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Physics@LHC: What’s the status?

Newest fundamental particle discovered: Last missing piece in standard model (SM)

No smoking gun signature of new physics yet from LHC data    
                                                    

But, there are small interesting deviations (publicly available) ;)
Precision measurement of plethora of processes

 → In general, good agreement with SM prediction

CMS-EXO summary plotsCMS summary plots
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‘Model-independent’ way to look for new physics signatures

Assumptions:

               → Unitarity, locality, Poincaré symmetry
               → Field content (relevant at EW scale) same as in SM
               → SM Gauge symmetries  SU(3)

C
 x SU(2)

L
 x U(1)

Y
 respected

             

SM  A low-energy approximation of a more general theory← A low-energy approximation of a more general theory

Physics at high scale appears as a correction to low energy theory
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Idea courtesy:
A. Falkowski

New (heavy) d.o.f. modify SM interactions

‘Model-independent’ way to look for new physics signatures

Assumptions:

               → Unitarity, locality, Poincaré symmetry
               → Field content (relevant at EW scale) same as in SM
               → SM Gauge symmetries  SU(3)

C
 x SU(2)

L
 x U(1)

Y
 respected

             

SM  A low-energy approximation of a more general theory← A low-energy approximation of a more general theory

Physics at high scale appears as a correction to low energy theory

Use data from precision electroweak, top quark, Higgs boson measurements together

Standard model effective field theory (SMEFT)
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Standard model effective field theory (SMEFT)

59 SMEFT operators @ dim=6
Grzadkowski, Iskrzy ski, Misiak, Rosiek (2010)ński, Misiak, Rosiek (2010)

Lepton number violation Lepton & Baryon number violation
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Standard model effective field theory (SMEFT)

59 SMEFT operators @ dim=6

Ideally, 
2499 numbers to measureAlonso, Jenkins, Manohar, Trott (2013)

Grzadkowski, Iskrzy ski, Misiak, Rosiek (2010)ński, Misiak, Rosiek (2010)
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Standard model effective field theory (SMEFT)

                   Flavor assumptions  Different # of coefficients → 

59 SMEFT operators @ dim=6

Ideally, 
2499 numbers to measureAlonso, Jenkins, Manohar, Trott (2013)

Grzadkowski, Iskrzy ski, Misiak, Rosiek (2010)ński, Misiak, Rosiek (2010)
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Standard model effective field theory (SMEFT)

                   Flavor assumptions  Different # of coefficients → 

U(3)5
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59 SMEFT operators @ dim=6

Ideally, 
2499 numbers to measureAlonso, Jenkins, Manohar, Trott (2013)

Brivio (2020)

Grzadkowski, Iskrzy ski, Misiak, Rosiek (2010)ński, Misiak, Rosiek (2010)
Lepton number violation Lepton & Baryon number violation
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Standard model effective field theory (SMEFT)

                   Flavor assumptions  Different # of coefficients → 
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59 SMEFT operators @ dim=6

Ideally, 
2499 numbers to measureAlonso, Jenkins, Manohar, Trott (2013)

Automated in 
  SMEFTsim @LO 

(all D-6 SMEFT operators)
SMEFT@NLO 

(CP-even D-6 SMEFT operators)

Brivio (2020)

Grzadkowski, Iskrzy ski, Misiak, Rosiek (2010)ński, Misiak, Rosiek (2010)
Lepton number violation Lepton & Baryon number violation
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~10 parameters to measure

In a typical search, generate signal in 10-dim grids

   If only 10 values / coefficient  10→ 10 signal samples!!!

Not needed for SMEFT :D 

# of signal samples (for ‘n’ coefficients):  1 + n + n(n+1)/2    Sufficient← A low-energy approximation of a more general theory

If polynomial is of order ‘k’, # of minimum signal points N(n,k) =   

For n=10, k=2   N(10,2) = 66→ 
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Polynomial parameterization in SMEFT
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4-fermion ops (~8)

~10 parameters to measure

In a typical search, generate signal in 10-dim grids

   If only 10 values / coefficient  10→ 10 signal samples!!!

Not needed for SMEFT :D 

# of signal samples (for ‘n’ coefficients):  1 + n + n(n+1)/2    Sufficient← A low-energy approximation of a more general theory

If polynomial is of order ‘k’, # of minimum signal points N(n,k) =   

For n=10, k=2   N(10,2) = 66→ 

Difference between SMEFT & SM is small    Possible to reweight SM sample to obtain SMEFT prediction→ 

Storing N(n,k) weights per event is sufficient!

Curse of dimensionality

Curse of dimensionality is lifted ! 

σ is a quadratic function of coefficients !

Possible to truncate non-polynomial cases (option available in SMEFTsim)

Example
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Optimal observable for SMEFT analysis

??

Likelihood ratio trick in classification:

Optimal test statistic
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??

Likelihood ratio trick in classification:
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Hard to model transfer function 
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Observables used for SMEFT analysis

Differential cross sections:        Straightforward       Feasible only with a few kinematic observables
                                                                                  EFT effects ignored in remaining variables

  Machine learning based discriminators:    Enough experience in community    

Matrix element method:        Observable ~ Likelihood ratio ~ optimal     
                                                                                                                                                                                                                

Likelihood-free inference:        Learn full likelihood ratio ← optimal    More in this talk

if transfer function is modeled well 

Construction depends on signal points in EFT space
~ exploits effects due to quadratic terms in EFT expansion

E.g. JHEP 12 (2021) 083

E.g. JHEP 04 (2023) 80
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Starting point:   Augmented dataset  D ← list of events with a number of SMEFT weights / event

Description:   Extended likelihood  

Neyman-Peasrson lemma:   Optimal test statistic  
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Learning SMEFT likelihood (1) 

Starting point:   Augmented dataset  D ← list of events with a number of SMEFT weights / event

Description:   Extended likelihood  

Neyman-Peasrson lemma:   Optimal test statistic  

Likelihood ratio

Taylor expanding ...

SMEFT dependence of detector-level observables intractable

Joint likelihood ratio tractable

Weights stored per event

parton showering + hadronization + detector simulation + reconstruction
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Learning SMEFT likelihood (2)  

Mean squared error (MSE) loss functions can be used to regress on joint LLR

Latent space gets marginalized

G(x)

Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)

MadMiner 
Brehmer, Kling, Espejo, Cranmer (2019)
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Learning SMEFT likelihood (2)  

Mean squared error (MSE) loss functions can be used to regress on joint LLR

Latent space gets marginalized

G(x)

Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)

Putting joint-likelihood ratio

Detector-level likelihood ratio!

                                                                                                                                                                               ← A low-energy approximation of a more general theory Known from simulation  ← A low-energy approximation of a more general theory Goal to achieve
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Learning SMEFT likelihood (2)  

Mean squared error (MSE) loss functions can be used to regress on joint LLR

Latent space gets marginalized

G(x)

Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)

Putting joint-likelihood ratio

Detector-level likelihood ratio!

                                                                                                                                                                               ← A low-energy approximation of a more general theory Known from simulation  ← A low-energy approximation of a more general theory Goal to achieve

Learning likelihood terms
order-by-order 
in SMEFT coefficient
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Learning SMEFT likelihood (2)  

Mean squared error (MSE) loss functions can be used to regress on joint LLR

Latent space gets marginalized

G(x)

Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)
Brehmer, Cranmer, Louppe, Pavez (2018)

In simulated events:

Regression targets

Putting joint-likelihood ratio

Detector-level likelihood ratio!

                                                                                                                                                                               ← A low-energy approximation of a more general theory Known from simulation  ← A low-energy approximation of a more general theory Goal to achieve

Learning likelihood terms
order-by-order 
in SMEFT coefficient

MadMiner 
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Learning SMEFT likelihood with decision trees (1)

Tree prediction

Phase space partitioning Prediction

x: Feature vectors
j: Terminal nodes

                           α
j
 : Requirements on x for node j

             F
j
 : Prediction for node j

Minimization of loss function w.r.t. α
j 
 and F

j
  

Training phase
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j
 : Requirements on x for node j

             F
j
 : Prediction for node j

Minimization of loss function w.r.t. α
j 
 and F

j
  

Fisher information for measurement of θ

Cramér-Rao bound:  wiki

Linear term in SMEFT expansion

Node-split criterion maximizes Fisher information →Optimal in precision 
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             F
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Minimization of loss function w.r.t. α
j 
 and F

j
  

Fisher information for measurement of θ

Cramér-Rao bound:  wiki

Linear term in SMEFT expansion

Gini index implemented in TMVA for classification

Node-split criterion maximizes Fisher information →Optimal in precision 

Integral replaced by summation

Fisher information = Variance of score (= derivative of log-likelihood)
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Learning SMEFT likelihood with decision trees (1)

Tree prediction

Phase space partitioning Prediction

x: Feature vectors
j: Terminal nodes

                           α
j
 : Requirements on x for node j

             F
j
 : Prediction for node j

Minimization of loss function w.r.t. α
j 
 and F

j
  

Fisher information for measurement of θ

Cramér-Rao bound:  wiki

Linear term in SMEFT expansion

Gini index implemented in TMVA for classification

Node-split criterion maximizes Fisher information →Optimal in precision 

Integral replaced by summation

Fisher information = Variance of score (= derivative of log-likelihood)

Quadratic term in SMEFT expansion

Starting point of SC, N. Frohner, L. Lechner, R. Schoefbeck, D. Schwarz (2021)

Training phase
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Boosting:   Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration 

Minimize loss function loss w.r.t. f(x)  ← A low-energy approximation of a more general theory Goes on til l a pre-defined number B
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11 / 25



  

Boosting:   Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration 

Minimize loss function loss w.r.t. f(x)

Weak learner needs to fit w – ηF  Target needs to be updated in each iteration ← A low-energy approximation of a more general theory

 ← A low-energy approximation of a more general theory Goes on til l a pre-defined number B

Learning SMEFT likelihood with decision trees (2)

11 / 25



  

Boosting:   Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration 

Minimize loss function loss w.r.t. f(x)

Weak learner needs to fit w – ηF  Target needs to be updated in each iteration ← A low-energy approximation of a more general theory

 ← A low-energy approximation of a more general theory Goes on til l a pre-defined number B

Final outcome of algorithm

Learning SMEFT likelihood with decision trees (2)

Boosted information tree (BIT)

SC, S. Roshap, R. Schoefbeck, D. Schwarz (2022)
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Boosting:   Provides a strong learner by iteratively training an ensemble of weak learners to pseudo-residuals of previous iteration 

Minimize loss function loss w.r.t. f(x)

Weak learner needs to fit w – ηF  Target needs to be updated in each iteration ← A low-energy approximation of a more general theory

 ← A low-energy approximation of a more general theory Goes on til l a pre-defined number B

Final outcome of algorithm

Separate training for each linear (‘a’) & quadratic terms (‘ab’)  →Total # of trainings  = n + n(n+1)/2  

Learning SMEFT likelihood with decision trees (2)

LLR to achieve LLR obtained

=
(in large sample limit)

Boosted information tree (BIT)

SC, S. Roshap, R. Schoefbeck, D. Schwarz (2022)
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Application of algorithm (2) 

3 SMEFT operators

 ← A low-energy approximation of a more general theory Expression for toy simulation

(  Z(→ l → l+ l- )  (  )H (→ bb) → bb  production
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Application of algorithm (2) 

3 SMEFT operators

 ← A low-energy approximation of a more general theory Expression for toy simulation

Coefficients are perfectly learned in  toy simulationEFT effects on kinematic distributions

(  Z(→ l → l+ l- )  (  )H (→ bb) → bb  production
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Optimality in toy data 

BIT achieves theoretically optimum constraints

Theoretically optimum

BIT
     (unbinned) 

M = 1, 2, 5, 30 

Quantification of hypothesis testing 95% CL interval

Type-2 error:

Power = 1 - β
Neyman-Pearson lemma:   Likelihood ratio test statistic gives maximum power (given a type-1 error)

BIT output

Binned test statistic Distribution of R in ‘M’ bins

With sufficient # of bins, binned constraints converge to unbinned ones

Tree depth
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Performance in (real) simulation
SMEFTsim      

Madgraph @LO

PYTHIA8

DELPHES 

Learning linear term for c
Hq(3) 
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https://smeftsim.github.io/
https://launchpad.net/mg5amcnlo
https://pythia.org/
https://cp3.irmp.ucl.ac.be/projects/delphes


  

Performance in (real) simulation
SMEFTsim      

Madgraph @LO

PYTHIA8

DELPHES 

Learning linear term for c
Hw
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https://smeftsim.github.io/
https://launchpad.net/mg5amcnlo
https://pythia.org/
https://cp3.irmp.ucl.ac.be/projects/delphes


  

Performance in (real) simulation
SMEFTsim      

Madgraph @LO

PYTHIA8

DELPHES 

Learning linear term for c
HW
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https://smeftsim.github.io/
https://launchpad.net/mg5amcnlo
https://pythia.org/
https://cp3.irmp.ucl.ac.be/projects/delphes


  

Performance in (real) simulation
SMEFTsim      

Madgraph @LO

PYTHIA8

DELPHES 

Learning  x-term c
Hq(3)

c
Hw

18 / 25

https://smeftsim.github.io/
https://launchpad.net/mg5amcnlo
https://pythia.org/
https://cp3.irmp.ucl.ac.be/projects/delphes


  

Performance in (real) simulation of signal + background
ZH SMEFT signal + Drell-Yan background

Signal Background
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Comparison with ‘traditional’ approach

DNN to separate signal & bkg

BIT learns signal-background separation & SMEFT dependence for signal

Better constraints with BIT w.r.t. conventional ‘reinterpretation’ approach

Multilayer perceptron with 2 layers with 100 & 50 nodes

Two thresholds:  

Loose: 25% Bkg Eff  77% Sig Eff
Tight: 3.5% Bkg Eff  33% Sig Eff

Same variables used in BIT & DNN

20 / 25



  

Other works: Parameterized neural networks

Remember the likelihood ratio trick

Works with 

  Mean-squared error loss function

  Cross-entropy loss function

21 / 25



  

Other works: Parameterized neural networks

Parameterized classifiers with quadratic ansatz

ML4EFT with unbinned likelihood

Chen, Glioti, Panico, Wulzer (2020)

Ambrosio, Hoeve, Madigan, Rojo, Sanz (2022)

Minimizes MSE loss (same as BIT)

Minimizes cross-entropy loss 

Applied on W(  lv) Z (  l l) sample→ → 
[toy simulation, realistic simulation @ particle-level]

Applied on tt, tt 2l+2v+2b, Z( ll)H(->bb) samples→ → 
[parton-level]

Remember the likelihood ratio trick

Works with 

  Mean-squared error loss function

  Cross-entropy loss function
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https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202007.10356
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202211.02058


  

Other works: Parameterized neural networks

Parameterized classifiers with quadratic ansatz

Different event samples to learn individual linear & quadratic terms 

Same philosophy as Madminer & BIT  Regress on joint likelihood ratio→ 

ML4EFT with unbinned likelihood

Chen, Glioti, Panico, Wulzer (2020)

Ambrosio, Hoeve, Madigan, Rojo, Sanz (2022)

Minimizes MSE loss (same as BIT)

Minimizes cross-entropy loss 

BIT is much more speed-optimized

Applied on W(  lv) Z (  l l) sample→ → 
[toy simulation, realistic simulation @ particle-level]

Applied on tt, tt 2l+2v+2b, Z( ll)H(->bb) samples→ → 
[parton-level]

Remember the likelihood ratio trick

Works with 

  Mean-squared error loss function

  Cross-entropy loss function

Differences
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https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202007.10356
https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=find%20eprint%202211.02058


  

Summary & Outlook

● Effective field theory analysis coming to center stage of LHC research

● Usage of machine learning being explored in last few years to extract maximum information & probe EFT operators to the finest 
level

● Boosted decision tree based implementations offer attractive options
- Simple

- Fast

- Needs a single sample (with EFT weights)

● Python-based framework publicly available [link]

● Neural network based strategies also useful

● Yet to see the first results from experiments on real data!
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https://github.com/BIT4EFT/BIT


  

Summary & Outlook

● Effective field theory analysis coming to center stage of LHC research

● Usage of machine learning being explored in last few years to extract maximum information & probe EFT operators to the finest 
level

● Boosted decision tree based implementations offer attractive options
- Simple

- Fast

- Needs a single sample (with EFT weights)

● Python-based framework publicly available [link]

● Neural network based strategies also useful

● Yet to see the first results from experiments on real data!

22 / 25

https://github.com/BIT4EFT/BIT


  

Extra Material

23 / 25



  

SMEFT operator at D=5

Type-I, Type-II, & Type-III See-saw mechanisms 

N: SU(2) singlet fermion Δ : SU(2) triplet scalar ∑ : SU(2) triplet fermion

ν mass: 0.1-0.01 eV 
→  Λ > 1015 GeV!!

      Same appears Λ  @ all orders & c
5
 is extremely small 

New physics has multiple scales 
    

Solutions

Lepton (& baryon) number violating scales are very high
Other new physics at few TeV → offers sensitivity at colliders

Collider signature

CMS-EXO-21-003

Theoretical models

Majorana mass of neutrino

ΔL = 2 ← Lepton number violation

Phys. Rev. Lett. 43, 1566 (1979)

+ h. c. + h. c.

Beyond collider phenomenology
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http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-21-003/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.43.1566


  

Standard model effective field theory (SMEFT)

Violate lepton number conservation Violate baryon & lepton number conservation

                           Validity:

                                E<<Λ   
     → EFT contributions power-suppressed  
        → Deviation from SM prediction small
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Standard model effective field theory (SMEFT)

Assumptions:

               → Poincaré symmetry, locality
               → Field content (relevant at EW scale) same as in SM
               → SM Gauge symmetries  SU(3) x SU(2) x U(1) respected

             

Violate lepton number conservation Violate baryon & lepton number conservation

                           Validity:

                                E<<Λ   
     → EFT contributions power-suppressed  
        → Deviation from SM prediction small
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