

21/11/2023

Learning likelihood with tree boosting for extracting EFT parameters

Suman Chatterjee

HEPHY, Austrian Academy of Sciences, Vienna

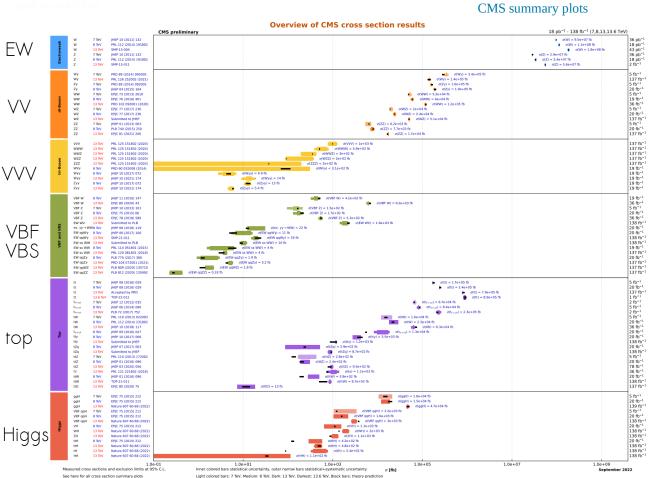
Lunch Seminar, Université catholique de Louvain

Physics@LHC: What's the status?

Newest fundamental particle discovered: Last missing piece in standard model (SM)

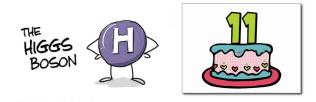
Physics@LHC: What's the status?

Newest fundamental particle discovered: Last missing piece in standard model (SM)

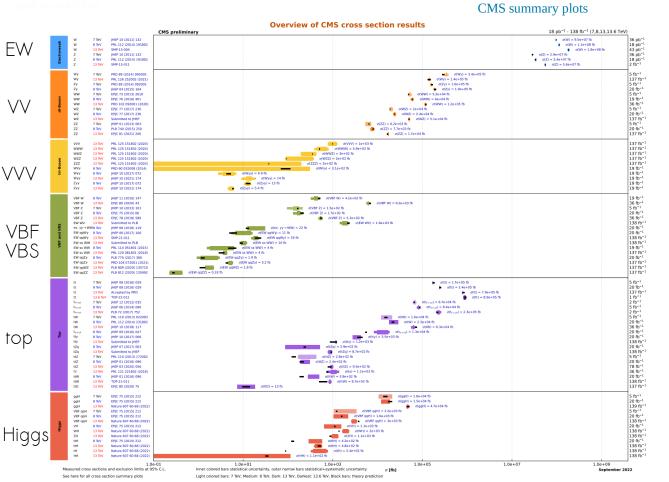


Precision measurement of plethora of processes \rightarrow In general, good agreement with SM prediction

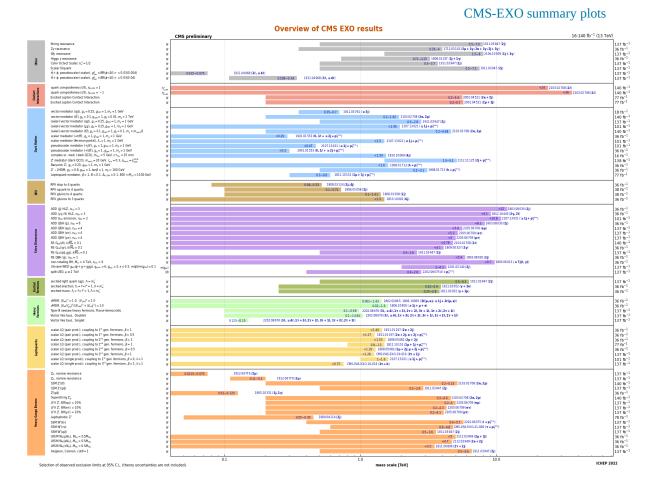
Physics@LHC: What's the status?



Newest fundamental particle discovered: Last missing piece in standard model (SM)



Precision measurement of plethora of processes \rightarrow In general, good agreement with SM prediction



No smoking gun signature of new physics yet from LHC data But, there are small interesting deviations (publicly available); $r^{2/25}$

'Model-independent' way to look for new physics signatures

Assumptions:

- \rightarrow Unitarity, locality, Poincaré symmetry
- \rightarrow Field content (relevant at EW scale) same as in SM
- → SM Gauge symmetries $SU(3)_{c} \times SU(2)_{L} \times U(1)_{y}$ respected

 $SM \leftarrow A$ low-energy approximation of a more general theory

Physics at high scale appears as a correction to low energy theory

'Model-independent' way to look for new physics signatures

Assumptions:

- \rightarrow Unitarity, locality, Poincaré symmetry
- $\rightarrow\,$ Field content (relevant at EW scale) same as in SM
- → SM Gauge symmetries $SU(3)_{c} \times SU(2)_{L} \times U(1)_{y}$ respected

SM ← A low-energy approximation of a more general theory Physics at high scale appears as a correction to low energy theory

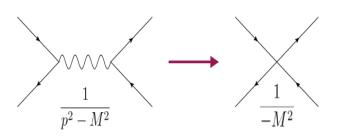
ed	MPlanck				11	
SUSY/Little-H /KK WED?	10 TeV 5 TeV 1 TeV	Heavy degrees of freedom ?? Super-partners (ī, g, q, X̂) / Heavy Higgs?		0		
SMEFT/ EW theory	100 GeV	Υ, ν, e, W, Z, g, u, d, s, c, b, t, H			Н	
WET	5 GeV	γ , ν , e , g, u, d, s, c, b	4.2 GeV/c ² -3/3 1/2 bottom	\sim	\Box	
WET	2 GeV	Υ , ν, e, g, u, d, s, c			4	
Chiral RT	1 GeV	Ϋ́, ν, e, hadrons		Ē	1	
Chiral PT	100 MeV	¥, ν, e, light mesons (Π, K)			4	
QED	1 MeV	Υ , ν, e			4	
	<= 0.001 Me\	/ Υ,ν			1	

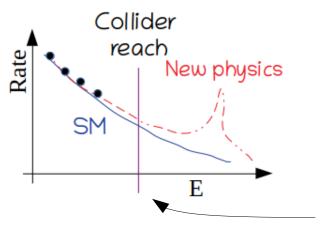
'Model-independent' way to look for new physics signatures

Assumptions:

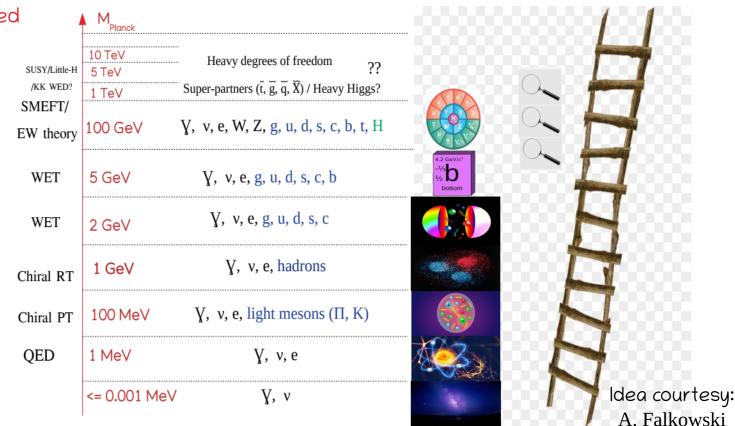
- \rightarrow Unitarity, locality, Poincaré symmetry
- \rightarrow Field content (relevant at EW scale) same as in SM
- → SM Gauge symmetries $SU(3)_{c} \times SU(2)_{L} \times U(1)_{y}$ respected

New (heavy) d.o.f. modify SM interactions





SM ← A low-energy approximation of a more general theory Physics at high scale appears as a correction to low energy theory



Use data from precision electroweak, top quark, Higgs boson measurements together $_{3/25}$

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\mathbf{c}_{i}^{(5)}}{\Lambda} \mathcal{O}_{5,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{6,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{7,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{8,i} + \dots$$

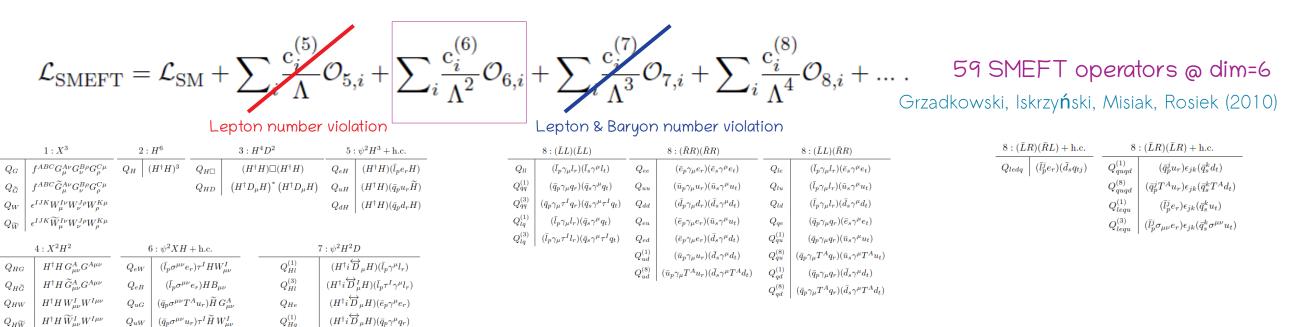
 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\mathbf{c}_{i}^{(5)}}{\Lambda} \mathcal{O}_{5,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{6,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{7,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{8,i} + \dots$

Lepton number violation

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\mathbf{c}_{i}^{(5)}}{\Lambda} \mathcal{O}_{5,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{6,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{7,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{8,i} + \dots$

Lepton number violation

Lepton & Baryon number violation



 $Q_{Hq}^{(3)}$

 Q_{Hu}

 Q_{Hd}

 Q_{Hud} + h.c.

 $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$

 $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$

 $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$

 $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$

 Q_{uB}

 Q_{dG}

 Q_{dW}

 Q_{dB}

 $H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$

 $H^{\dagger}H \, \widetilde{B}_{\mu\nu}B^{\mu\nu}$

 $H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$

 $H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$

 Q_{HB}

 $Q_{H\widetilde{B}}$

 Q_{HWB}

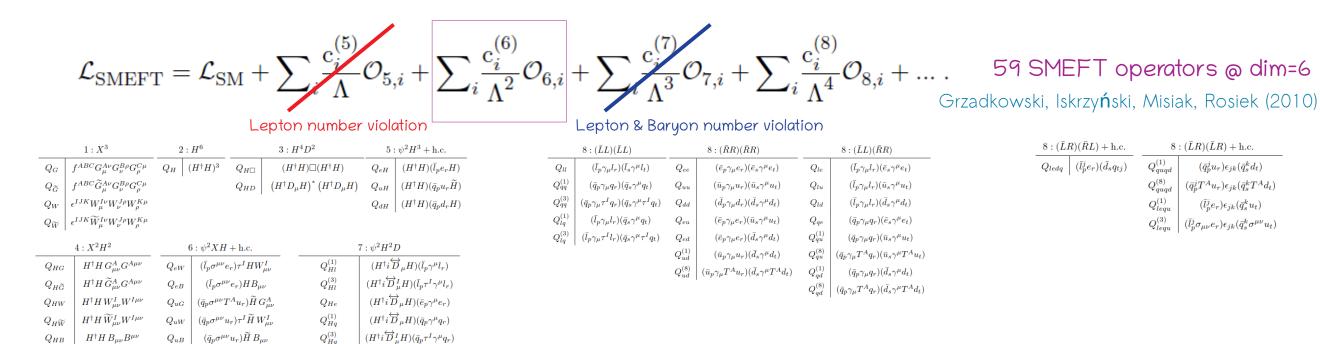
 $Q_{H\widetilde{W}B}$

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$

 $i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$



Ideally, 2499 numbers to measure

Alonso, J	Jenkins,	Manohar,	Trott	(2013)
-----------	----------	----------	-------	--------

 $(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$

 $(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$

 $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$

 Q_{dG}

 Q_{dW}

 Q_{dB}

 $H^{\dagger}H \, \widetilde{B}_{\mu\nu}B^{\mu\nu}$

 $H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$

 $H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$

 $Q_{H\widetilde{B}}$

 Q_{HWB}

 $Q_{H\widetilde{W}B}$

Class	N_{op}	CP-even			CP-odd			
		n_g	1	3	n_g	1	3	
1	4	2	2	2	2	2	2	
2	1	1	1	1	0	0	0	
3	2	2	2	2	0	0	0	
4	8	4	4	4	4	4	4	
5	3	$3n_q^2$	3	27	$3n_q^2$	3	27	
6	8	$8n_q^2$	8	72	$8n_q^2$	8	72	
7	8	$\frac{1}{2}n_g(9n_g + 7)$	8	51	$\frac{1}{2}n_g(9n_g-7)$	1	30	
$8 : (\overline{L}L)(\overline{L}L)$	5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126	
$8 : (\overline{R}R)(\overline{R}R)$	7	$\frac{1}{8}n_g(21n_g^3+2n_g^2+31n_g+2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195	
$8 : (\overline{L}L)(\overline{R}R)$	8	$4n_g^2(n_g^2+1)$	8	360	$4n_g^2(n_g-1)(n_g+1)$	0	288	
$8 : (\overline{L}R)(\overline{R}L)$	1	n_q^4	1	81	n_g^4	1	81	
$8 : (\overline{L}R)(\overline{L}R)$	4	$4n_q^4$	4	324	$4n_q^4$	4	324	
8 : All	25	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 + 89n_g + 2)$	25	1191	$\frac{1}{8}n_g(107n_g^3 + 2n_g^2 - 67n_g - 2)$	5	1014	
Total	59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$	53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149	

 Q_{Hu}

 Q_{Hd}

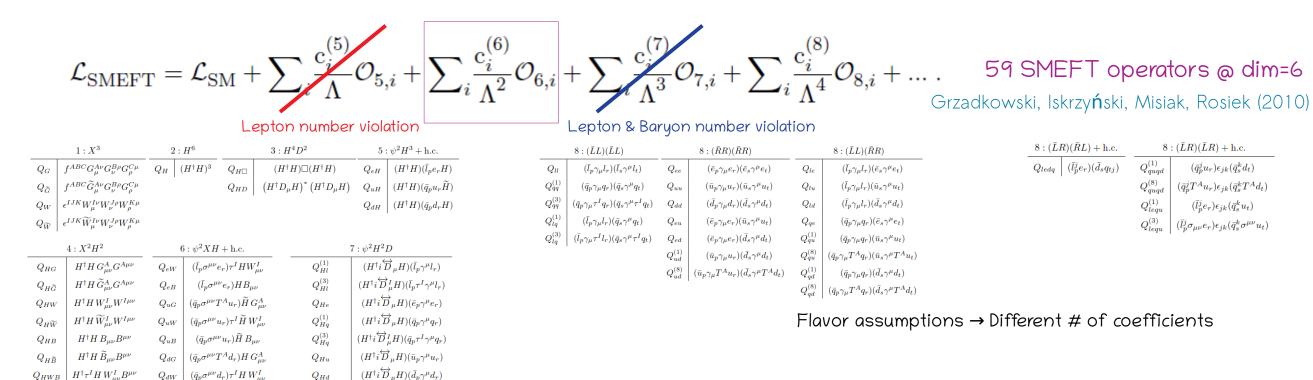
 Q_{Hud} + h.c.

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$

 $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$

 $i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$

4	/	25



Ideally, 2499 numbers to measure

Alonso,	Jenkins,	Manohar,	Trott (20	O13)
---------	----------	----------	-----------	------

 $(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$

 Q_{dB}

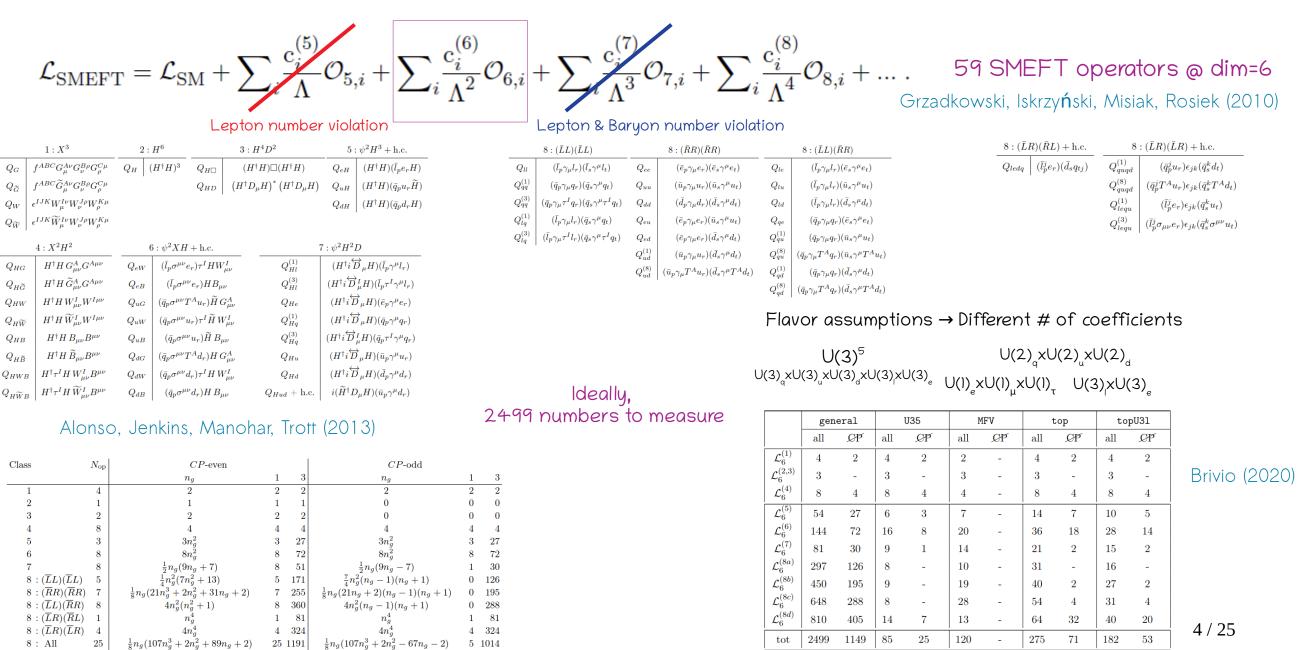
 $H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$

 $Q_{H\widetilde{W}B}$

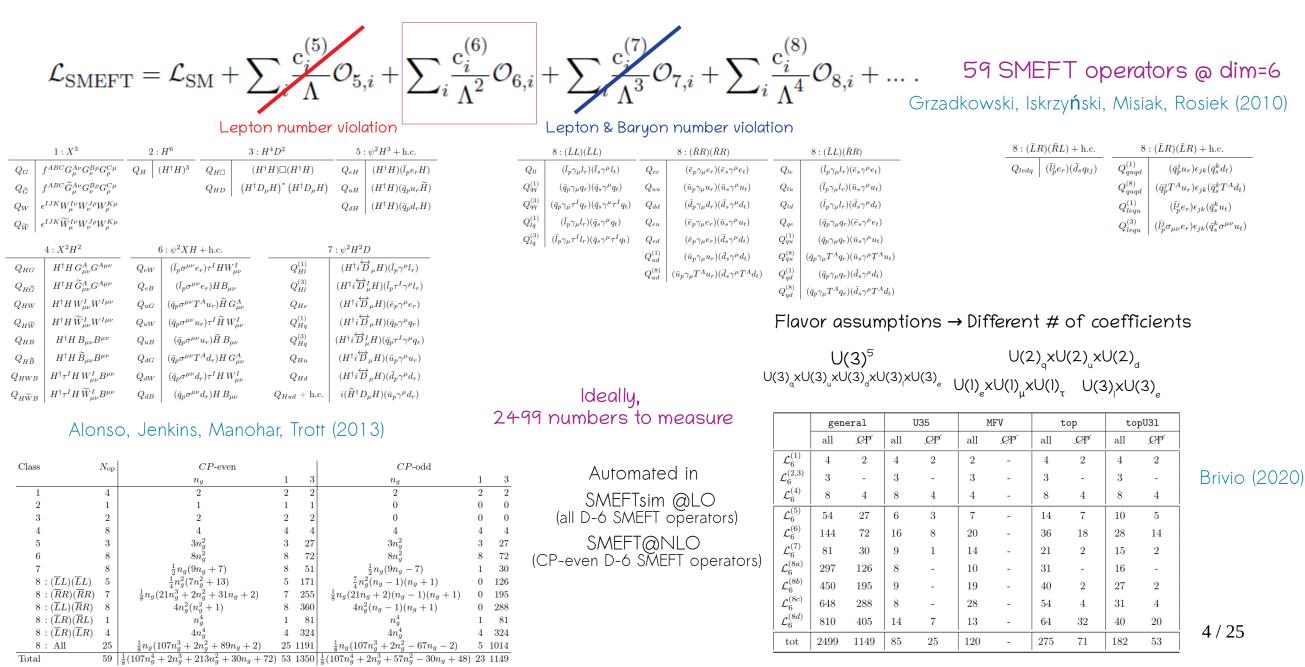
Class	$N_{ m c}$	p	CP-even			CP-odd		
			n_g	1	3	n_g	1	3
1	4	L	2	2	2	2	2	2
2	1	.	1	1	1	0	0	0
3	2	:	2	2	2	0	0	0
4	8	;	4	4	4	4	4	4
5	3	:	$3n_q^2$	3	27	$3n_q^2$	3	27
6	8	;	$8n_q^2$	8	72	$8n_q^2$	8	72
7	8	;	$\frac{1}{2}n_g(9n_g + 7)$	8	51	$\frac{1}{2}n_g(9n_g-7)$	1	30
$8:(\overline{L}L)(\overline{L})$	$\overline{L}L$) 5		$\frac{1}{4}n_q^2(7n_q^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126
$8:(\overline{R}R)($	$\overline{R}R$) 7	·	$\frac{1}{8}n_g(21n_g^3+2n_g^2+31n_g+2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195
$8:(\overline{L}L)(\overline{L})$	$\overline{R}R$) 8	;	$4n_q^2(n_q^2+1)$	8	360	$4n_q^2(n_g-1)(n_g+1)$	0	288
$8:(\overline{L}R)($	$\overline{R}L$) 1	.	n_q^4	1	81	n_q^4	1	81
$8:(\overline{L}R)($	$\overline{L}R$) 4		$4n_q^4$	4	324	$4n_q^4$	4	324
8 : All	2	5	$\frac{1}{8}n_g(107n_g^3+2n_g^2+89n_g+2)$	25	1191	$\frac{1}{8}n_g(107n_g^3+2n_g^2-67n_g-2)$	5	1014
Total	5	9	$\frac{1}{8}(107n_q^4 + 2n_q^3 + 213n_q^2 + 30n_g + 72)$	53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$	23	1149

 Q_{Hud} + h.c.

 $i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$



Total 59 $\left|\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)\right|$ 53 1350 $\left|\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)\right|$ 23 1149



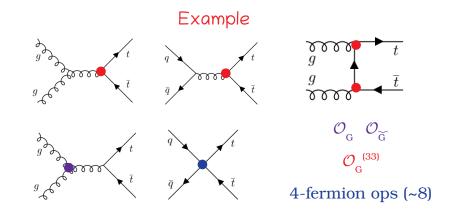
$$\mathcal{M}_{\rm SMEFT} = \mathcal{M}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{M}_{6,i} \qquad \qquad \sigma \sim \left| \mathcal{M}_{\rm SMEFT} \right|^2 \\ \sim \left| \mathcal{M}_{\rm SM} \right|^2 + \sum_{i} \frac{c_i}{\Lambda^2} 2 \operatorname{Re}(\mathcal{M}_{\rm SM}^{\dagger} \mathcal{M}_{6,i}) + \sum_{i} \frac{c_i^2}{\Lambda^4} \left| \mathcal{M}_{6,i} \right|^2 + \sum_{i} \sum_{j,j>i} \frac{c_i c_j}{\Lambda^4} \mathcal{M}_{6,i} \mathcal{M}_{6,j}$$

 σ is a quadratic function of coefficients !

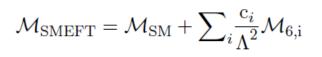
$$\mathcal{M}_{\mathrm{SMEFT}} = \mathcal{M}_{\mathrm{SM}} + \sum_{i} \frac{\mathrm{c}_{i}}{\Lambda^{2}} \mathcal{M}_{\mathrm{6,i}}$$

$$\begin{split} \sigma &\sim \left|\mathcal{M}_{\rm SMEFT}\right|^2 \\ &\sim \left|\mathcal{M}_{\rm SM}\right|^2 + \sum_i \frac{c_i}{\Lambda^2} 2 \mathrm{Re}(\mathcal{M}_{\rm SM}^{\dagger} \mathcal{M}_{6,i}) + \sum_i \frac{c_i^2}{\Lambda^4} \left|\mathcal{M}_{6,i}\right|^2 + \sum_i \sum_{j,j>i} \frac{c_i c_j}{\Lambda^4} \mathcal{M}_{6,i} \mathcal{M}_{6,j} \end{split}$$

 σ is a quadratic function of coefficients !

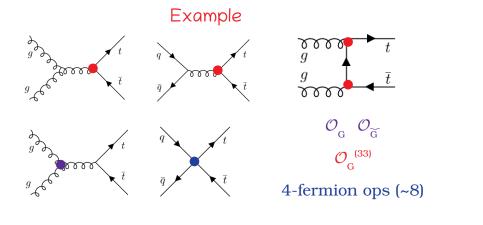


~10 parameters to measure



$$\begin{split} \boldsymbol{\sigma} &\sim \left| \mathcal{M}_{\mathrm{SMEFT}} \right|^2 \\ &\sim \left| \mathcal{M}_{\mathrm{SM}} \right|^2 + \sum_i \frac{\mathbf{c}_i}{\Lambda^2} 2 \mathrm{Re}(\mathcal{M}_{\mathrm{SM}}^{\dagger} \mathcal{M}_{6,\mathrm{i}}) + \sum_i \frac{\mathbf{c}_i^2}{\Lambda^4} |\mathcal{M}_{6,\mathrm{i}}|^2 + \sum_i \sum_{j,j>i} \frac{\mathbf{c}_i \mathbf{c}_j}{\Lambda^4} \mathcal{M}_{6,\mathrm{i}} \mathcal{M}_{6,\mathrm{j}} \end{split}$$

 σ is a quadratic function of coefficients !



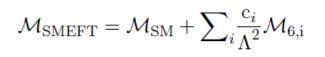
~10 parameters to measure

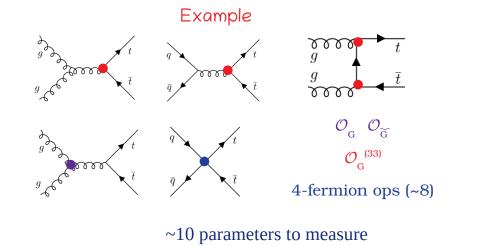
Curse of dimensionality

In a typical search, generate signal in 10-dim grids If only 10 values / coefficient → 10¹⁰ signal samples!!!

Not needed for SMEFT :D

of signal samples (for 'n' coefficients): $1 + n + n(n+1)/2 \leftarrow$ Sufficient If polynomial is of order 'k', # of minimum signal points N(n,k) = $\frac{k+1}{n} \binom{n+k}{k+1}$ For n=10, k=2 \rightarrow N(10,2) = 66





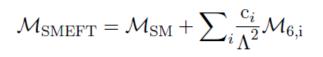
Curse of dimensionality

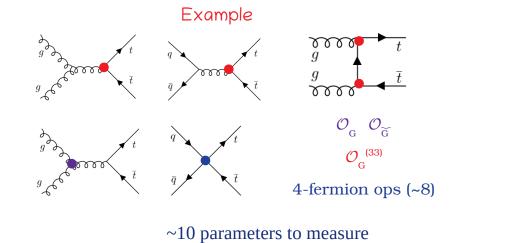
In a typical search, generate signal in 10-dim grids If only 10 values / coefficient $\rightarrow 10^{10}$ signal samples!!!

Not needed for SMEFT :D

of signal samples (for 'n' coefficients): $1 + n + n(n+1)/2 \leftarrow \text{Sufficient}$ If polynomial is of order 'k', # of minimum signal points N(n,k) = $\frac{k+1}{n} \binom{n+k}{k+1}$ For n=10, k=2 \rightarrow N(10,2) = 66

Difference between SMEFT & SM is small → Possible to reweight SM sample to obtain SMEFT prediction





Curse of dimensionality

In a typical search, generate signal in 10-dim grids If only 10 values / coefficient $\rightarrow 10^{10}$ signal samples!!!

Not needed for SMEFT :D

of signal samples (for 'n' coefficients): $1 + n + n(n+1)/2 \leftarrow \text{Sufficient}$ If polynomial is of order 'k', # of minimum signal points N(n,k) = $\frac{k+1}{n} \binom{n+k}{k+1}$ For n=10, k=2 \rightarrow N(10,2) = 66

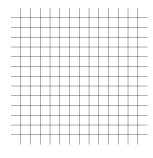
Difference between SMEFT & SM is small → Possible to reweight SM sample to obtain SMEFT prediction

 $w = \frac{\left|\mathcal{M}_{SMEFT}(\mathbf{c} = c_1)\right|^2}{\left|\mathcal{M}_{SMEFT}(\mathbf{c} = c_0)\right|^2}$

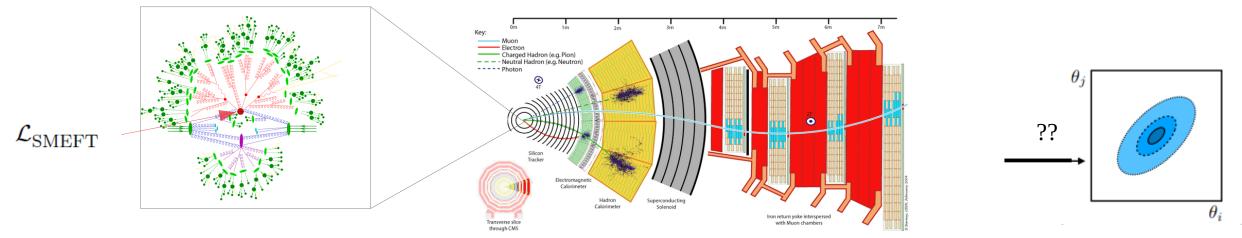
Storing N(n,k) weights per event is sufficient!

Curse of dimensionality is lifted!

Possible to truncate non-polynomial cases (option available in SMEFTsim)



Optimal observable for SMEFT analysis

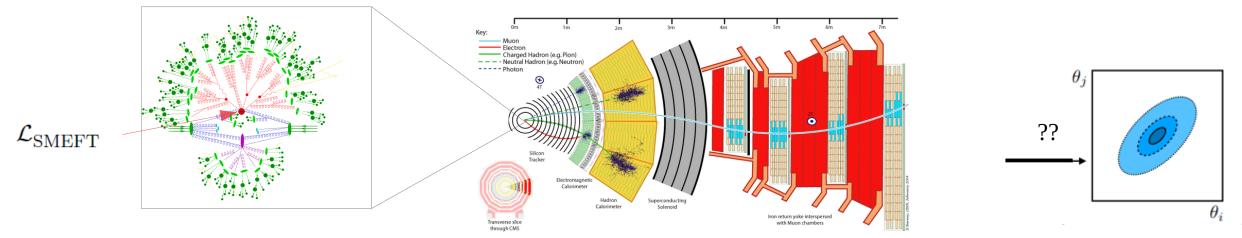


Likelihood ratio trick in classification:

$$L = \int dx \sum_{z \in 0,1} p(x,z) \left(z - f(x)\right)^2 \qquad f^*(x) = \frac{p(x|\mathrm{SM})}{p(x|\mathrm{SM}) + p(x|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})} r(x)} \quad \text{Optimal test statistic}$$

$$0 \to \mathrm{SM}, \ 1 \to \theta \qquad r(x) = \frac{p(x|\theta)}{p(x|\mathrm{SM})}$$

Optimal observable for SMEFT analysis



Likelihood ratio trick in classification:

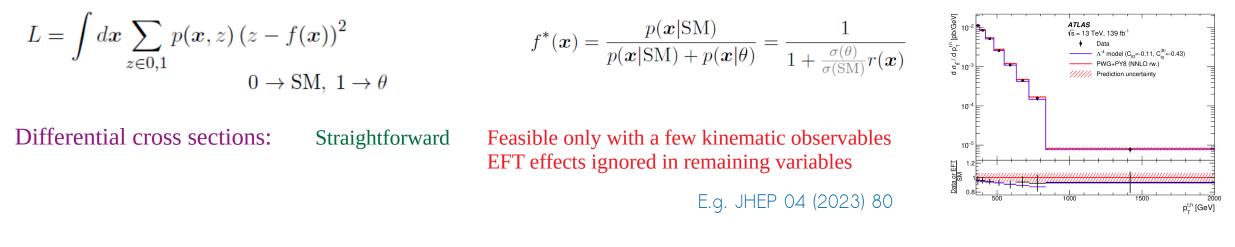
$$\begin{split} L &= \int dx \sum_{z \in 0,1} p(x,z) \left(z - f(x) \right)^2 \qquad f^*(x) = \frac{p(x|\mathrm{SM})}{p(x|\mathrm{SM}) + p(x|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})} r(x)} \quad \text{Optimal test statistic} \\ 0 \to \mathrm{SM}, \ 1 \to \theta \qquad \qquad r(x) = \frac{p(x|\theta)}{p(x|\mathrm{SM})} \\ p(x|\theta) &= \int \underbrace{\int \int \int p(x|z_{\mathrm{Det}}) p(z_{\mathrm{Det}}|z_{\mathrm{Had}}) p(z_{\mathrm{Had}}|z_{\mathrm{PS}}) p(z_{\mathrm{PS}}|z) dz_{\mathrm{Det}} dz_{\mathrm{Had}} dz_{\mathrm{PS}}} p(z|\theta) dz \\ p(x|\theta) &= \int \int \int \int p(x|z_{\mathrm{Det}}) p(z_{\mathrm{Det}}|z_{\mathrm{Had}}) p(z_{\mathrm{Had}}|z_{\mathrm{PS}}) p(z_{\mathrm{PS}}|z) dz_{\mathrm{Det}} dz_{\mathrm{Had}} dz_{\mathrm{PS}}} p(z|\theta) dz \\ \text{Hard to model transfer function} \end{split}$$

$$L = \int dx \sum_{z \in 0,1} p(x, z) \left(z - f(x)\right)^2 \qquad \qquad f^*(x) = \frac{p(x|\mathrm{SM})}{p(x|\mathrm{SM}) + p(x|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})} r(x)}$$
$$0 \to \mathrm{SM}, \ 1 \to \theta$$

$$L = \int dx \sum_{z \in 0,1} p(x,z) (z - f(x))^{2}$$

$$0 \rightarrow \text{SM}, 1 \rightarrow \theta$$
Differential cross sections: Straightforward
E.g. JHEP 04 (2023) 80
$$f^{*}(x) = \frac{p(x|\text{SM})}{p(x|\text{SM}) + p(x|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\text{SM})}r(x)}$$

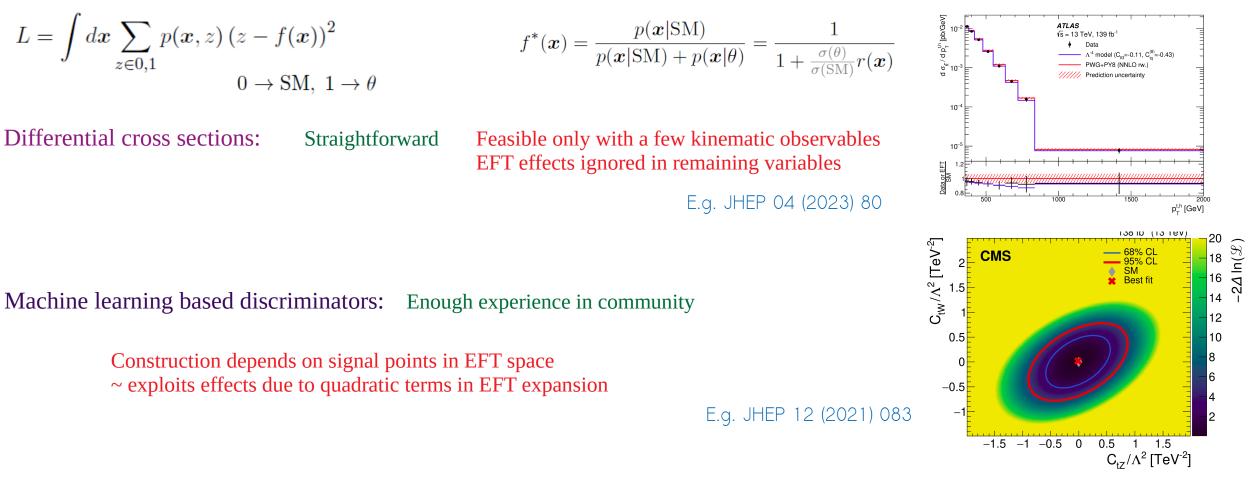
$$f^{*}(x) = \frac{p(x|\text{SM})}{p(x|\text{SM}) + p(x|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\text{SM})}r(x)}$$

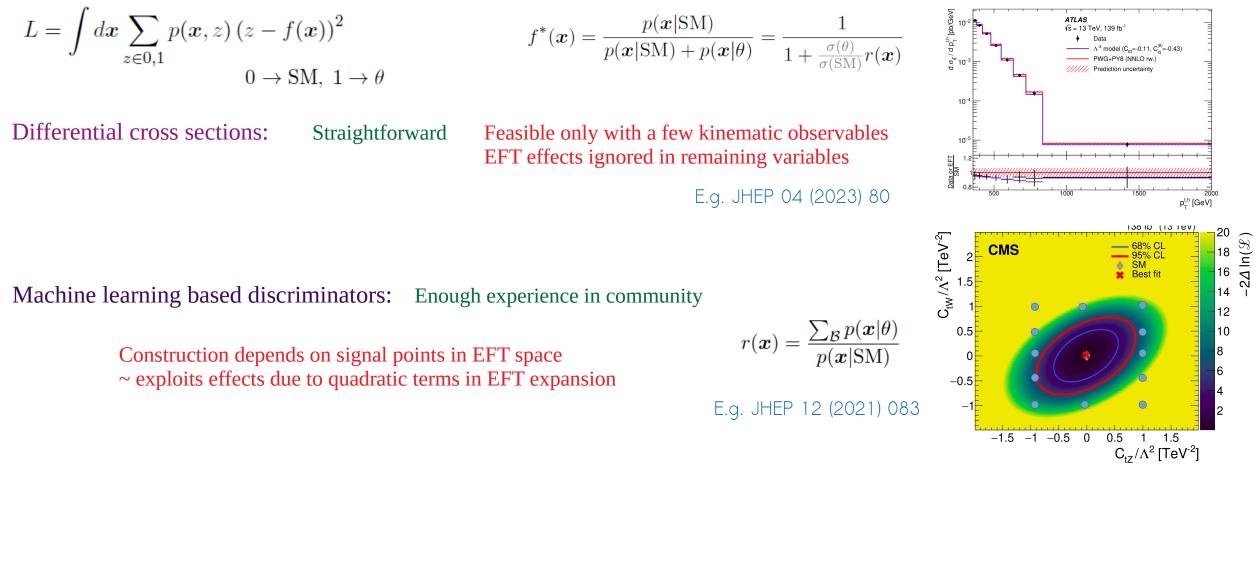


Machine learning based discriminators: Enough experience in community

Construction depends on signal points in EFT space ~ exploits effects due to quadratic terms in EFT expansion

E.g. JHEP 12 (2021) 083





 $L = \int dx \sum_{z \in 0,1} p(x, z) (z - f(x))^2$ $0 \to \text{SM}, \ 1 \to \theta$ $f^*(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathrm{SM})}{p(\boldsymbol{x}|\mathrm{SM}) + p(\boldsymbol{x}|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})}r(\boldsymbol{x})}$ **ATLAS** √s = 13 TeV, 139 fb⁻¹ Data Differential cross sections: Straightforward Feasible only with a few kinematic observables 10-5 EFT effects ignored in remaining variables a or EFT SM E.g. JHEP 04 (2023) 80 p_t,h [GeV] 130 ID (13 IEV) $2\Delta \ln(\mathcal{X})$ C_{tw}/Λ^2 [TeV⁻²] 68% CL 95% CL CMS 18 SM Best fit Machine learning based discriminators: Enough experience in community 14 12 $r(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{\mathcal{B}}} p(\boldsymbol{x}|\boldsymbol{\theta})}{p(\boldsymbol{x}|\text{SM})}$ 0.5 10 Construction depends on signal points in EFT space ~ exploits effects due to quadratic terms in EFT expansion -0.5E.g. JHEP 12 (2021) 083 -1 -0.5 0 0.5 1 1.5 -1.5 C_{t7}/Λ^2 [TeV⁻²] Matrix element method: Observable ~ Likelihood ratio ~ optimal if transfer function is modeled well $p(\boldsymbol{x}|\boldsymbol{\theta}) = \int p(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}|\boldsymbol{\theta}) d\boldsymbol{z}$ $r(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{\theta})}{p(\boldsymbol{x}|\mathrm{SM})}$

 $L = \int d\mathbf{x} \sum_{z \in 0,1} p(\mathbf{x}, z) \left(z - f(\mathbf{x})\right)^2$ $0 \to \text{SM}, \ 1 \to \theta$ **ATLAS** √s = 13 TeV, 139 fb⁻¹ $f^*(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathrm{SM})}{p(\boldsymbol{x}|\mathrm{SM}) + p(\boldsymbol{x}|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})}r(\boldsymbol{x})}$ Data Differential cross sections: Straightforward Feasible only with a few kinematic observables 10^{-5} EFT effects ignored in remaining variables E.g. JHEP 04 (2023) 80 p_t,h [GeV] IJOID (IJIEV) $2\Delta \ln(\mathcal{X})$ C_{tw}/Λ^2 [TeV⁻²] CMS Best fit Machine learning based discriminators: Enough experience in community 14 12 $r(\boldsymbol{x}) = \frac{\sum_{\boldsymbol{\mathcal{B}}} p(\boldsymbol{x}|\boldsymbol{\theta})}{p(\boldsymbol{x}|\mathrm{SM})}$ 0.5 10 Construction depends on signal points in EFT space ~ exploits effects due to quadratic terms in EFT expansion -0.5E.a. JHEP 12 (2021) 083 -1 -0.5 0 0.5 1 1.5 -1.5 C_{t7}/Λ^2 [TeV⁻²] Matrix element method: Observable ~ Likelihood ratio ~ optimal if transfer function is modeled well $r(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\boldsymbol{\theta})}{p(\boldsymbol{x}|\mathrm{SM})}$ $p(\boldsymbol{x}|\boldsymbol{\theta}) = \int p(\boldsymbol{x}|\boldsymbol{z}) p(\boldsymbol{z}|\boldsymbol{\theta}) d\boldsymbol{z}$ Likelihood-free inference: More in this talk Learn full likelihood ratio ← optimal

<u>Starting point</u>: Augmented dataset $D \leftarrow$ list of events with a number of SMEFT weights / event

Description: Extended likelihood
$$L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N_{obs}) \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{(\mathcal{L}\sigma(\boldsymbol{\theta}))^{N_{obs}}}{N_{obs}!} e^{-\mathcal{L}\sigma(\boldsymbol{\theta})} \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) \qquad p_i(\boldsymbol{x}, \boldsymbol{\theta}) = \frac{1}{\sigma(\boldsymbol{\theta})} \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta})}{d\boldsymbol{x}}$$

Neyman-Peasrson lemma: Optimal test statistic $\frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)}$

<u>Starting point</u>: Augmented dataset $D \leftarrow \text{list of events with a number of SMEFT weights / event}$

Description: Extended likelihood
$$L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N_{obs}) \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{(\mathcal{L}\sigma(\boldsymbol{\theta}))^{N_{obs}}}{N_{obs}!} e^{-\mathcal{L}\sigma(\boldsymbol{\theta})} \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) \qquad p_i(\boldsymbol{x},\boldsymbol{\theta}) = \frac{1}{\sigma(\boldsymbol{\theta})} \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta})}{d\boldsymbol{x}}$$

Neyman-Peasrson lemma: Optimal test statistic $\frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)}$
Likelihood ratio $q(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = -2 \ln \frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)} = -2 \left[\mathcal{L}(\sigma(\boldsymbol{\theta}_1) - \sigma(\boldsymbol{\theta}_0)) - \sum_{i=1}^{N_{obs}} \ln \frac{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_0)/d\boldsymbol{x}}\right] \qquad R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_0)/d\boldsymbol{x}} = \frac{\sigma(\boldsymbol{\theta}_1)p(\boldsymbol{x}|\boldsymbol{\theta}_1)}{\sigma(\boldsymbol{\theta}_0)p(\boldsymbol{x}|\boldsymbol{\theta}_0)}$

Starting point: Augmented dataset D ← list of events with a number of SMEFT weights / event

Description: Extended likelihood
$$L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N_{obs}) \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{(\mathcal{L}\sigma(\boldsymbol{\theta}))^{N_{obs}}}{N_{obs}!} e^{-\mathcal{L}\sigma(\boldsymbol{\theta})} \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) \qquad p_i(\boldsymbol{x},\boldsymbol{\theta}) = \frac{1}{\sigma(\boldsymbol{\theta})} \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta})}{d\boldsymbol{x}}$$

Neyman-Peasrson lemma: Optimal test statistic $\frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)}$
Likelihood ratio $q(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = -2 \ln \frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)} = -2 \left[\mathcal{L}(\sigma(\boldsymbol{\theta}_1) - \sigma(\boldsymbol{\theta}_0)) - \sum_{i=1}^{N_{obs}} \ln \frac{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_0)/d\boldsymbol{x}}\right] \qquad R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_0)/d\boldsymbol{x}} = \frac{\sigma(\boldsymbol{\theta}_1)p(\boldsymbol{x}|\boldsymbol{\theta}_1)}{\sigma(\boldsymbol{\theta}_0)p(\boldsymbol{x}|\boldsymbol{\theta}_0)}$
Taylor expanding ... $R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = 1 + (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_a R_a(\boldsymbol{x}) + \frac{1}{2}(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_a(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_b R_{a,b}(\boldsymbol{x}) \qquad R_a(\boldsymbol{x}) = \frac{\partial}{\partial \theta_a} R(\boldsymbol{x}|\boldsymbol{\theta}) \qquad R_{ab}(\boldsymbol{x}) = \frac{\partial}{\partial \theta_a} \frac{\partial}{\partial \theta_b} R(\boldsymbol{x}|\boldsymbol{\theta})$

<u>Starting point</u>: Augmented dataset $D \leftarrow$ list of events with a number of SMEFT weights / event

$$\begin{array}{ll} \underline{\textbf{Description:}} & \text{Extended likelihood} & L(\mathcal{D}(N_{\text{obs}}, \boldsymbol{x})|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N_{\text{obs}}) \prod_{i=1}^{N_{\text{obs}}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{(\mathcal{L}\sigma(\boldsymbol{\theta}))^{N_{\text{obs}}}}{N_{\text{obs}}!} e^{-\mathcal{L}\sigma(\boldsymbol{\theta})} \prod_{i=1}^{N_{\text{obs}}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) & p_i(\boldsymbol{x},\boldsymbol{\theta}) = \frac{1}{\sigma(\boldsymbol{\theta})} \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta})}{d\boldsymbol{x}} \\ \underline{\textbf{Neyman-Peasrson lemma:}} & \text{Optimal test statistic} & \frac{L(\mathcal{D}(N_{\text{obs}}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{\text{obs}}, \boldsymbol{x})|\boldsymbol{\theta}_0)} \\ \text{Likelihood ratio} & q(\mathcal{D}(N_{\text{obs}}, \boldsymbol{x})|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = -2 \ln \frac{L(\mathcal{D}(N_{\text{obs}}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{\text{obs}}, \boldsymbol{x})|\boldsymbol{\theta}_0)} = -2 \left[\mathcal{L}(\sigma(\boldsymbol{\theta}_1) - \sigma(\boldsymbol{\theta}_0)) - \sum_{i=1}^{N_{\text{obs}}} \ln \frac{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_0)/d\boldsymbol{x}} \right] \\ R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_0)/d\boldsymbol{x}} = \frac{\sigma(\boldsymbol{\theta}_1)p(\boldsymbol{x}|\boldsymbol{\theta}_1)}{\sigma(\boldsymbol{\theta}_0)p(\boldsymbol{x}|\boldsymbol{\theta}_0)} \\ \end{array}$$
Taylor expanding ... $R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = 1 + (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_a R_a(\boldsymbol{x}) + \frac{1}{2}(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_a(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_b R_{a,b}(\boldsymbol{x}) \\ R_a(\boldsymbol{x}) = \frac{\partial}{\partial \theta_a} R(\boldsymbol{x}|\boldsymbol{\theta}) - R_{ab}(\boldsymbol{x}) = \frac{\partial}{\partial \theta_a} \frac{\partial}{\partial \theta_b} R(\boldsymbol{x}|\boldsymbol{\theta}) \\ \end{array}$

SMEFT dependence of detector-level observables $p(\boldsymbol{x}|\boldsymbol{\theta}) = \int p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z}|\boldsymbol{\theta})d\boldsymbol{z}$ intractable parton showering + hadronization + detector simulation + reconstruction

<u>Starting point</u>: Augmented dataset $D \leftarrow$ list of events with a number of SMEFT weights / event

Description: Extended likelihood
$$L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}) = P_{\mathcal{L}\sigma(\boldsymbol{\theta})}(N_{obs}) \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) = \frac{(\mathcal{L}\sigma(\boldsymbol{\theta}))^{N_{obs}}}{N_{obs}!} e^{-\mathcal{L}\sigma(\boldsymbol{\theta})} \prod_{i=1}^{N_{obs}} p_i(\boldsymbol{x}|\boldsymbol{\theta}) \qquad p_i(\boldsymbol{x},\boldsymbol{\theta}) = \frac{1}{\sigma(\boldsymbol{\theta})} \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta})}{d\boldsymbol{x}}$$

Neyman-Peasrson lemma: Optimal test statistic $\frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)}$
Likelihood ratio $q(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = -2 \ln \frac{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_1)}{L(\mathcal{D}(N_{obs}, \boldsymbol{x})|\boldsymbol{\theta}_0)} = -2 \left[\mathcal{L}(\sigma(\boldsymbol{\theta}_1) - \sigma(\boldsymbol{\theta}_0)) - \sum_{i=1}^{N_{obs}} \ln \frac{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}, \boldsymbol{\theta}_0)/d\boldsymbol{x}}\right] \qquad R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = \frac{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_1)/d\boldsymbol{x}}{d\sigma(\boldsymbol{x}|\boldsymbol{\theta}_0)/d\boldsymbol{x}} = \frac{\sigma(\boldsymbol{\theta}_1)p(\boldsymbol{x}|\boldsymbol{\theta}_0)}{\sigma(\boldsymbol{\theta}_0)p(\boldsymbol{x}|\boldsymbol{\theta}_0)}$
Taylor expanding ... $R(\boldsymbol{x}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = 1 + (\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_a R_a(\boldsymbol{x}) + \frac{1}{2}(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_a(\boldsymbol{\theta}_1 - \boldsymbol{\theta}_0)_b R_{a,b}(\boldsymbol{x}) \qquad R_a(\boldsymbol{x}) = \frac{\partial}{\partial \boldsymbol{\theta}_a} R(\boldsymbol{x}|\boldsymbol{\theta}) \qquad R_{ab}(\boldsymbol{x}) = \frac{\partial}{\partial \boldsymbol{\theta}_a} \frac{\partial}{\partial \boldsymbol{\theta}_b} R(\boldsymbol{x}|\boldsymbol{\theta})$
SMEFT dependence of detector-level observables $p(\boldsymbol{x}|\boldsymbol{\theta}) = \int p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z}|\boldsymbol{\theta})d\boldsymbol{z} \qquad \text{intractable}$
parton showering + hadronization + detector simulation + reconstruction
Joint likelihood ratio $R(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}_1, \boldsymbol{\theta}_0) = \frac{p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}_1)}{p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta}_0)} = \frac{p(\boldsymbol{x}|\boldsymbol{z})p(\boldsymbol{z}|\boldsymbol{\theta}_0)}{p(\boldsymbol{x}|\boldsymbol{z}|\boldsymbol{\theta}_0)} = \frac{\sigma(\boldsymbol{\theta}_0)}{\sigma(\boldsymbol{\theta}_1)} \frac{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_1)/d\boldsymbol{z}}{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_0)/d\boldsymbol{z}} = \frac{\sigma(\boldsymbol{\theta}_0)}{\sigma(\boldsymbol{\theta}_1)} \frac{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_1)}{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_0)/d\boldsymbol{z}} = \frac{\sigma(\boldsymbol{\theta}_0)}{\sigma(\boldsymbol{\theta}_1)} \frac{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_1)}{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_0)/d\boldsymbol{z}} = \frac{\sigma(\boldsymbol{\theta}_0)}{\sigma(\boldsymbol{\theta}_1)} \frac{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_1)}{d\sigma(\boldsymbol{z}|\boldsymbol{\theta}_0)}$

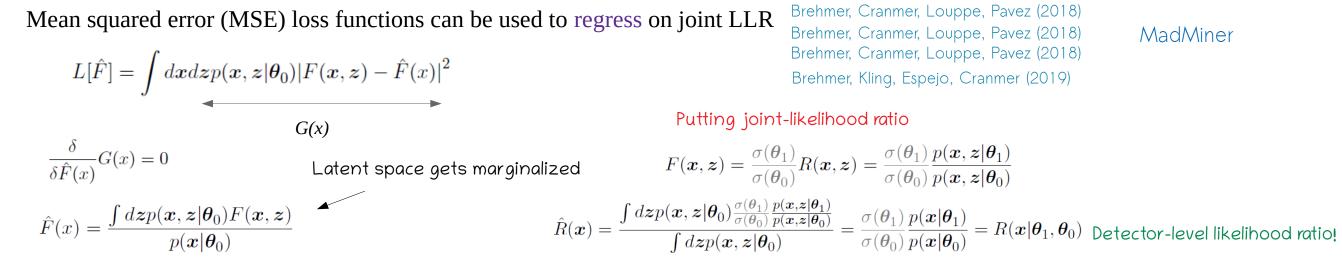
Weights stored per event 🦯

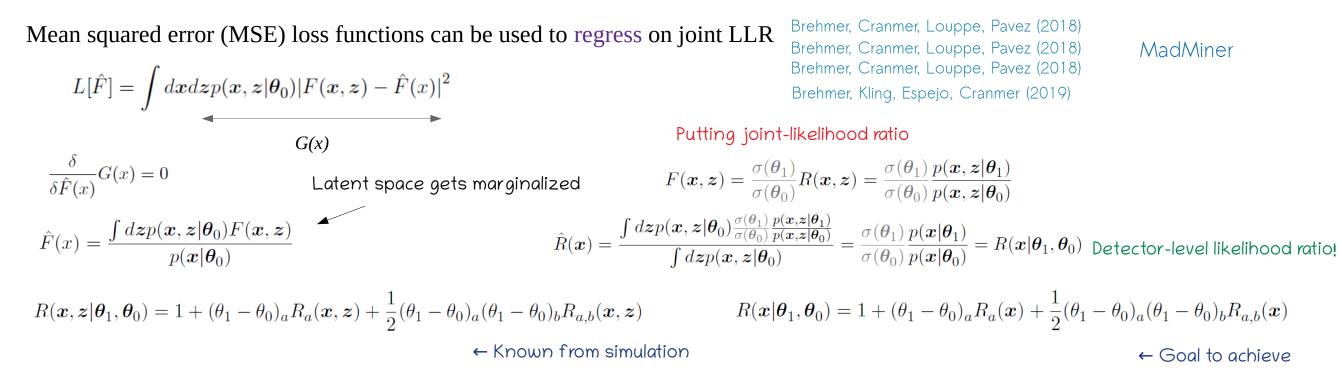
Mean squared error (MSE) loss functions can be used to regress on joint LLR

$$\begin{split} L[\hat{F}] &= \int dx dz p(x, z | \theta_0) |F(x, z) - \hat{F}(x)|^2 \\ & \bullet \\ & G(x) \\ \hline \frac{\delta}{\delta \hat{F}(x)} G(x) = 0 \\ \hat{F}(x) &= \frac{\int dz p(x, z | \theta_0) F(x, z)}{p(x | \theta_0)} \end{split}$$

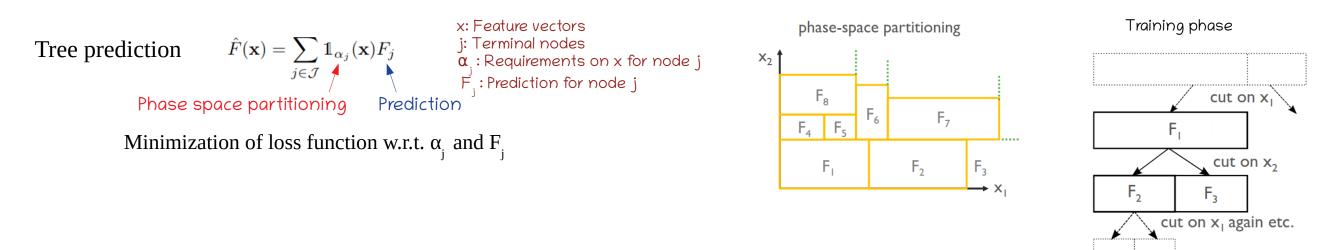
Brehmer, Cranmer, Louppe, Pavez (2018) Brehmer, Cranmer, Louppe, Pavez (2018) Brehmer, Cranmer, Louppe, Pavez (2018) Brehmer, Kling, Espejo, Cranmer (2019)

MadMiner





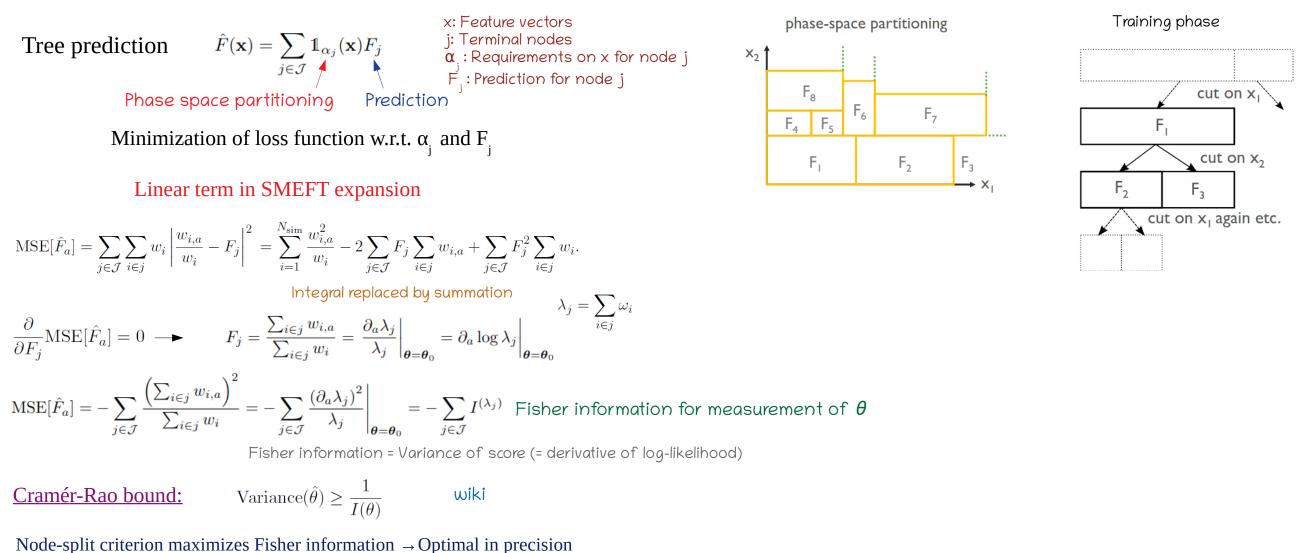
$$\begin{array}{c} \text{Mean squared error (MSE) loss functions can be used to regress on joint LLR} \\ \text{Brehmer, Cranmer, Louppe, Paver (2018)} \\ \text{F(x) = $\frac{\sigma(\theta_1)(p(x,z|\theta_1)}{\sigma(\theta_0)(p(x,z|\theta_0)}) \\ \text{F(x) = $\frac{\sigma(\theta_1)(p(x,z|\theta_1)}{\sigma(\theta_0)(p(x,z|\theta_1)}) \\ \text{F(x) = $\frac{\sigma(\theta_1)(p(x,z|\theta_1)}{\sigma(\theta_0)(p(x,z|\theta_1)}) \\ \text{F(x) = $\frac{\sigma(\theta_1)(p$$$$$$$$$$$$$



Tree prediction
$$\hat{F}(\mathbf{x}) = \sum_{j \in \mathcal{J}} \mathbf{1}_{\alpha_j}(\mathbf{x}) F_j$$

 $j \in Terminal nodes$
 $j \in Terminal nodes$

Fisher information = Variance of score (= derivative of log-likelihood)



 $\rightarrow Optimar in precision$

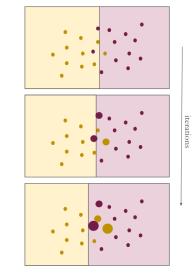
Starting point of SC, N. Frohner, L. Lechner, R. Schoefbeck, D. Schwarz (2021)

Tree prediction
$$\hat{F}(\mathbf{x}) = \sum_{j \in \mathcal{J}} \mathbf{1}_{a_j} (\mathbf{x}) F_j$$
 is formulant odds
 a_j : Requirements on x for node j
 F_j : Prediction for node j
Phase space partitioning Prediction
Minimization of loss function w.r.t. \mathbf{q} and \mathbf{F}_j
Linear term in SMEFT expansion
 $MSE[\hat{F}_a] = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_i \left| \frac{w_{i,a}}{w_i} - F_j \right|^2 = \sum_{i = 1}^{Nam} \frac{w_{i,a}^2}{w_i} - 2\sum_{j \in \mathcal{J}} F_j \sum_{i \in j} w_{i,a} + \sum_{j \in \mathcal{J}} F_j \sum_{i \in j} w_i$.
Integral replaced by summation
 $\lambda_j = \sum_{i \in j} w_i$
 $\frac{\partial}{\partial F_j} MSE[\hat{F}_a] = 0 \rightarrow F_j = \frac{\sum_{i \in j} w_{i,a}}{\sum_{i \in j} w_i} = \frac{\partial_i \lambda_j}{\lambda_j} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_a} = \partial_a \log \lambda_j \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_a}$
 $MSE[\hat{F}_a] = -\sum_{j \in \mathcal{J}} \frac{\left(\sum_{i \in j} w_{i,a}\right)^2}{\sum_{i \in j} w_i} = -\sum_{j \in \mathcal{J}} \frac{(\partial_i \lambda_j)^2}{\lambda_j} \Big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_a} = -\sum_{j \in \mathcal{J}} I^{(\Lambda_j)}$ Fisher information for measurement of $\boldsymbol{\theta}$
Fisher information $-$ optimal in precision
 $\lambda_j = b_j + \theta_{s_j} - \rho_j = \frac{\theta_{s_j}}{b_j + \theta_{s_j}}$
Starting point of SC, N. Frohner, L. Lechner, R. Schoefbeck, D. Schwarz (2021)
 $L = -\sum_j \frac{(\partial_i \lambda_j)^2}{\lambda_j} = -\sum_{j \in \mathcal{J}} \sum_{j \setminus j} \lambda_j \rho^2 = \sum_j \lambda_j \rho(1 - \rho)$
Gini index implemented in TMVA for classification
 $10/25$

Tree prediction
$$\hat{F}(\mathbf{x}) = \sum_{j \in \mathcal{J}} \mathbf{1}_{a_j} (\mathbf{x}) F_j$$
 is reminal rodes
 g_i : Requirements on x for node j
 F_j : Prediction for node j
 F_i : F_{i} F_{j} F_{j}

Boosting: Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration

 $\hat{F}^{b}(x) = \hat{f}^{b}(x) + \eta \hat{F}^{b-1}(x)$ Minimize loss function loss w.r.t. $f(x) \leftarrow$ Goes on till a pre-defined number B

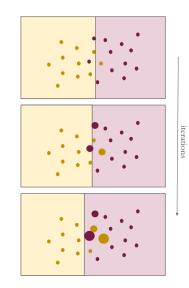


Boosting: Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration

 $\hat{F}^{b}(x) = \hat{f}^{b}(x) + \eta \hat{F}^{b-1}(x)$ Minimize loss function loss w.r.t. $f(x) \leftarrow$ Goes on till a pre-defined number B

$$MSE[\hat{F}_{a}] = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_{i} \left| \frac{w_{i,a}}{w_{i}} - \hat{f}^{b}(x) - \eta \hat{F}^{b-1}(x) \right|^{2} = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_{i} \left| \frac{w_{i,a} - \eta \hat{F}^{b-1}(x)w_{i}}{w_{i}} - \hat{f}^{b}(x) \right|^{2}$$

Weak learner needs to fit $w - \eta F \leftarrow$ Target needs to be updated in each iteration



HEPHY INSTITUT FÜR HOCHENERGIEPHYSIK

Boosting: Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration

 $\hat{F}^{b}(x) = \hat{f}^{b}(x) + \eta \hat{F}^{b-1}(x)$ Minimize loss function loss w.r.t. $f(x) \leftarrow$ Goes on till a pre-defined number B

$$MSE[\hat{F}_{a}] = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_{i} \left| \frac{w_{i,a}}{w_{i}} - \hat{f}^{b}(x) - \eta \hat{F}^{b-1}(x) \right|^{2} = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_{i} \left| \frac{w_{i,a} - \eta \hat{F}^{b-1}(x)w_{i}}{w_{i}} - \hat{f}^{b}(x) \right|^{2}$$

Weak learner needs to fit $w - \eta F \leftarrow$ Target needs to be updated in each iteration

Final outcome of algorithm $\hat{R}(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{\theta}_0) = 1 + (\theta - \theta_0)_a \hat{F}_a^{(B)}(\boldsymbol{x}) + \frac{1}{2}(\theta - \theta_0)_a(\theta - \theta_0)_b \hat{F}_{ab}^{(B)}(\boldsymbol{x})$

Boosted information tree (BIT)

SC, S. Roshap, R. Schoefbeck, D. Schwarz (2022)

Boosting: Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration

 $\hat{F}^{b}(x) = \hat{f}^{b}(x) + \eta \hat{F}^{b-1}(x)$ Minimize loss function loss w.r.t. $f(x) \leftarrow$ Goes on till a pre-defined number B

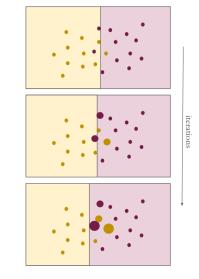
$$MSE[\hat{F}_{a}] = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_{i} \left| \frac{w_{i,a}}{w_{i}} - \hat{f}^{b}(x) - \eta \hat{F}^{b-1}(x) \right|^{2} = \sum_{j \in \mathcal{J}} \sum_{i \in j} w_{i} \left| \frac{w_{i,a} - \eta \hat{F}^{b-1}(x)w_{i}}{w_{i}} - \hat{f}^{b}(x) \right|^{2}$$

Weak learner needs to fit $w - \eta F \leftarrow$ Target needs to be updated in each iteration

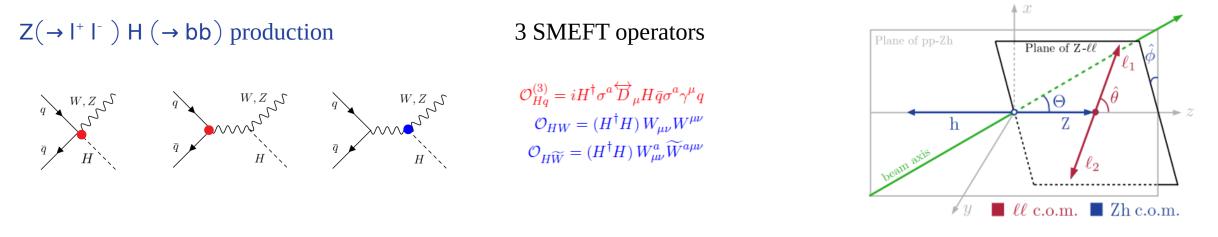
Final outcome of algorithm $\hat{R}(\boldsymbol{x}|\boldsymbol{\theta},\boldsymbol{\theta}_0) = 1 + (\theta - \theta_0)_a \hat{F}_a^{(B)}(\boldsymbol{x}) + \frac{1}{2}(\theta - \theta_0)_a(\theta - \theta_0)_b \hat{F}_{ab}^{(B)}(\boldsymbol{x})$ Boosted information tree (BIT) SC, S. Roshap, R. Schoefbeck, D. Schwarz (2022)

Separate training for each linear ('a') & quadratic terms ('ab') \rightarrow Total # of trainings = n + n(n+1)/2

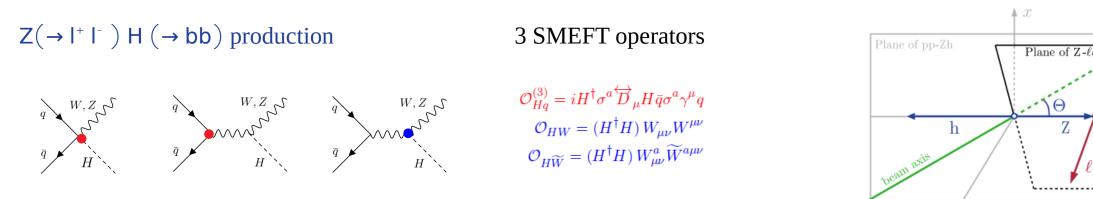
$$\begin{aligned} \text{LLR to achieve} \\ q(\mathcal{D}(N_{\text{obs}}, x) | \theta_1, \theta_0) &= -2 \left[\mathcal{L}(\sigma(\theta_1) - \sigma(\theta_0)) - \sum_{i=1}^{N_{\text{obs}}} \ln R(x | \theta_1, \theta_0) \right] \\ &\stackrel{=}{\underset{i=1}{\overset{(\text{in large sample limit})}{\overset{(\text{in large sample limit})}}} \\ &\hat{q}(\mathcal{D}(N_{\text{obs}}, x) | \theta_1, \theta_0) = -2 \left[\mathcal{L}(\sigma(\theta_1) - \sigma(\theta_0)) - \sum_{i=1}^{N_{\text{obs}}} \ln \hat{R}(x | \theta_1, \theta_0) \right] \\ & 11 / 25 \end{aligned}$$



Application of algorithm (1)



Application of algorithm (1)



Analytic calculation for EFT-dependence available Nakamura (2017) Banerjee, Gupta, Reiness, Seth, Spannowsky (2019)

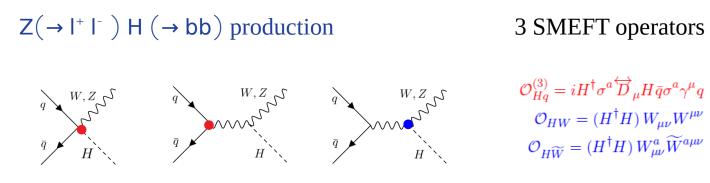
Thanks to S. Banerjee & R. S. Gupta for providing translation between refs

 $\not\models y$

 $\blacksquare \ \ell\ell \text{ c.o.m. } \blacksquare \text{ Zh c.o.m.}$

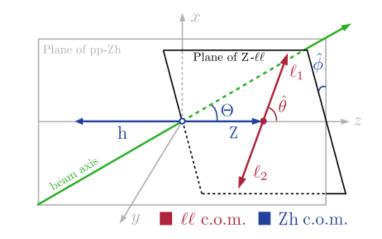
Application of algorithm (1)

12/25



3 SMEFT operators

 $\mathcal{O}_{Hq}^{(3)} = iH^{\dagger}\sigma^{a}\overleftarrow{D}_{\mu}H\bar{q}\sigma^{a}\gamma^{\mu}q$

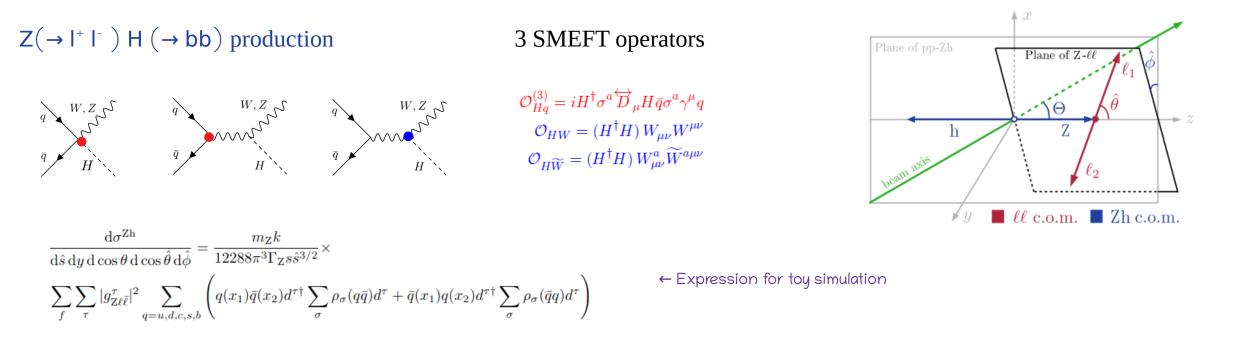


Analytic calculation for EFT-dependence available Nakamura (2017) Banerjee, Gupta, Reiness, Seth, Spannowsky (2019)

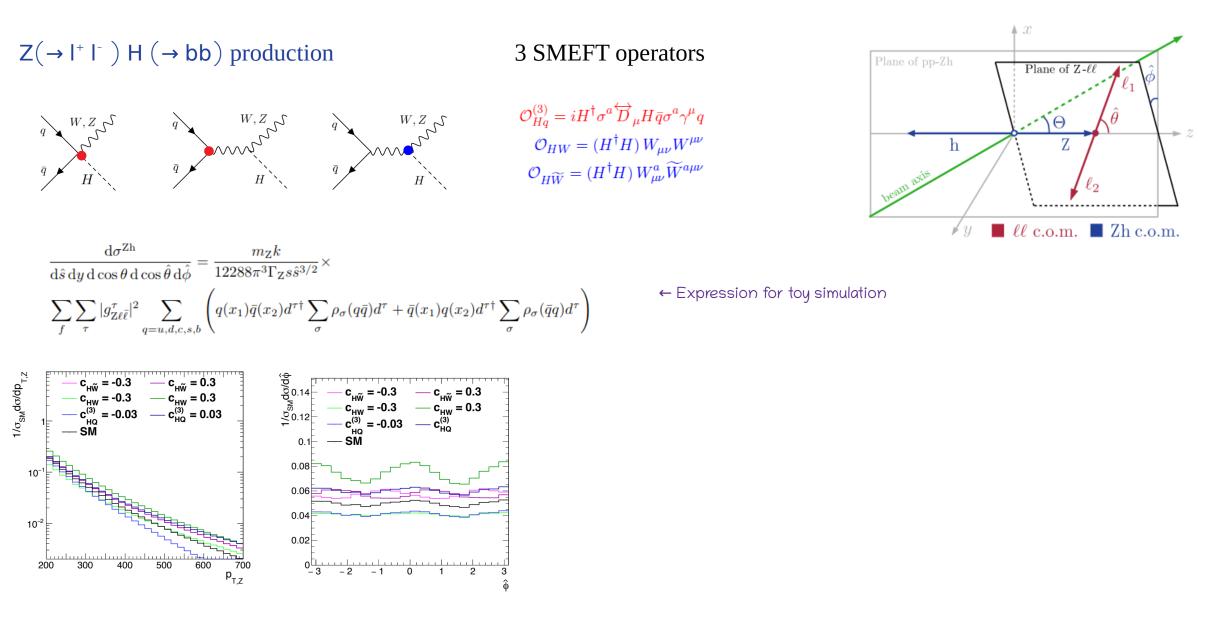
Thanks to S. Banerjee & R. S. Gupta for providing translation between refs

 $\mathcal{M}_{\sigma}^{\lambda=\pm}(q\bar{q}) = \sigma \frac{1 + \sigma \lambda \cos \Theta}{\sqrt{2}} \hat{M}_{\sigma}^{\lambda=\pm},$ $f_{LL} = S_{\Theta}^2 S_{\theta}^2,$ $\mathcal{A}(\hat{s},\Theta,\theta,\varphi) = \frac{-ig_{\ell}^{V}}{\Gamma_{V}} \sum_{\cdot} \mathcal{M}_{\sigma}^{\lambda}(\hat{s},\Theta) d_{\lambda,1}^{J=1}(\theta) e^{i\lambda\hat{\varphi}},$ $f_{TT}^1 = C_\Theta C_\theta,$ $\mathcal{M}^{\lambda=0}_{\sigma}(q\bar{q}) = \sin\Theta\hat{M}^{\lambda=0}_{\sigma},$ $f_{TT}^2 = (1 + C_{\Theta}^2)(1 + C_{\Theta}^2),$ $\sum_{i} |\mathcal{A}(\hat{s}, \Theta, \theta, \varphi)|^2 = \sum_{i} a_i(\hat{s}) f_i(\Theta, \theta, \varphi) \,,$ $\hat{\mathcal{M}}_{\sigma}^{\lambda=\pm} = g_{\rm Z} m_{\rm Z} \sqrt{\hat{s}} \left| \frac{g_{\rm Z\sigma}}{\hat{s} - m_{\rm Z}^2} + c_{\theta_W} \left(1 + \frac{\hat{s} - m_{\rm h}^2}{m_{\rm Z}^2} \right) \left(\frac{g_{\rm Z\sigma} c_{\theta_W}}{\hat{s} - m_{\rm Z}^2} + \frac{Q_q e s_{\theta_W}}{\hat{s}} \right) \frac{v^2}{\Lambda^2} C_{\rm HW} \right|$ $f_{LT}^1 = C_{\varphi} S_{\Theta} S_{\theta},$ $f_{LT}^2 = C_{\varphi} S_{\Theta} S_{\theta} C_{\Theta} C_{\theta},$ $-\frac{2i\lambda k\sqrt{\hat{s}}}{m_{\pi}^2}c_{\theta_W}\left(\frac{g_{\mathrm{Z}\sigma}c_{\theta_W}}{\hat{s}-m_{\pi}^2}+\frac{Q_qes_{\theta_W}}{\hat{s}}\right)\frac{v^2}{\Lambda^2}C_{\mathrm{H}\widetilde{\mathrm{W}}}\right|+g_{\mathrm{Z}}^2\frac{\sqrt{\hat{s}}}{m_{\pi}}T_q^{(3)}\frac{v^2}{\Lambda^2}C_{\mathrm{HQ}^{(3)}},$ $\tilde{f}_{LT}^1 = S_{\varphi} S_{\Theta} S_{\theta},$ $\tilde{f}_{LT}^2 = S_{\varphi} S_{\Theta} S_{\theta} C_{\Theta} C_{\theta},$ $f_{TT'} = C_{2\varphi} S^2_{\Theta} S^2_{A},$ $\hat{\mathcal{M}}_{\sigma}^{\lambda=0} = -g_{\rm Z} w \sqrt{\hat{s}} \left| \frac{g_{\rm Z\sigma}}{\hat{s} - m_{\rm Z}^2} \right|$ $k = w \rightarrow \frac{\sqrt{s}}{2}$ $\tilde{f}_{TT'} = S_{2\varphi} S_{\Theta}^2 S_{\theta}^2 \,,$ $+ c_{\theta_W} \left(1 + \frac{\hat{s} - m_{\rm h}^2}{m_Z^2} - \frac{2k^2\sqrt{\hat{s}}}{m_Z^2w} \right) \left(\frac{g_{Z\sigma}c_{\theta_W}}{\hat{s} - m_Z^2} + \frac{Q_q e s_{\theta_W}}{\hat{s}} \right) \frac{v^2}{\Lambda^2} C_{\rm HW} \right]$ $-g_{\rm Z}^2 T_q^{(3)} \frac{w\sqrt{\hat{s}}}{m_{\pi}^2} \frac{v^2}{\Lambda^2} C_{{\rm HQ}^{(3)}}.$

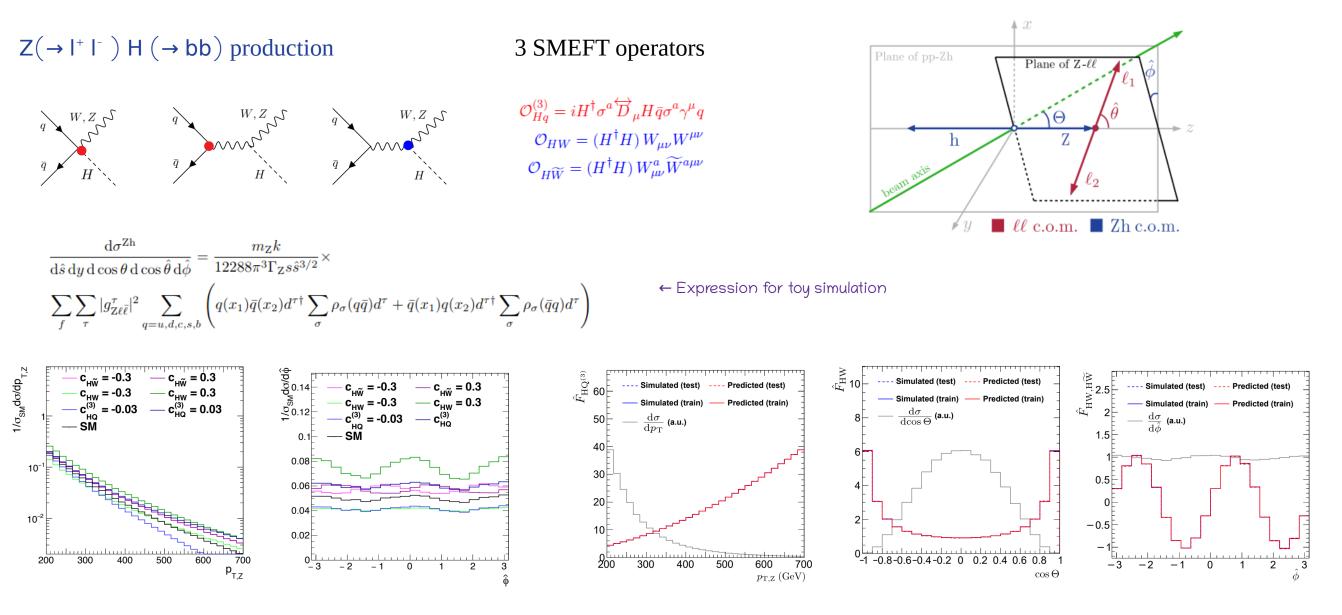
Application of algorithm (2)



Application of algorithm (2)



Application of algorithm (2)

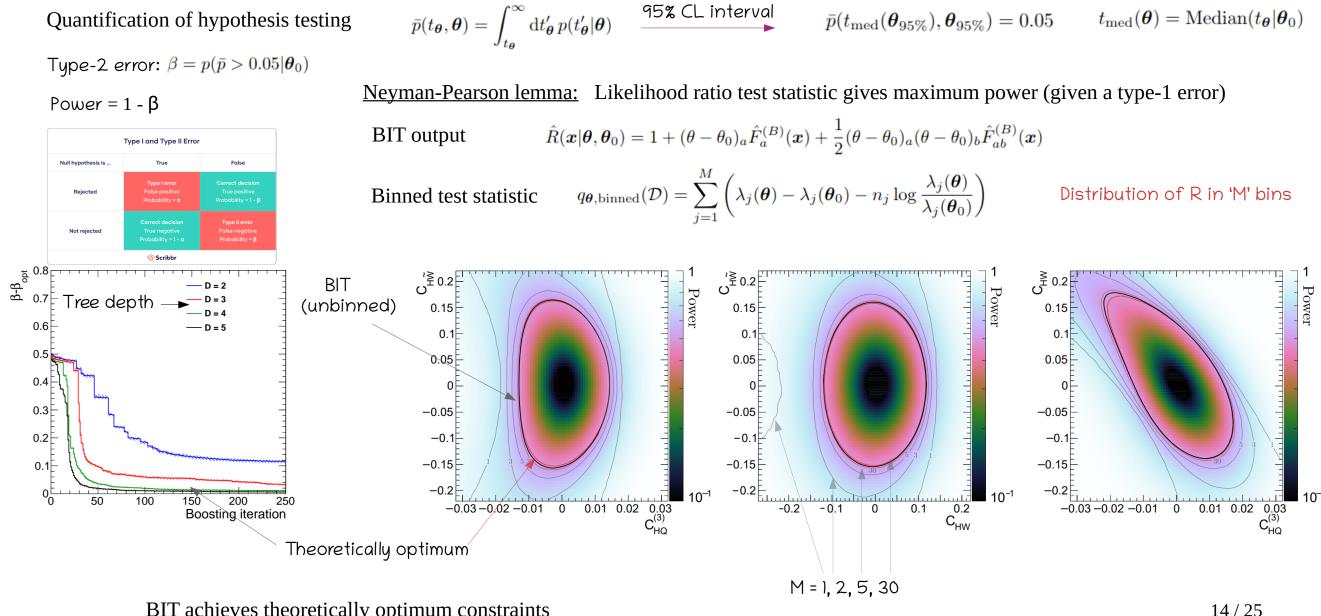


EFT effects on kinematic distributions

Coefficients are perfectly learned in toy simulation

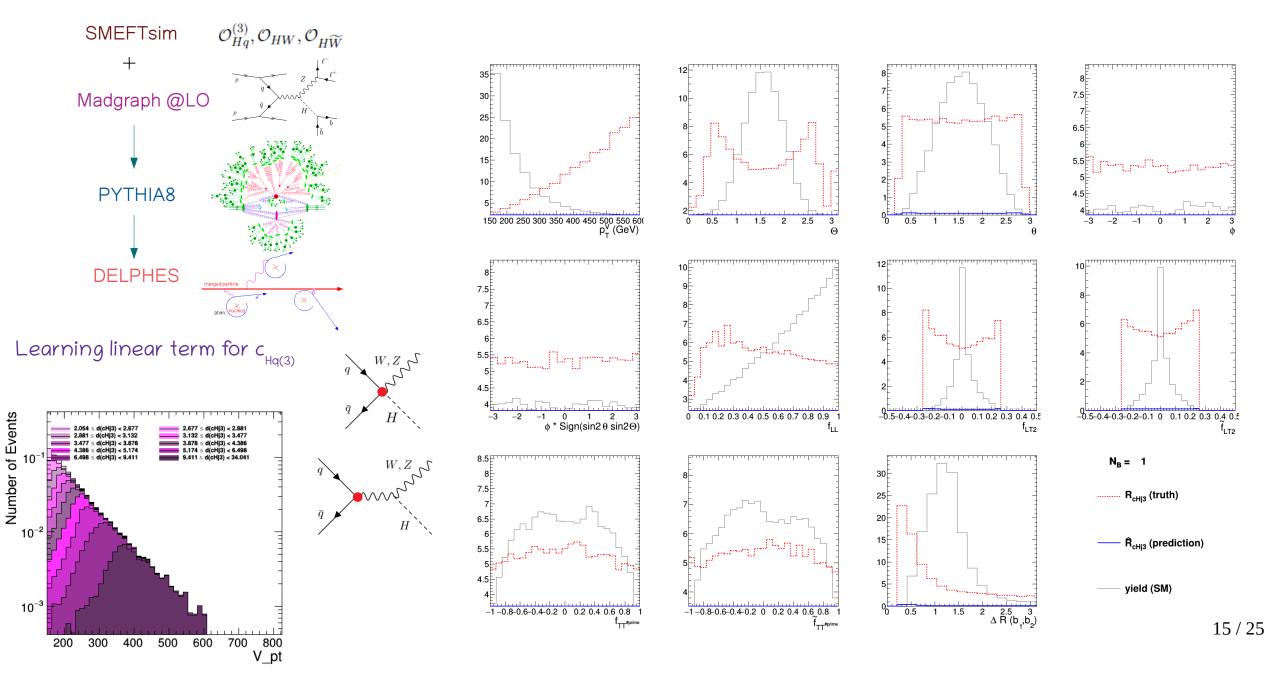
13 / 25

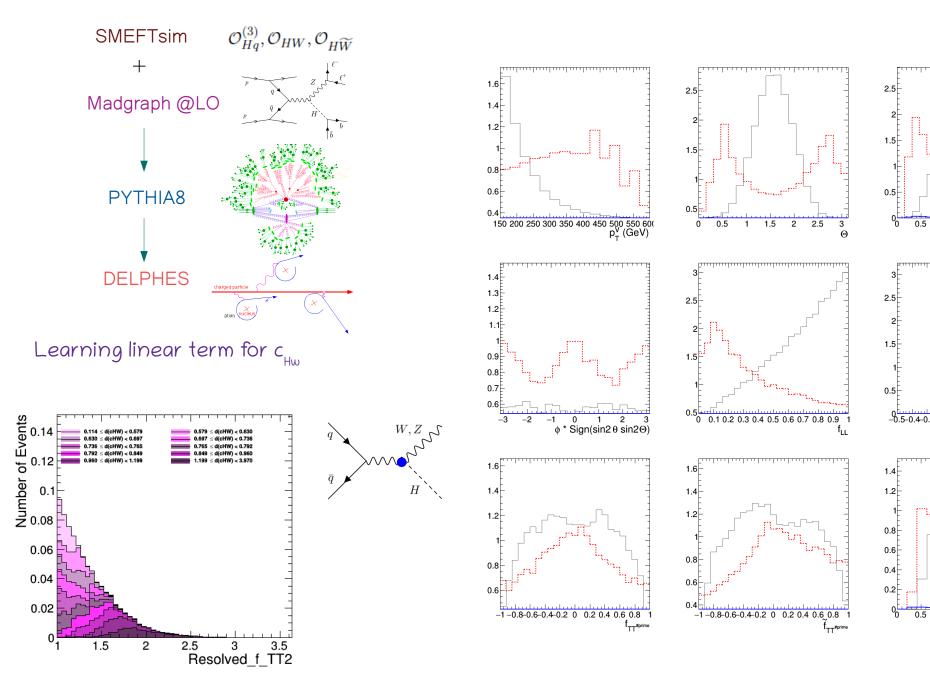
Optimality in toy data

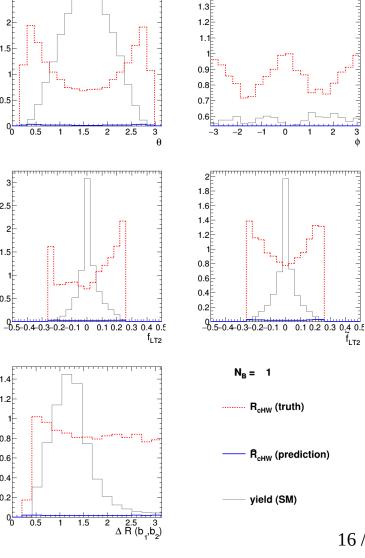


BIT achieves theoretically optimum constraints

With sufficient # of bins, binned constraints converge to unbinned ones

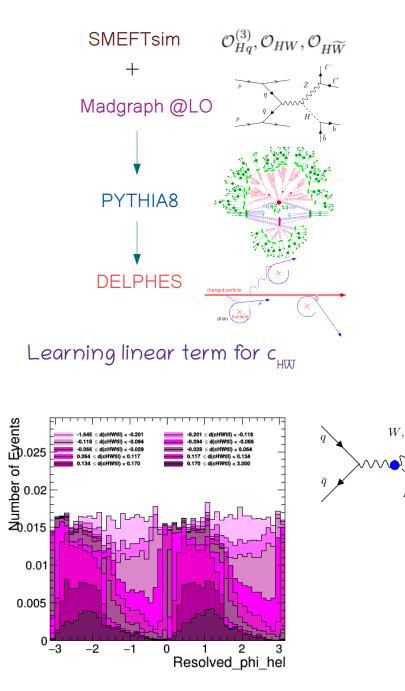


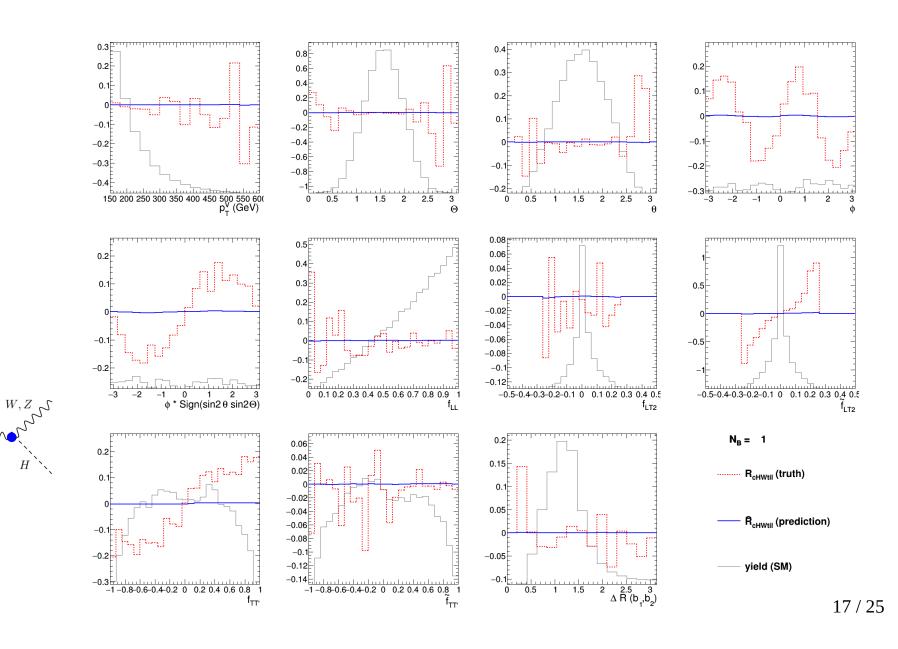


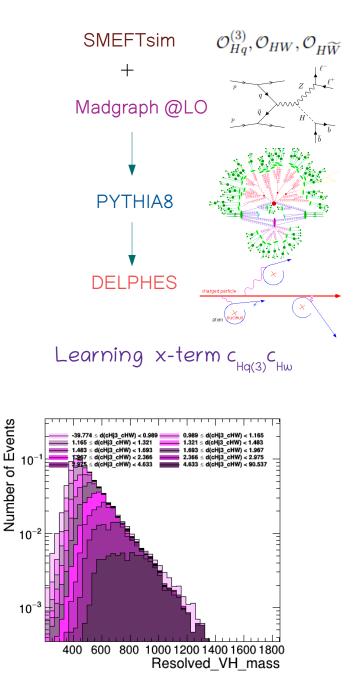


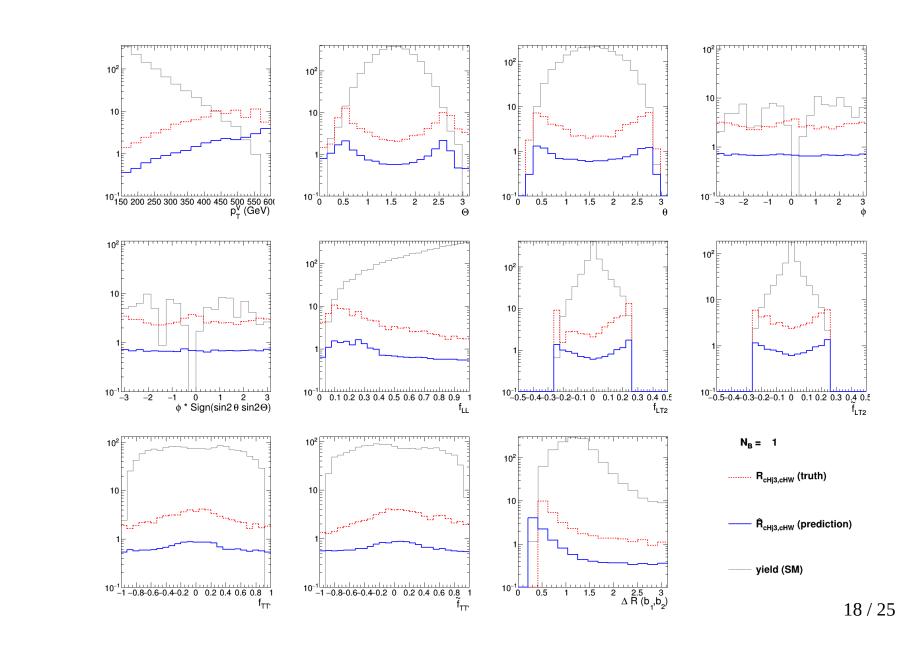
1

16/25



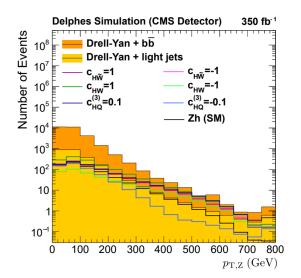


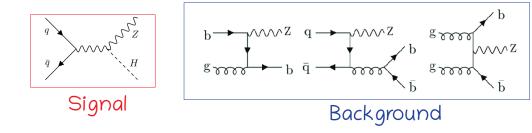




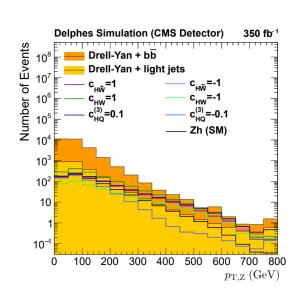
Performance in (real) simulation of signal + background

ZH SMEFT signal + Drell-Yan background

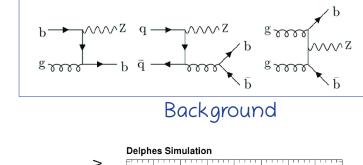




Performance in (real) simulation of signal + background



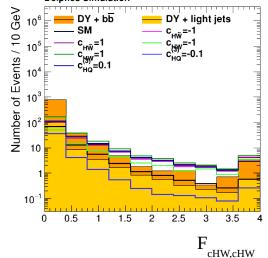
LKgi Uullu		
Observable	Description	
H _T	$\sum_{ m jets} p_{ m T}$	
$N_{ m jet}$	Jet multiplicity	
$p_{\mathrm{T}}(j_1), p_{\mathrm{T}}(j_2), p_{\mathrm{T}}(j_3)$	$p_{\rm T}$ of the three highest $p_{\rm T}$ jets	
$ \eta(j_1) , \eta(j_2) , \eta(j_3) $	$ \eta $ of the three highest $p_{\rm T}$ jets	
$p_{\mathrm{T}}(\mathrm{h}), \eta(\mathrm{h}) $	p_{T} and $ \eta $ from h candidate	
$p_{\mathrm{T}}(\mathrm{Z}), \eta(\mathrm{Z}) $	p_{T} and $ \eta $ from Z candidate	
$\Theta,\hat{ heta},\hat{\phi}$	See Sec. 4.1 and Fig. 1	
$f_{LL}, \ldots, \widetilde{f}_{TT'}$	See Sec. 4.1 and Ref. 30	
$p_{ m T}(\ell_2)/p_{ m T}(\ell_1)$	Ratio of lepton $p_{\rm T}$	
$\Delta \phi(\ell_1, \ell_2), \Delta \eta(\ell_1, \ell_2) $	Azimuthal and η difference of ℓ_1 and ℓ_2	
$\Delta \phi(\text{b-jet}_1, \text{b-jet}_2), \Delta \eta(\text{b-jet}_1, \text{b-jet}_2) $	Azimuthal and η difference of b jets	
$m(b-jet_1, b-jet_2)$	Higgs candidate mass	
$p_{\rm T}({\rm b-jet}_2)/p_{\rm T}({\rm b-jet}_1)$	Ratio of transverse b-jet momenta	
$\Delta R(\mathbf{Z},\mathbf{h}), \Delta \eta(\mathbf{Z},\mathbf{h}) , m(\mathbf{Z},\mathbf{h})$	Properties of the Zh system	
$\Delta R(\text{non b-jet, Z}), \Delta R(\text{non b-jet, h})$	ΔR distances to non b-tagged jet	
Thrust	See Ref. 51	



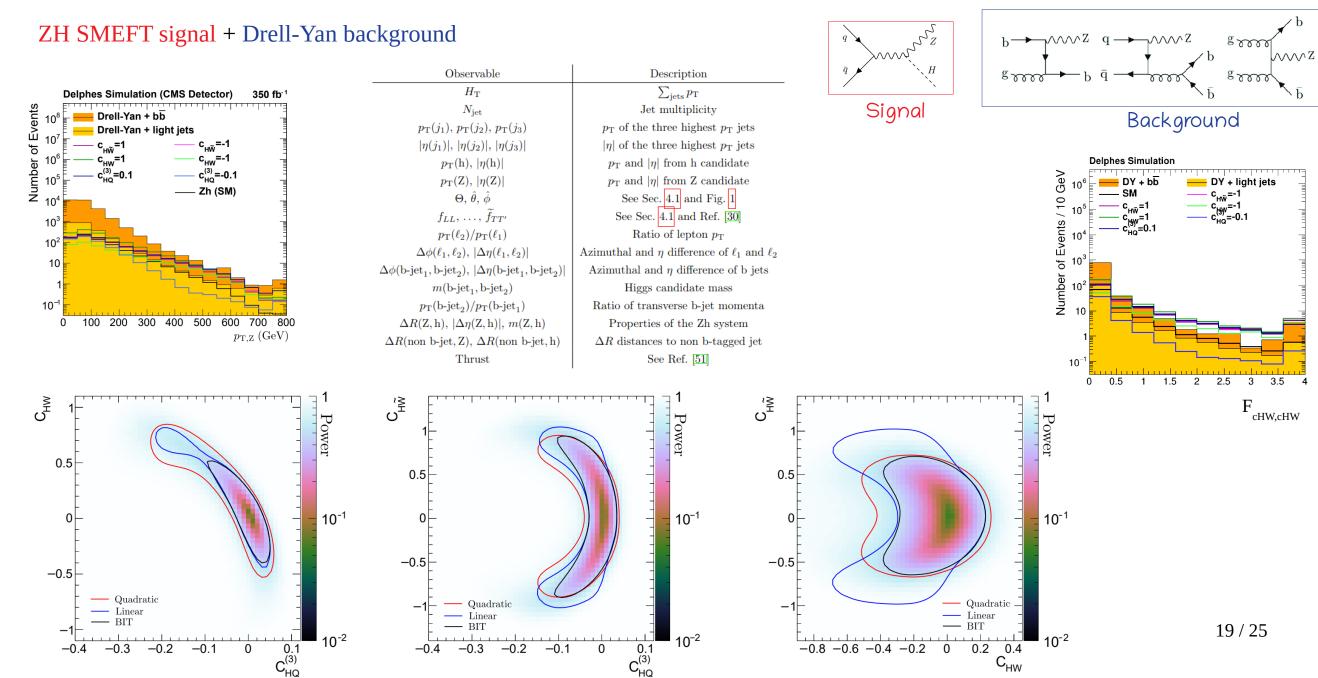
22

 \sim

Signal



Performance in (real) simulation of signal + background



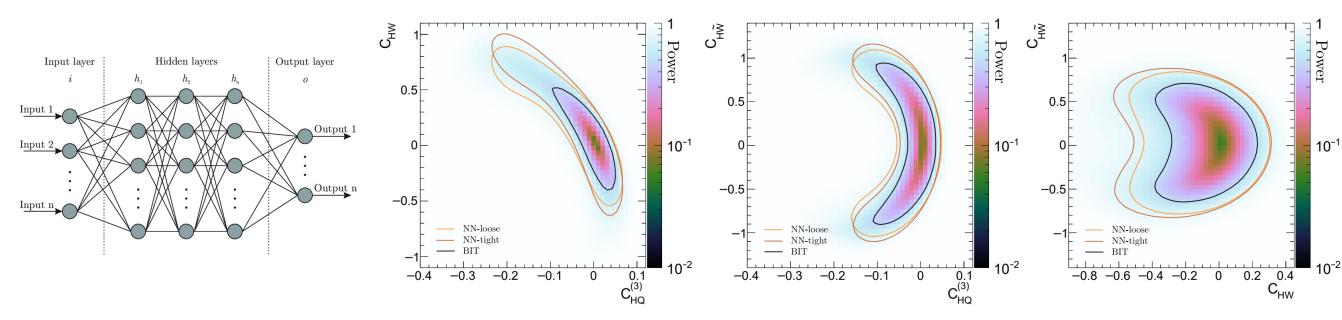
Comparison with 'traditional' approach

Two thresholds:

DNN to separate signal & bkg

Loose: 25% Bkg Eff 77% Sig Eff Tight: 3.5% Bkg Eff 33% Sig Eff Same variables used in BIT & DNN

Multilayer perceptron with 2 layers with 100 & 50 nodes



Better constraints with BIT w.r.t. conventional 'reinterpretation' approach

BIT learns signal-background separation & SMEFT dependence for signal

Other works: Parameterized neural networks

 $f^*(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathrm{SM})}{p(\boldsymbol{x}|\mathrm{SM}) + p(\boldsymbol{x}|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})}r(\boldsymbol{x})}$

Remember the likelihood ratio trick

Works with

Mean-squared error loss function $L = \int dx \left(p(x,\theta)(1-f(x))^2 + p(x, \text{SM})(f(x))^2 \right)$ Cross-entropy loss function $L = \int dx \left(p(x,\theta) \log(1-f(x)) + p(x, \text{SM}) \log(f(x)) \right)$

Other works: Parameterized neural networks

Remember the likelihood ratio trick

$$f^{*}(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathrm{SM})}{p(\boldsymbol{x}|\mathrm{SM}) + p(\boldsymbol{x}|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})}r(\boldsymbol{x})}$$

Works with

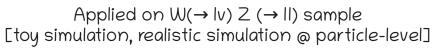
Mean-squared error loss function $L = \int dx \left(p(x, \theta)(1 - f(x))^2 + p(x, SM)(f(x))^2 \right)$ Cross-entropy loss function $L = \int dx \left(p(x, \theta) \log(1 - f(x)) + p(x, SM) \log(f(x)) \right)$

Parameterized classifiers with quadratic ansatz

 $f(x,c) \equiv \frac{1}{1 + [1 + c n_{\alpha}(x)]^2 + [c n_{\beta}(x)]^2}$

Chen, Glioti, Panico, Wulzer (2020)

Minimizes MSE loss (same as BIT)



ML4EFT with unbinned likelihood

$$\hat{r}_{\sigma}(\boldsymbol{x}, \boldsymbol{c}) = 1 + \sum_{j=1}^{n_{\text{eft}}} \text{NN}^{(j)}(\boldsymbol{x}) c_j + \sum_{j=1}^{n_{\text{eft}}} \sum_{k \ge j}^{n_{\text{eft}}} \text{NN}^{(j,k)}(\boldsymbol{x}) c_j c_k$$

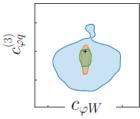
Ambrosio, Hoeve, Madigan, Rojo, Sanz (2022)

Minimizes cross-entropy loss

Applied on tt, tt→2l+2v+2b, Z(→ll)H(->bb) samples [parton-level]

- □ $p_T^Z \in [75, 150, 250, 400, \infty)$ [GeV] □ Unbinned ML (p_T^Z)
- Unbinned ML (7 features)

+ SM



Other works: Parameterized neural networks

Remember the likelihood ratio trick

 $f^*(\boldsymbol{x}) = \frac{p(\boldsymbol{x}|\mathrm{SM})}{p(\boldsymbol{x}|\mathrm{SM}) + p(\boldsymbol{x}|\theta)} = \frac{1}{1 + \frac{\sigma(\theta)}{\sigma(\mathrm{SM})}r(\boldsymbol{x})}$

Works with

Differences

Mean-squared error loss function $L = \int dx \left(p(x,\theta)(1-f(x))^2 + p(x, \text{SM})(f(x))^2 \right)$ Cross-entropy loss function $L = \int dx \left(p(x, \theta) \log(1 - f(x)) + p(x, \text{SM}) \log(f(x)) \right)$

Applied on $W(\rightarrow |v) \ge (\rightarrow |l)$ sample [toy simulation, realistic simulation @ particle-level]

ML4FFT with unbinned likelihood

 $\hat{r}_{\sigma}(\boldsymbol{x}, \boldsymbol{c}) = 1 + \sum_{i=1}^{n_{\text{eft}}} \text{NN}^{(j)}(\boldsymbol{x}) c_j + \sum_{i=1}^{n_{\text{eft}}} \sum_{k>i}^{n_{\text{eft}}} \text{NN}^{(j,k)}(\boldsymbol{x}) c_j c_k$

Ambrosio, Hoeve, Madigan, Rojo, Sanz (2022)

Minimizes MSE loss (same as BIT)

Chen, Glioti, Panico, Wulzer (2020)

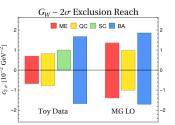
Minimizes cross-entropy loss

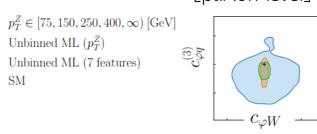
Applied on tt. tt \rightarrow 2l+2v+2b, Z(\rightarrow II)H(->bb) samples [parton-level]

Same philosophy as Madminer & BIT → Regress on joint likelihood ratio

Different event samples to learn individual linear & quadratic terms

BIT is much more speed-optimized





+ SM

Parameterized classifiers with quadratic ansatz

 $f(x,c) \equiv \frac{1}{1 + [1 + c n_{\alpha}(x)]^2 + [c n_{\beta}(x)]^2}$

Summary & Outlook

- Effective field theory analysis coming to center stage of LHC research
- Usage of machine learning being explored in last few years to extract maximum information & probe EFT operators to the finest level
- Boosted decision tree based implementations offer attractive options

- Simple

- Fast
- Needs a single sample (with EFT weights)
- Python-based framework publicly available [link]
- Neural network based strategies also useful
- Yet to see the first results from experiments on real data!

Summary & Outlook

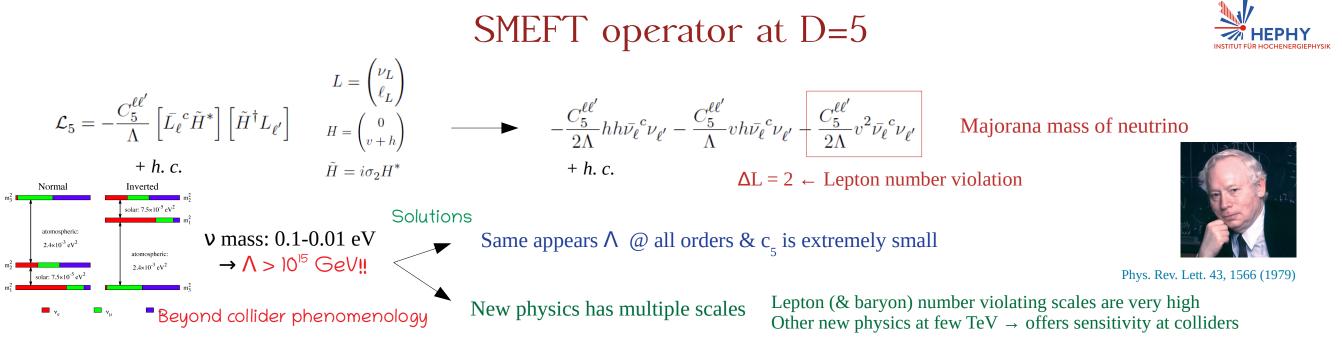
- Effective field theory analysis coming to center stage of LHC research
- Usage of machine learning being explored in last few years to extract maximum information & probe EFT operators to the finest level
- Boosted decision tree based implementations offer attractive options

- Simple

- Fast
- Needs a single sample (with EFT weights)
- Python-based framework publicly available [link]
- Neural network based strategies also useful
- Yet to see the first results from experiments on real data!

22 / 25

Extra Material



Theoretical models



N: SU(2) singlet fermion

n Δ : SU(2) triplet scalar

 Σ : SU(2) triplet fermion



Standard model effective field theory (SMEFT)

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{\mathbf{c}_{i}^{(5)}}{\Lambda} \mathcal{O}_{5,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(6)}}{\Lambda^2} \mathcal{O}_{6,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(7)}}{\Lambda^3} \mathcal{O}_{7,i} + \sum_{i} \frac{\mathbf{c}_{i}^{(8)}}{\Lambda^4} \mathcal{O}_{8,i} + \dots$

Violate lepton number conservation

Violate baryon & lepton number conservation

	$1: X^{3}$	$2: H^6$			$3 : H^{4}I$	5 :	$5:\psi^2H^3+{\rm h.c.}$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_H ($(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^{\dagger}H)$	$\Box(H^{\dagger}H)$	Q_{eH}	$(H^\dagger H)(\bar{l}_p e_r H)$	
$Q_{\widetilde{G}}$	$f^{ABC} {\widetilde{G}}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$(H^{\dagger}D_{\mu}H$	$)^* \left(H^\dagger D_\mu H \right)$	Q_{uH}	$(H^\dagger H)(\bar{q}_p u_r \widetilde{H})$	
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$						Q_{dH}	$(H^\dagger H)(\bar{q}_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$								
	$4: X^{2}H^{2}$	($\delta: \psi^2 X H$	+ h.c.		-	$\psi^2 H^2 D$		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} \epsilon$	$(r_r)\tau^I HW$	-I μν	$Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftarrow{I}$	$\vec{D}_{\mu}H)(\bar{l}_p\gamma^{\mu}l_r)$	
$Q_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu i})$	$(\nu e_r)HB_{\mu\nu}$	<i>y</i>	$Q_{Hl}^{\left(3 ight)}$	$(H^{\dagger}i\overleftrightarrow{D}$	$(\bar{l}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^{\dagger}HW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T$	$(\Gamma^A u_r) \widetilde{H} O$	$G^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{O}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} \imath$	$(\iota_r)\tau^I \widetilde{H} W$	$\frac{1}{\mu\nu}$	$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{O}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$	
Q_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu i})$	$(u_r) \tilde{H} B_\mu$	ν	$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}$	${}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T)$	$(\Gamma^A d_r) H C$	$T^{A}_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftarrow{D}$	$\partial_{\mu}H)(\bar{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} \sigma)$	$(l_r)\tau^I H W$	$\tau I \\ \mu \nu$	Q_{Hd}	$(H^{\dagger}i\overleftarrow{L}$	$(\bar{d}_p \gamma^\mu d_r)$	
$Q_{H\widetilde{W}E}$	$H^{\dagger}\tau^{I}H \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu i})$	$(d_r)H B_\mu$	ν C	$Q_{Hud} + { m h.c.}$	$i(\widetilde{H}^{\dagger}L$	$(\bar{u}_p \gamma^\mu d_r)$	

Validity:

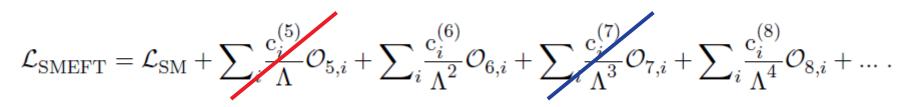
E<<Λ

 \rightarrow EFT contributions power-suppressed

→ Deviation from SM prediction small

$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$			$8:(\bar{L}L)(\bar{R}R)$	$8: (\bar{L}R)(\bar{R}L) + \text{h.c.}$		$8: (\bar{L}R)(\bar{L}R) + h.c.$	
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r)\epsilon_{jk}(\bar{q}_s^k d_t)$
$Q_{qq}^{\left(1 ight)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	Qledq	$(i_p e_r)(a_s q_{tj})$		
$Q_{qq}^{\left(3 ight)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$			$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$
$Q_{lq}^{\left(1 ight)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$			$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$
$Q_{lq}^{\left(3 ight)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$			$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$			toda	
		$Q_{ud}^{(8)}$	$(\bar{u}_p\gamma_\mu T^A u_r)(\bar{d}_s\gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$				
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$				

Standard model effective field theory (SMEFT)



Violate lepton number conservation

Violate baryon & lepton number conservation

	,
Assumpti	ons:

- → Poincaré symmetry, locality
- → Field content (relevant at EW scale) same as in SM
- \rightarrow SM Gauge symmetries SU(3) x SU(2) x U(1) respected

Validity:

 $E << \Lambda$

- \rightarrow EFT contributions power-suppressed
 - → Deviation from SM prediction small

	$1: X^3$	$2: H^6$			$3: H^4 D^2$	5	$5:\psi^2 H^3 + \text{h.c.}$	
Q_G	$Q_G \int f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$		$(H^{\dagger}H)^3$	$Q_{H\square}$	$(H^\dagger H) \Box (H^\dagger H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$			Q_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\hat{H})$	
Q_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$							
	$4: X^{2}H^{2}$	($\delta: \psi^2 X H$	+ h.c.	-	$7: \psi^2 H^2$	D	
$Q_{HG} = H^{\dagger}H G^A_{\mu\nu}G^{A\mu\nu}$		Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$		$I_{\mu\nu}$ $Q_{Hl}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{H\widetilde{G}}$ $H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$		Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$		$Q_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$		
$Q_{HW} = H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$		Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H}$		$Q_{\mu\nu}^A \qquad Q_{He}$	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{e}_p\gamma^{\mu}e_r)$	
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$Q_{uW} = (\bar{q}_p \sigma^{\mu\nu} u_r) \tau$		$\widetilde{H} W^I_{\mu\nu} \qquad Q^{(1)}_{Hq}$		$\overrightarrow{O}_{\mu}H)(\overline{q}_p\gamma^{\mu}q_r)$	
Q_{HB} $H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$		Q_{uB}	Q_{uB} $(\bar{q}_p \sigma^{\mu\nu} u$		$Q_{Hq}^{(3)} = Q_{Hq}^{(3)}$		$(H^{\dagger}i\overleftrightarrow{D}{}^{I}_{\mu}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu})$	$(\Gamma^A d_r) H G$	$Q_{\mu\nu}^A = Q_{Hu}$	$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(\overline{u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} a)$	$(d_r)\tau^I H W$	Q_{Hd}	$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{O}_{\mu}H)(\overline{d}_p\gamma^{\mu}d_r)$	
SHW B	$H^{\dagger} \tau^{I} H \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dB}		$^{\nu}d_r)HB_{\mu\nu}$	$_{ u} \qquad \qquad Q_{Hud} + { m h.c.}$: (ĩt† t	$(\bar{u}_p \gamma^\mu d_r)$	

$8:(\bar{L}L)(\bar{L}L)$		$8:(\bar{R}R)(\bar{R}R)$			$8:(\bar{L}L)(\bar{R}R)$	$8: (\bar{L}R)(\bar{R}L) + \text{h.c.}$	$8: (\bar{L}R)(\bar{L}R) + \text{h.c.}$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{ledq} $(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$	
$Q_{qq}^{\left(1 ight)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	$Qlead = (l_p c_r)(a_s q_{lj})$			
$Q_{qq}^{\left(3 ight)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
$Q_{lq}^{\left(1 ight)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$	
$Q_{lq}^{\left(3 ight) }$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$		1		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$				
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$				