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Introduction in a nutshell

* The standard method of calculating the relic density of dark
matter is based on several assumptions that are not valid in
some cases

* | outline a more general approach to this problem and discuss
the importance of this approach

* | will show a fFew examples
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Dark matter (DM) and its relic density

Angular scale
90° 18° rr 0.2° 0.1° 0.07°

2 10 50 500 1000 1500 2000 2500
Multipole moment, £

Planck measurement 1807.06209 Qdamh? = Zd—th = 0.12
crit
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Interactions with the SM particles

If DM is coupled to the SM states (even weakly) -
different possible detection strategies + production in
the early Universe

Collider Search

Common production channels: T ———
* Annihilation (in the pic) Direct

detection
* Decay

DM < “SM

Indirect detection

Interaction rate in the
early Universe determines
the relic density
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Freeze infout

n From Hall+,0911.1120
relativistic Y = ; non-relativistic
/ o Yeq &~ const
/ )/eq X exp(—x)
/
/
/ ]0_9%— —_——__ —————————
/ s L N -
/ 10"2‘?—,4"*__,*":'_,.—"
/ o"",o'
- [' x Y{(ov)
/ 10—15 ,
1 10 = 1(|)0
m/Treh 1 ’m/T

The rates I are for 2— 2 annihilation
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Freeze infout

Freeze in Freeze out

* DM never reaches full thermal DM starts in the full thermal
equilibrium equilibrium

 Stronger interactions — larger Stronger interactions = smaller
relic density relic density

« Typical rate for annihilation Typical rate for annihilation

(ov) ~ 10" *cm? /s (ov) ~ 107 % cm’ /s

e Relic density is established
around at

Relic density is established at

X~2—3 X~25-30

Independent of initial conditions

Depends on initial conditions
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Standard approach

Boltzmann equation for the number density (nBE)

'* D
L G 20 - vy * nhiatio
annihilation
dx xH(x) |
bl \ Equilibrium
ubble - d ty of DM
parameter H = H/[l + 2] ensity o
Correction for 1 T dg3 Velocity averaged
the ch F == oil i
eﬁtcro?:)r;/gcfoclg g 3935 dT cross section
] el el e Belanger, Arina+
Can also incorporate decays, co-annihilations, etc. 1402.0787 :

2012.09016
Used in many numerical packages, e.g. micrOMEGAs or MadDM
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What's under the hood?

In Fact, the Boltzmann equation for the number density is
derived from the general Full Boltzmann equation (FBE)

2E; (9 — Hpdy) fi(p) = Cfi] —
el

DM distribution Function

Collision term

. . d°p;
Integrating over the momentumofi  g; / (273
3
i d°p; / d"p; —
s | (2m)3 / J (2m)* il
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Structure of collision term

Takes into account all the processes in which the particle
participates

Number-changing processes
- impact on the density*

/ \

C[];] = Cann 7 Cdec + Cself +...

C., +
Elastic and self-scatterings parts \ /

are integrated out for the nBE e .
Equilibrating processes - impact

on the shape of the distribution

* have an impact of the shape of the distribution too

The impact of non-equilibrium effects on DM density 9/38



Collision term for annihilation

For DM+ DM -» SM + SM ;

C [f ] _ 1 / dgﬁ / dgk / d3/; Allfmomepta
ann|J x| — zgx (27T)3E (27T)3w (271_)3(:} configurations

4 ¢(4) - ~ Energy and momenta
X (27‘-) 0 (E +FE—w-— w) conservation

x| IM B fon (@) fon @)1 % fy(B)][L+ fy(B)]

Probability
X number

T MBasn S BB fom(@)][1+ fon(@)]

/ Quantum
Leads to an integro-differential equation

corrections
(Final states)
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DM is in kinetic equilibrium with the SM

(1% eq
f’i — " eq fq, (EzaTSM)
T,
79 = exp(—FE;/Tsm) Maxwell-Boltzmann
¢ (For non-relativistic or very dilute gasses)
€4 _ 1 Fermi-Dirac/Bose-Einstein
v eXp(Ez'/TSM) +1 (For dense relativistic gases)

* Quantum corrections are often neglected, because DM is non-relativistic
and dilute around the formation of relic density
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From FBE to nBE

fsm(w) fsm (@) = exp(—w/T) - exp(—w/T) =

E+ E
T

Energy conservation

) = F(B) F9(E)

e

Thus, one eventually gets the nBE (Gelmini-Gondolo approach)

-~ I

dY S(X) elmini, Gondolo
L peibor=e (ov)(x) [Y2,(x) - Yz}J NacLPhys B 360 (1997)

2 3 3 ~
_ gX d p d p eq eq (
<UU> T n;q . ngz(q / (27’(‘)3 (27’(‘)3 OannU fX (p)fx (p)
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Elastic scatterings

The kinetic equilibrium is maintained mostly by the elastic
scatterings of DM on the particles in the SM plasma

X X

WIMPs typically go out of kinetic
equilibrium much later than the FO

T~ 1-10 MeV (x >> 100) A
Bringmann, 0903.0189

€ €

If annihilation rate is much larger than the rate of scatterings
— early kinetic decoupling — the assumption about f doesn’t

hold!
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Example: Scalar singlet DM

Resonant annihilation into SM AR
fFermions (2mMpom~ MHiggs) -
)\2 20.8
S

OV X 0.6

(s —m3)? +mil'?

loglo AhS

=
NN

Elastic scattering

xeul / T ‘{fmgq“eqo.ld OATIROY

AQ Scalar singlet 0.2
2 S T-Walk
|M ‘ X 2\92 Marg. posterior
(t —my)

Leads to early kinetic o |
The best-fit region obtained by

decoupling ??()hg%;g%allaboration,
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Example: Scalar singlet DM

(Qh%)kp / (Qh)Gs 6

--- coupled BEs, QCD=A
1] g coupled BEs, QCD=B .e
coupled BEs, non-rel ¢
. full BE

5 Ly

1 ™
0.5

45 50 55 60 65 70

mgs [GeV]

Deviation of relic density from
the Gelmini-Gondolo approach

0.15

0.1

@ fn, ?f4

0.05

Binder+, 1706.07433
_f(xaQ) —x=16
i e, ——Jeg(w,q) from Ty |- - x=20]
N R
| “\ ........ x=50|
\\ mg = 57 GeV
N
15 20 25
q=p/T
Distribution functions q2%f(q)

and their ratio to the equilibrium ones f/fee
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Velocity dependence

If number-changing process is strongly velocity dependent:

 Resonant annihilation * Threshold annihilation

 Sommerfeld enhancement * |nelastic scattering / bound
t state formation
* Etc.

Its rate is sensitive to the shape of the distribution

0= 5 | (o e oA
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What about DM self-scatterings?

C[f)‘(] — Cann + CdeC + Cel + Cself+ .« oo

Self-scatterings are usually neglected in the calculations of
the relic abundance

Two (extreme) cases:

* The shape of the distribution is established by elastic
scatterings (elastic scatterings are more frequent « a lot
of light SM states in the plasma) considered before

* Self-scatterings are very efficient in establishing DM self-
equilibrium (with a T # Tsm) = approximation to fBE,
solving for the density + DM temperature (next slide)
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cBE - coupled system of Boltzmann equations

Assumption: DM in self-scattering equilibrium

{fz‘ = ne;l fq(EiaTDM)} Tpm # Tswm

. 9i d’p  p;
Integrating the fBE over Sni/(Qw)3 Bl (2 moment)

i dgp p?
2| ( exp(—E;/T) = T

27’(’)3 Ez
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cBE - coupled system of Boltzmann equations

We get a system of coupled Boltzmann equations (cBE) for
the density and temperature

/r
Y m,
= X0y,
) v o
y_,: mz(Cz—z H (p4/E3>
| y 4 Vi i i 3TX
N
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N

- Co, C;—the corresponding

moments of the collision
term

Ty = 932/3/mx

y—rtemperature parameter
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Are self-scatterings important?

Self-scatterings can be more important than elastic
scatterings in shaping the distribution:

Momentum transfer Ap/p ~ 1 (For elastic Ap/p < 1) -
less collisions required

Couplings and vertices can be different (enhanced)

Less constrained by observations

o,im < 107% cm?/GeV  Oyye/m S 107 cm?/GeV

On electrons, from From cluster collisions

structure formation Kim+, 1608.08630
Nguyen+, 2107.12380
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The role of self-scatterings

We studied the impact of self-scatterings on the relic density
and momentum distribution of DM in 2204.07078

* We compared the use of different approaches (nBE, cBE, fBE
without scatterings) to the full solution that includes self-
scatterings

* We considered an example modelin which the inclusion of self-
scatterings is crucial for the correct evaluation of the relic

(see further)

density
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The model

Decaying scalar singlet + DM fermion + dark U(1)*

\ ¢/ /
/ \ @”=dﬂ—zeAp

1 — _ — 1 / "Wy € / v 1 I A
L =L+ E(GﬂS)2 = V(S, H) + ySjiy + mpmax + 11D,y  x — ZFWF” — EF”‘”Fﬂ + EmjAﬂA”

1 A 4 A
V(H,S) = —,ufllle—5m§S2+/1H|H|4+ZSS4+%S|H|2S2

Scalar decays - non-thermal component of DM

Dark U(1) — self- and elastic-scatterings + annihilation into SM

* this model without dark U(1) was studied in a similar context in Ala-Mattinen+, 2201.06456
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The model

Decaying scalar singlet + DM fermion + dark U(1)

X > A,
X < Al
e)
Sub-threshold annihilation Resonant annihilation
\ m, < my, / (suppressed by the small €)

Two DM annihilation processes are possible

In our case the strong velocity dependence comes from sub-threshold
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Density evolution

107 Kinetic equilibrium: sub-threshold + 5 = Xx
i ) m, = 100 GeV
No decay - standard freeze-out |4 = 1% GO\T
mg = 400 GeV
107"} | nBE -the density is increased ¢ =1
; nBE 1 by the late-time decay products l¢=0.001
-
Z = Early kinetic decoupling (FBE):
~ 1072} -= : .
| : no seiscani]  No self-scatterings — hot particles from
-~ ] decays extend the annihilation into SM and
deplete the density
10713} Self-scatterings redistribute the energy from
| decaying particles and extend the
| eq. annihilation even longer
2I0 | T 4]0 — IBIOJ | ISJOI I'IIOO
r=m,/T Decays essentially stop contributing
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p*fy(p) [norm.]

Distribution function

T T T |
sub-thershold

0.20

+5 — XX

x=100 A

0.15

0.10

0.05

0_00 I 1 I 1 | L L | L L L L |

200
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* nBE
* fBE (no scatterings)
* fBE (active scatterings)

Self-scatterings redistribute the
heat and “move” the distribution
towards larger momenta —»
larger (ov)

Small component of high-energy particles
(most of the energy is dumped into SM
through annihilations)

Decays start to contribute to the density
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Temperature evolution

10° bthh[d5—>T\ T 2
- sub-threshold + - 1 X -

- my = 100 GeV ] y X

- my = 108 GeV

" mg = 400 GeV

F o=

e = 0.001

Significantly heated up

The heat from decays remains in the
dark sector due to an efficient
redistribution by self-scatterings

-
o
N

Temperature is equal to Tsm Ty o 1

-
o
—

No self-scatterings — DM is slightly heated by
decays and then the temperature decreases
due to expansion

—2
10020 4 e 80 100 TDOH—I"GI X T (constant y)
r =m, /T
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Rates of processes

107

107"¢

1077

10-18

ny (ov) [GeV]

10-19

10-20

102"
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Semi-annihilation/production

Semi-production can appear from DM DM
symmetry larger than Z;

For example, scalar singlet + Z; complex

scalar DM:; b o
A 3 *% \
Ez‘nt — £SM == £¢-SM -+ —qb (X =} (X ) ) new particle
2 or SM

Annihilation cross section is moderately velocity dependent, but
the reaction efficiently redistributes the energy of DM —

affects the rate — affects the relic density
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Freeze-in from semi-production

We studied the deviation from equilibrium in the model with
the semi-production freeze-in in 2104.05684

Higgs portal interactions

* Early kinetic
decoupling Ly_sy = ApHTH + MqBQHTH —2H'H + ﬁ(HTH)2
* Both @ and x have 0 2 2

2 2
o . ° IJL u A * A *
initial abundances 2¢¢2+ 3:'),¢3 n 4(:)¢4+/1?<X x+ X (x X)Q

Lpg = y
* No VEVs v N
* No decays 3¢ (xX° + (x*)?) + 7¢2(X*X) :
We assume that self- semi-production

scatterings are efficient and
use cBE approach

(a similar study was done by Bringmann+, 2206.10630)
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Evolution of density and temperature

T T T TTTITI T T TTTITY 10_1 3 T T T T T T T T T T T T T T T T T TTIT T T T T

T

[
10=3f T l} § i
EW breaking ! : | Y, 1072 3
: i3
|
|
!

10-6 (massive Higgs decay)

103}

10-°
R =012 i
10712 1074¢

-15 :
>-_=: 10 10—55_

g% :
1076 3
10—2‘1 -

10771
10724 g

_ o
Btupesm—1.1~ 10~ &4 /&

T isgp =58 10~ %o’ /s

10-8L7

TRTT

1 0—27

U AL AN AU UL AL RELL REUL RS AL AL AL RAUL L UL B UL AL AU AN Rl AL AL UL AL L L R |

;i |‘|||d coutd ool votunl oot oot o oo vl vood vooed oot ool ool oo vood oot voond ool votd vomed 3o o

= - 1073 1072 1071 10° 10! 102 A
[NRTTI B S AT ARt | IS T Th -9 Ll Ll L Lol Lol

4l o ul — ul ul L ul PR 1 L nul ' ul L ul L ul | Lol
0> 10™* 10°% 102 10" 10° 10' 102 10 10 10 102 10" 10° 10° 102
z =m,/T T =my /T

=30FE . . ... o {5
10-6 1

m, = 100 GeV, py = 1 GeV, Ay = 1.1 x 1072, Ay = 1078, Ang = 6 X 10-11
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Indirect detection constraints and predictions

=22
107 e T The results of the scan:
[ constraine
10'2455 DM production dominated by
semi-annihilation
= 102
™~ 1 e L -
s : PRI A NS Blue squares — within the reach
e 10-28 :jj%i‘& % & * o of the future searches for ¢
X ; - . ¥ 4 5 v & &
R
= Y . 5%, i : :
S om0, S e Potentially explain the galactic

center excess (GCE)
1603.08228

1072 Above the grey dot-dashed line -
potentially explain the core
10-%E . o 1 formation in dSph
107" 10° 103 1803.09762
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Numerical challenges in FBE

Collision term has the following structure

Cli o [ G -+ [Fsn @) R+ £ ()1 % £ (1)

2

~Fu) A (R)(1 £ fsn(P)(1 % fom(k))]

For 2—2 annihilation

We can expand the collision term in different terms in orders
of the distribution functions

Terms of order O(f) > 2 are often ommitted
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Numerical challenges in FBE

Collision terms have the following structure

C[@]oc@(p)[...J . C[@]oc[...[ LK)

(27)3 2w (2n)3 2w
Distribution function is not integrated over Distribution function has to be integrated over
Can be solved explicitly Integro-differential equation

* Decay terms * Annihilations

* Quantum corrections » Self-scatterings

* Elastic scatterings * Quantum corrections to elastic scatterings

* Co-scatterings * N-state processes (N > 2)

* Etc.

dk (AK)
FBE — system of fBEs fR) = Lt s Julka) ) JE T L g
k . Ok

Numerical integration
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Numerical challenges in FBE

Annihilation term has only one unknown function in
the lowest orderin fx

Camlfu @) [ & [ &5 [ @k 10170

Self-scattering inevitably has 2 unknown functions

3 [ 35 31. kward term F
Cett [ fx (P / d”k / d / ’k - fy(k fx( D) sB:l(ling:trte?anriJn y

Requires more summations over discretized distribution functions
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Elastic scatterings

o _ L [ & / Ak / d°k
o 29y J (2n)32E ) (2m)32w J (27m)320

x 2m)* WG+ k—p—k) M|,
x [(1F¢*(W) 6" @)/ (E) — (w ¢ &, E ¢ E)]

Can be approximated in the limit of low momentum transfer (6p/p <« 1)

Cel

e gv(T)

E D
2
TES; + (2T;+p+TE) dp+3

fx s
o Fokker-Planck type
approximation

where the momentum exchange rate y(7') is given by As described in

Binder+, 1706.07433

v(T) = 487r3zxm§’< /dwgiaw (k‘l <|M|2>t)

The impact of non-equilibrium effects on DM density 35/38




How is FBE solved?

DRAKE code for the calculation
of DM abundance

A
{ Kinetic I-:Tdiiﬁium

Binder+, 2103.01944

Darh matter Relic Abundance beye
Written in Mathematica language

The current version solves nBE, cBE and FBE for the freeze out of
2-2 annihilation processes

For our studies we included:
* Decays

» Self-scatterings —implemented a C++ patch for fast numerical intergration of
the collision term integrals

* Patches for fast integration of cBE moments of collision term
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https://drake.hepforge.org/

Conclusion

* The interplay of different interactions in some DM models
can lead to a deviation of the DM energy distribution from
the equilibrium shape

* The shape of the distribution affects the rate — affects the
relic density. The effect is pronounced if:

* Cross section is strongly velocity dependent
* Weak elastic/self-scatterings w.r.t. annihilation

 To account for these effects one has to solve the FBE or
cBE (if the dark sector is self-thermalized)
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Axions and lepton-flavour violating decays

Axions contribute to the effective number of relativistic dof

and can be constrained
In progress, with M. Badziak

0.25

02} f = 108 Gev

015 Actual solution

> 1073+

9% - f(q)

0.1

0.05 Equilibrium distribution

Al S . . A R S R | . . S S I L L
10 10° 10t 102 0 5 10 15

q

Evolution of the number density of axions Distribution function of axions
from tau decays at the end of evolution
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