - Set of representative paths —
 - Only based on basic physics objects
 - Comprised 50% of total HLT rate in 2018
- Specialized paths to be added

Trigger type	Phase-1 Phase-2		2			
	Threshold			Threshold	Rate at	Rate at
	[GeV]	% rate	L1 seed	[GeV]	$\langle \mathrm{PU} angle = 140 \ \mathrm{[Hz]}$	$\langle \mathrm{PU} angle = 200 \ \mathrm{[Hz]}$
Single μ	50	3%	TkMu_22	50	155 ± 6	213 ± 8
Single μ (isol.)	24	14%	TkMu_22	24	943 ± 32	1111 ± 29
Double μ	37,27	1%	TkMu_15_7	37, 27	27 ± 1	40 ± 1
Double μ (isol.)	17,8	2%	TkMu_15_7	17,8	113 ± 11	143 ± 13
Triple μ	5, 3, 3	0.5%	TkMu_5_3_3	10, 5, 5	39 ± 8	48 ± 8
			StaEG_51 OR			
Single e (isol.)	28	13%	TkEle_36 OR	32 (WP1)	609 ± 27	1005 ± 33
			TkIsoEle_28	26 (WP2)	664 ± 47	1012 ± 33
Double e	25, 25	1%	TkEle_25_12 OR	25, 25	46 ± 4	82 ± 6
			StaEG_37_24			
Double e (isol.)	23, 12	1%	TkEle_25_12 OR	23, 12	52 ± 5	104 ± 9
			StaEG_37_24 OR			
			TkIsoEle_22_StaEG_12			
Single γ	200	1%	StaEG_51	187	32 ± 1	56 ± 6
Single γ (isol.)	110, EB only	1%	StaEG_51 OR	108, EB only	35 ± 9	52 ± 7
			TkIsoPho_36			
Double γ	30, 18	2%	StaEG_37_24 OR	30, 23	123 ± 12	179 ± 14
			TkIsoPho_22_12			
Double τ	35, 35	3%	HPSPFTau_21_21	22, 22	$106\pm18^{\mathrm{t}}$	159 ± 27
Single jet	500	1%	PuppiJet_230	520	53 ± 1	76 ± 1
H _T	1050	1%	PuppiHT_450	1 070	53 ± 1	74 ± 1
Missing p_T	120	3%	PuppiMET_220	140	79 ± 7	228 ± 20
Multijets	$H_{\rm T} = 330$	1%	PuppiJet_70_55_	$H_{\rm T} = 330$	32 ± 4	48 ± 5
with b-tagging	jets = 75, 60,		40_40_PuppiHT_328	jets = 75, 60,		
	45, 40			45, 40		
Total rate		49 %			2525 ± 57	3621 ± 62

Impact on physics results

Exotic decay of the Higgs boson to light pseudoscalars

- $h(125 \text{ GeV}) \rightarrow aa \rightarrow bb\tau\tau$
 - Most sensitive channel for m_a > 15 GeV
 - μτ_h channel offers largest sensitivity
- Check impact of Phase-2 single muon trigger ($p_T > 25$ GeV)
 - Extrapolated from Run-2 result
 - Sensitivity reaches 0.5% of SM Higgs cross section

		Trigger	$\rm HH \rightarrow 4b~ efficiency$	$HH \rightarrow 4b$ efficiency	L1	b tagging	Output
	ΠΠ → 4D		(inclusive)	$(m_{4b} < 350 {\rm GeV})$	rate	rate	rate
_	Critical use case for b-tagged jet triggers at HLT	b-tag only	$77.1\pm0.2\%$	$31.2\pm0.6\%$	10 kHz	10 kHz	$49.5\pm5.6\mathrm{Hz}$
		Run-2-like	$67.0\pm0.2\%$	$15.3\pm0.5\%$	10 kHz	3.2 kHz	$47.8\pm5.3\mathrm{Hz}$

- Two options:
 - Run-2 like: 4 jets with H_T > 330 GeV (higher jet p_T thresholds, >=3 jets b-tagged)
 - B-tagging runs at reduced rate
 - b-tag only: 4 jets with $H_T > 200$ GeV (lower jet p_T thresholds, >=3 jets b-tagged)
 - b-tagging runs at L1 output rate: more computationally expensive

Computing

Processing time

0.0 %

3.0 %

2.1 %

0.0 % 0.8 %

38.4 %

0.0 %

0.0 %

0.6 %

0.0 %

5.3 %

4.4 %

1.5 %

17.1 %

22.8 %

4.0 %

100.0 %

Time Fraction

- Projected speedup
 - For the CPU-only parts
 - 1.6x by Run-4
 - 2.5x by Run-5
 - Heterogeneous computing (offloading to GPUs)
 - Offload 50% by Run-4
 - Offload 80% by Run-5

Offloading to GPUs: strategy

- Develop new algorithms for Phase-1 (to be used for data-taking in 2024+25 if ready)
- Develop new algorithms for Phase-2
 - Inherit/adapt algorithms from Phase-1 when possible
- Run-3 developments guide/assist Phase-2 efforts
 - Possible to offload ~20% already (ECAL, HCAL, and pixel reconstruction)

- Pixels: Patatrack pixel tracks
- Tracking: Line segment tracking
- Porting of ParticleFlow algorithm
- HGCal reconstruction
 - Decoding digitized hits and applying energy corrections
 - Clustering (CLUE)

Summary

- Significant progress in developing the high level trigger for the HL-LHC era
 - Improve existing algorithms
 - New algorithms
 - GPU friendly algorithms
 - Exploit capabilities of new subdetectors
 - Increased granularity
 - Precision timing capabilities
 - HLT processing speedup on schedule for Run-4 and Run-5 targets

Backup

NEW TECHNOLOGIES FOR THE HIGH-LUMINOSITY LHC

