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Introduction to pulsar timing

(Cosmologist point of view)



Introduction to pulsars

• Neutron stars are compact stars with very

short rotational period and extreme

magnetic fields

• Generally, the magnetic axis is not aligned

with the spin axis, so radiation is swept

through space.

=⇒ Analogous to a lighthouse

• They appear to the observer as pulses,

separated by a fixed period that equals the

spin
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Pulse profiles

Pulse profiles vary across observing frequencies

• Pulse profiles tend to get sharper at higher

frequencies...

• but the noise level increases due to the

pulsar’s steep spectrum

Most pulsar timing are carried around 1.4 GHz

Pulse profiles also vary across pulsars!
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Pulse profiles

Pulse profiles vary across observing frequencies

• Pulse profiles tend to get sharper at higher
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Radio emission from pulsars

The radio emission from pulsars has some intriguing properties

• Individual pulses change randomly from one pulse to the next, they are only stable on average

(minutes to decades)

• Nulling: Pulsars that turn off only to reappear at some point after

• Moding: Pulsars that arbitrarily change between different fingerprints

• Drifting: Pulses appear to come a bit late after each rotation only to reset after a few dozen

rotations
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Different types of pulsars

Type of pulsar Periods Magnetic fields Drift Comment

Young 10 ms 1012 G 10−13 Age < 1000 years

Slow 0.1− 10 s 1010 − 1013 G 10−14 Age > 1000 years, less luminous

Millisecond (MSP) 1− 30 ms < 109 G 10−20 NS spun-up through accretion from

a binary companion
Millisecond pulsars (MSP) are at a sweet spot

• small spin period =⇒ pulse profiles can be obtained rapidly, in minutes

• very few MSPs have displayed anomalous emission properties (nulling, moding, drifting)

• large angular momentum =⇒ far more stable clocks than slow pulsars
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Timing a pulse

How do we time a pulse? Why timing the peak is a bad idea:

• Noise =⇒ peak is not well-resolved

• Position of the peak may vary across frequencies

• Precision needed for PTA δt is smaller than the sampling rate

Time of Arrivals (ToAs) are determined by matching pulses with template profiles:

• Standardized pulse shape, obtained after averaging over many rotations

• In theory this should be the noise-free pulse profile

• This operation needs a good knowledge of the pulsar’s period

• Template profiles may take advantage of the frequency-dependence of the pulses
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Time of Arrivals (ToAs)

One ToA is obtained for each observation period:

• One arbitrary pulse is selected in the observation

• Folding: average pulses modulo the pulse period to obtain an average pulse

• Template matching: the pulse profile is cross-correlated with the template profile to obtain the

phase of the observation

The ToA combines the observation time stamp with the phase measurement
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Transferring the observed times to the Pulsar

Accounting for all known propagation and geometric delays

tPSR = tobs −∆⊙ −∆ISM −∆Bin

• ∆⊙ transferring to the Solar System barycenter. Accounts for a variety of effects: Earth’s orbital

and rotational velocity, mass distribution in the Solar System, Solar winds, parallax... Needs very

precise ephemerides!

• ∆ISM accounts for Interstellar propagation delays. Linked to the Dispersion Measure (DM), or

the integrated electron content along the line-of-sight

DM =

∫ D

0

ne dℓ

• ∆Bin, for pulsars that are in binary systems
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Building the timing model

Once the time of emission is determined, it can be converted to a rotational phase

ϕ(tPSR) = ν(tPSR − t0) +
1

2
ν̇(tPSR − t0)

2 + ...

• ν is the pulsar’s frequency

• ν̇ is the derivative of the pulsar frequency

• ν̈ is usually too small in the case of MSPs

In practice, there is an interplay between

• Construction of the template profile

• Determination of the timing model

• Knowledge of the propagation/geometric delays
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Errors have an impact on timing residuals
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Errors have an impact on timing residuals

Typical PTA dataset Verbiest, Oslowski, and Burke-Spolaor 2021
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Errors have an impact on timing residuals

1% error on the spindown Verbiest, Oslowski, and Burke-Spolaor 2021
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Errors have an impact on timing residuals

Positional offset of 0.1 arcsec in right ascension and
declination Verbiest, Oslowski, and Burke-Spolaor 2021
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Timing residuals

Difference between observed and predicted time of

arrivals of the pulsars’ radio pulses

δti = tobsi − tTM
i

Errors have an impact on timing residuals

Proper motion is 10% incorrect Verbiest, Oslowski, and

Burke-Spolaor 2021
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Hellings and Downs correlations

Good reviews: Jenet and Romano 2015; Romano and

Allen 2023



Time delay due to a GW (1/2)

• Time delay due to the passing of a GW

∆T (t) =
1

2c
uiuj

∫ L

0

ds hij [τ(s), x⃗(s)]

• Plane-wave decomposition of the GW

hij(t, x⃗) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)e
A
ij(k̂) exp

[
i2πf(t− k̂ · x⃗/c)

]
• At zeroth order, the photon propagates on a straight line

x⃗(s) = r⃗1 + sû, τ(s) = t+ (s− L)/c r⃗2 = r⃗1 + Lû,

pulsar at p̂ = −û
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Time delay due to a GW (2/2)

∆T (t) =

∫ +∞

−∞
df

∫
dk̂

∑
A=+,×

hA(f, k̂)R
A(f, k̂) exp

[
i2πf(t− k̂ · r⃗2/c)

]

Response function

RA(f, k̂) ≡ 1

2
uiujeAij(k̂)

1

i2πf

1

1− k̂ · û

[
1 − exp

(
− i2πfL

c
(1− k̂ · û)

) ]

• Earth term

• Pulsar term

• Breaks the û → −û symmetry, there is a difference if the photon is surfing the GW or fight

upstream

• Interaction between the photon and the GW polarizations
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[
1 − exp

(
− i2πfL

c
(1− k̂ · û)
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Short-arm limit fL/c ≪ 1 (toy model for LIGO)

• The response function reduces to

RA(f, k̂) = uiujeAij(k̂)
L

2c

• Take a pulsar in the ẑ direction and

cos(θ) = k̂ · û, then∣∣∣R+(f, k̂)
∣∣∣ = L

2c
sin2(θ),

∣∣∣R×(f, k̂)
∣∣∣ = 0

Reponse function
∣∣R+

∣∣ for a pulsar located in the +ẑ

direction.

14/34



Long-arm limit fL/c ≪ 1 (PTA)

• We neglect the oscillatory pulsar term,

provided k̂ · û ̸= 1

RA(f, k̂) =
1

2
uiujeAij(k̂)

1

i2πf

1

1− k̂ · û
• Take a pulsar in the ẑ direction and

cos(θ) = k̂ · û, then∣∣∣R+(f, k̂)
∣∣∣ = 1

4πf
(1+cos θ),

∣∣∣R×(f, k̂)
∣∣∣ = 0

Reponse function
∣∣R+

∣∣ for a pulsar located in the +ẑ

direction.
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Hellings and Downs correlation (1/2)

Stochastic background of GW〈
hA(f, k̂)

〉
= 0,

〈
hA(f, k̂)hA′(f ′, k̂′)

〉
=

1

8π
H(f) δ(f ′ − f) δAA′ δ2(k̂, k̂′)

• Statistically isotropic and homogeneous

• Stationary

• Unpolarized

• Photons coming from pulsars a and b have correlated time-delays〈
∆Ta(t)∆Tb(t

′)
〉
=

∫ ∞

−∞
df ei2πf(t−t′) Γab(f)H(f)

• The correlation between two pulsars in encoded in

Γab(f) ≡ 1

8π

∫
dk̂

∑
A

RA
a (f, k̂)R

A
b (f, k̂) exp

[
−i2πf k̂ · (⃗ra − r⃗b)/c

]
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Hellings and Downs correlation (2/2)

• Isolate the frequency-dependence

Γab(f) =
1

12π2f2
Γab

• In the short-arm limit

Γab =
1

2
P2(cos γab) +

δab
2

• In the long-arm limit

Γab =
1

2
+
3

2

(
1− cos γab

2

)[
ln

(
1− cos γab

2

)
− 1

6

]
+
δab
2
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Data analysis and results



Sources of noise/signal

In addition to the deterministic components of the timing model, we have non-deterministic effects

Uncorrelated noises

• Pulse jitter

• Intrinsic spin noise

• Orbital Irregularities

• ISM Propagation Effects

Correlated noises

• Imperfections in the reference clock

=⇒ monopole

• Errors in Solar-System ephemerides

=⇒ dipole

• Gravitational waves

=⇒ quadrupole

All these noises can either be White (Uncorrelated in time) or Chromatic (Correlated in time)

18/34



Sources of noise/signal

In addition to the deterministic components of the timing model, we have non-deterministic effects

Uncorrelated noises

• Pulse jitter

• Intrinsic spin noise

• Orbital Irregularities

• ISM Propagation Effects

Correlated noises

• Imperfections in the reference clock

=⇒ monopole

• Errors in Solar-System ephemerides

=⇒ dipole

• Gravitational waves

=⇒ quadrupole

All these noises can either be White (Uncorrelated in time) or Chromatic (Correlated in time)

18/34



Sources of noise/signal

In addition to the deterministic components of the timing model, we have non-deterministic effects

Uncorrelated noises

• Pulse jitter

• Intrinsic spin noise

• Orbital Irregularities

• ISM Propagation Effects

Correlated noises

• Imperfections in the reference clock

=⇒ monopole

• Errors in Solar-System ephemerides

=⇒ dipole

• Gravitational waves

=⇒ quadrupole

All these noises can either be White (Uncorrelated in time) or Chromatic (Correlated in time)

18/34



Phenomenological noise models

Instead of modeling every noise individually, PTA construct a phenomenological model summarized in

terms of the covariance matrix

C(ai)(bj) = Na,iδijδab + CPSR
a,ij δab + ΓabC

CRN
ij

• Na,i: White Noise covariance matrix

• CPSR
a,ij Intrinsic red noise covariant matrix

• CCRN
ij Common red noise covariance matrix

• Γab the overlap function

In the case of Stochastic Background of GW1

Γab =
1

2
+

3

2

(
1− cos γab

2

)[
ln

(
1− cos γab

2

)
− 1

6

]
+

δab
2

1Hellings and Downs 1983.
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Bayesian statistics and model comparison

The likelihood for all observations is given by a Gaussian

p(δt|η) = 1√
|2πC|

exp

(
−1

2
δtTC−1δt

)

To perform model comparison, we studied three approachesa

• Full method: sample parameters assuming a given

SGWB spectrum

• Resampling method: first sample parameters assuming

Γab = δab. Likelihood is factorized for each pulsar Then

resample the posteriors assuming Γab

• Free spectrum: assume that all frequency bins are

independent and obtain a posterior distribution for each

of them. Adding new models is inexpansive

aQuelquejay Leclere et al. 2023.
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Increasing evidence for GWs

• NANOGrav claims 3.5− 4σ with 67 pulsars Agazie et al. 2023

• EPTA claims ≥ 3σ with 25 pulsars Antoniadis et al. 2023a

• PPTA claims 2σ with 30 pulsars Reardon et al. 2023

• CPTA claims 4.6σ with 57 pulsars Xu et al. 2023 but...

intrinsic pulsar 
noise only (IRN)

common-
spectrum red 
noise (CURNγ)

HD-correlated, 
common spectrum 

red noise (HDγ)

1012.1±0.1 226 ± 70

HDγ + dipole

HDγ + monopole

0.6 ± 0.2

dipole

monopole

HDγ + sin
0.78 ± 0.09

(965 with 5 freqs.)

< 10–7

< 10–8

0.48 ± 0.01

Bayes factors between models of correlated red noise in the NANOGrav 15-year data set Agazie et al. 2023
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Increasing evidence for GWs

• NANOGrav claims 3.5− 4σ with 67 pulsars Agazie et al. 2023

• EPTA claims ≥ 3σ with 25 pulsars Antoniadis et al. 2023a

• PPTA claims 2σ with 30 pulsars Reardon et al. 2023

• CPTA claims 4.6σ with 57 pulsars Xu et al. 2023 but...

• Only 3 years of data

• Analysis carried at single frequencies

• Frequentist method (and argue that Bayesian method is biaised)

• They cannot distinguish HD at 4.6σ and dipole at 4.1σ
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Interpretations

• Inspiraling supermassive black hole binaries

(SMBHBs)

• Scalar-induced GWs

• First-order phase transitions

• Cosmic strings

• Domain walls
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Cosmic string interpretation



What is a cosmic string ?

Cosmic string

A cosmic string is a one dimensional topological defect1.

May form when the vacuum manifold has non-contractible

loops.

Example: Mexican hat potential

• Vacuum manifold is a circle M = S1

• Fundamental group Π1(M) = Z

• We expect strings to be formed in most models of

spontaneous symmetry breaking2

1Kibble 1976
2Jeannerot, Rocher, and Sakellariadou 2003
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Cosmic string evolution

Energy scale Width Linear density

GUT : 1016 GeV 2× 10−32 m Gµ ≈ 10−6

3× 1010 GeV 5× 10−27 m Gµ ≈ 10−17

108 GeV 2× 10−24 m Gµ ≈ 10−22

EW : 100 GeV 2× 10−18 m Gµ ≈ 10−34

Nambu-Goto strings: one dimensional limit

• Width of the string very small compared to other length scales in the problem.

• String modeled as a line with mass per unit length µ ∝ η2

• The Nambu-Goto action which minimizes the area swept by the string

S = −µ

∫
dτ dσ

√
−det γ

γab: the induced metric on the string, τ is a time-like and σ a space-like coordinate along the string
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Nambu-Goto strings in flat spacetime

Cosmic string dynamics

In flat spacetime, it satisfies a wave equation whose solution is

X(t, σ) =
1

2
[a(t− σ) + b(t+ σ)], a′2 = b′2 = 1.

For a closed loop X(t, σ + ℓ) = X(t, σ): it oscillates with a period T =
ℓ

2
.

Cosmic strings emit gravitational waves:

• Oscillation

• Kink: when X′ is not continuous

• Kink-kink collision

• Cusp: when Ẋ2 = 1
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• Oscillation

• Kink: when X′ is not continuous

• Kink-kink collision

• Cusp: when Ẋ2 = 1
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The number of cosmic string loops N (ℓ, t)

Model for the population of loops

• Long strings are stretched by the expansion of the Universe:

a(t)

• They intersect each other and produce loops : P(ℓ, t)

• Loops decay by emitting gravitational waves : Ė = −ΓGµ2

∂

∂t

(
a3N

)
+

∂

∂ℓ

[
dℓ

dt
a3N

]
= a3(t)P(ℓ, t)

The loop production function P is studied semi-analytically

• One-scale model Kibble 1985

t5P(ℓ, t) = Cδ

(
ℓ

t
− α

)
• Power-law loop production function Polchinski and Rocha 2006

t5P(ℓ, t) = C

(
ℓ

t

)2χ−3
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The stochastic background of gravitational waves

• The uncorrelated sum of all the GW signals

produced by cosmic string loops constitutes a

Stochastic Background of GW.

• We can estimate this background using

energetic arguments

ΩGW(ln f) =
8πG

3H2
0

fρGW

ρGW(f) =

∫ t0

0

dt

[1 + z(t)]4
Pgw(t, f

′)
∂f ′

∂f

Pgw[t, f
′] = Gµ2

∑
m

2m

f ′2 PmN
(
2m

f ′ , t

)
10 10 10 8 10 6 10 4 10 2 100 102

Frequency [Hz]
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h2
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Cosmic string interpretation: NANOGRAV

• NANOGRAV seems to favor Superstrings

but...

• ΩGW(f) → ΩGW(f)/P , with P

intercommutation probability

• Posterior for P covers the all prior

• Scenario CS + SMBHB does not favor CS
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Cosmic string interpretation: EPTA

• EPTA studied the BOSa and the LRSb

models

• Values of Gµ are comparable for both models

• EPTA does not favor a model in particular

with B ≈ 0.3c

aBlanco-Pillado, Olum, and Shlaer 2014.
bLorenz, Ringeval, and Sakellariadou 2010.
cQuelquejay Leclere et al. 2023.
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Conclusion



Conclusion

• Pulsar Timing Arrays are exciting/difficult experiments: radio astronomy, high-energy

astrophysics, solar-system, intense computing, cosmology...

• It is an exciting time for GW enthusiasts

• A GW stochastic background has (very probably) been detected!

• The interpretation is yet to be determined (Cosmic strings? Superstrings?)

• Looking forward to the International Pulsar Timing Array!

• Software and datasets are available online

30/34



Conclusion

• Pulsar Timing Arrays are exciting/difficult experiments: radio astronomy, high-energy

astrophysics, solar-system, intense computing, cosmology...

• It is an exciting time for GW enthusiasts

• A GW stochastic background has (very probably) been detected!

• The interpretation is yet to be determined (Cosmic strings? Superstrings?)

• Looking forward to the International Pulsar Timing Array!

• Software and datasets are available online

30/34



Conclusion

• Pulsar Timing Arrays are exciting/difficult experiments: radio astronomy, high-energy

astrophysics, solar-system, intense computing, cosmology...

• It is an exciting time for GW enthusiasts

• A GW stochastic background has (very probably) been detected!

• The interpretation is yet to be determined (Cosmic strings? Superstrings?)

• Looking forward to the International Pulsar Timing Array!

• Software and datasets are available online

30/34



Conclusion

• Pulsar Timing Arrays are exciting/difficult experiments: radio astronomy, high-energy

astrophysics, solar-system, intense computing, cosmology...

• It is an exciting time for GW enthusiasts

• A GW stochastic background has (very probably) been detected!

• The interpretation is yet to be determined (Cosmic strings? Superstrings?)

• Looking forward to the International Pulsar Timing Array!

• Software and datasets are available online

30/34



Conclusion

• Pulsar Timing Arrays are exciting/difficult experiments: radio astronomy, high-energy

astrophysics, solar-system, intense computing, cosmology...

• It is an exciting time for GW enthusiasts

• A GW stochastic background has (very probably) been detected!

• The interpretation is yet to be determined (Cosmic strings? Superstrings?)

• Looking forward to the International Pulsar Timing Array!

• Software and datasets are available online

30/34



Conclusion

• Pulsar Timing Arrays are exciting/difficult experiments: radio astronomy, high-energy

astrophysics, solar-system, intense computing, cosmology...

• It is an exciting time for GW enthusiasts

• A GW stochastic background has (very probably) been detected!

• The interpretation is yet to be determined (Cosmic strings? Superstrings?)

• Looking forward to the International Pulsar Timing Array!

• Software and datasets are available online

30/34



Thank you



References

Dai, S. et al. (2015). “A study of multifrequency polarization pulse profiles of millisecond

pulsars”. In: Mon. Not. Roy. Astron. Soc. 449.3, pp. 3223–3262. doi: 10.1093/mnras/stv508. arXiv:

1503.01841 [astro-ph.GA].

Verbiest, J. P. W., S. Oslowski, and S. Burke-Spolaor (Jan. 2021). “Pulsar Timing Array

Experiments”. In: doi: 10.1007/978-981-15-4702-7_4-1. arXiv: 2101.10081 [astro-ph.IM].

Jenet, Fredrick A. and Joseph D. Romano (2015). “Understanding the gravitational-wave

Hellings and Downs curve for pulsar timing arrays in terms of sound and electromagnetic

waves”. In: Am. J. Phys. 83, p. 635. doi: 10.1119/1.4916358. arXiv: 1412.1142 [gr-qc].

Romano, Joseph D. and Bruce Allen (Aug. 2023). “Answers to frequently asked questions

about the pulsar timing array Hellings and Downs correlation curve”. In: arXiv: 2308.05847

[gr-qc].

Hellings, R. w. and G. s. Downs (1983). “UPPER LIMITS ON THE ISOTROPIC

GRAVITATIONAL RADIATION BACKGROUND FROM PULSAR TIMING ANALYSIS”. In:

Astrophys. J. Lett. 265, pp. L39–L42. doi: 10.1086/183954.

31/34

https://doi.org/10.1093/mnras/stv508
https://arxiv.org/abs/1503.01841
https://doi.org/10.1007/978-981-15-4702-7_4-1
https://arxiv.org/abs/2101.10081
https://doi.org/10.1119/1.4916358
https://arxiv.org/abs/1412.1142
https://arxiv.org/abs/2308.05847
https://arxiv.org/abs/2308.05847
https://doi.org/10.1086/183954


Quelquejay Leclere, Hippolyte et al. (June 2023). “Practical approaches to analyzing PTA

data: Cosmic strings with six pulsars”. In: arXiv: 2306.12234 [gr-qc].

Agazie, Gabriella et al. (2023). “The NANOGrav 15 yr Data Set: Evidence for a

Gravitational-wave Background”. In: Astrophys. J. Lett. 951.1, p. L8. doi:

10.3847/2041-8213/acdac6. arXiv: 2306.16213 [astro-ph.HE].

Antoniadis, J. et al. (June 2023a). “The second data release from the European Pulsar

Timing Array III. Search for gravitational wave signals”. In: arXiv: 2306.16214 [astro-ph.HE].

Reardon, Daniel J. et al. (2023). “Search for an Isotropic Gravitational-wave Background with

the Parkes Pulsar Timing Array”. In: Astrophys. J. Lett. 951.1, p. L6. doi:

10.3847/2041-8213/acdd02. arXiv: 2306.16215 [astro-ph.HE].

Xu, Heng et al. (2023). “Searching for the Nano-Hertz Stochastic Gravitational Wave

Background with the Chinese Pulsar Timing Array Data Release I”. In: Res. Astron. Astrophys.

23.7, p. 075024. doi: 10.1088/1674-4527/acdfa5. arXiv: 2306.16216 [astro-ph.HE].

Afzal, Adeela et al. (2023). “The NANOGrav 15 yr Data Set: Search for Signals from New

Physics”. In: Astrophys. J. Lett. 951.1, p. L11. doi: 10.3847/2041-8213/acdc91. arXiv: 2306.16219

[astro-ph.HE].

32/34

https://arxiv.org/abs/2306.12234
https://doi.org/10.3847/2041-8213/acdac6
https://arxiv.org/abs/2306.16213
https://arxiv.org/abs/2306.16214
https://doi.org/10.3847/2041-8213/acdd02
https://arxiv.org/abs/2306.16215
https://doi.org/10.1088/1674-4527/acdfa5
https://arxiv.org/abs/2306.16216
https://doi.org/10.3847/2041-8213/acdc91
https://arxiv.org/abs/2306.16219
https://arxiv.org/abs/2306.16219


Kibble, T. W. B. (1976). “Topology of Cosmic Domains and Strings”. In: J. Phys. A 9,

pp. 1387–1398. doi: 10.1088/0305-4470/9/8/029.

Jeannerot, Rachel, Jonathan Rocher, and Mairi Sakellariadou (2003). “How generic is cosmic

string formation in SUSY GUTs”. In: Phys. Rev. D 68, p. 103514. doi:

10.1103/PhysRevD.68.103514. arXiv: hep-ph/0308134.

Kibble, T. W. B. (1985). “Evolution of a system of cosmic strings”. In: Nucl. Phys. B 252. Ed. by

R. Baier and H. Satz. [Erratum: Nucl.Phys.B 261, 750 (1985)], p. 227. doi:

10.1016/0550-3213(85)90596-6.

Polchinski, Joseph and Jorge V. Rocha (2006). “Analytic study of small scale structure on

cosmic strings”. In: Phys. Rev. D 74, p. 083504. doi: 10.1103/PhysRevD.74.083504. arXiv:

hep-ph/0606205.

Blanco-Pillado, Jose J., Ken D. Olum, and Benjamin Shlaer (2014). “The number of cosmic

string loops”. In: Phys. Rev. D 89.2, p. 023512. doi: 10.1103/PhysRevD.89.023512. arXiv: 1309.6637

[astro-ph.CO].

Lorenz, Larissa, Christophe Ringeval, and Mairi Sakellariadou (2010). “Cosmic string loop

distribution on all length scales and at any redshift”. In: JCAP 10, p. 003. doi:

10.1088/1475-7516/2010/10/003. arXiv: 1006.0931 [astro-ph.CO].

33/34

https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1103/PhysRevD.68.103514
https://arxiv.org/abs/hep-ph/0308134
https://doi.org/10.1016/0550-3213(85)90596-6
https://doi.org/10.1103/PhysRevD.74.083504
https://arxiv.org/abs/hep-ph/0606205
https://doi.org/10.1103/PhysRevD.89.023512
https://arxiv.org/abs/1309.6637
https://arxiv.org/abs/1309.6637
https://doi.org/10.1088/1475-7516/2010/10/003
https://arxiv.org/abs/1006.0931


Antoniadis, J. et al. (June 2023b). “The second data release from the European Pulsar

Timing Array: V. Implications for massive black holes, dark matter and the early Universe”.

In: arXiv: 2306.16227 [astro-ph.CO].

34/34

https://arxiv.org/abs/2306.16227

	Introduction to pulsar timing   (Cosmologist point of view)
	Hellings and Downs correlations
	Data analysis and results
	Cosmic string interpretation
	Conclusion
	Thank you
	References

