# SEARCHING FOR NEUTRINOS FROM BLAZAR FLARES WITH ICECUBE AND FERMI-LAT

CHRISTOPH RAAB 2021-09-26





## Introduction

#### Multi-messenger astronomy



see cosmic rays from somewhere

#### Multi-messenger astronomy



If we see neutrinos as well  $\rightarrow$  cosmic ray reactions at work  $\rightarrow$  see cosmic rays from candidate

#### Active galactic nuclei (example Centaurus A)



#### Blazars

- Radio-loud AGN, extended jet
- Blazar: looking into jet
- Jet power: BL Lacs and FSRQs
- Blazars have bright gamma-ray emission
- Quiescence & flares:





## High-energy blazar emission



- Dominated by jet
  - $\rightarrow$  Doppler beaming
  - $\rightarrow$  energy, time scale, luminosity
- Quiescent emission vs.
- Month minute flares

```
• Leptonic? e.g.
e + \gamma_{soft} \rightarrow (Compton) \rightarrow \gamma
```

- Hadronic? e.g.  $p + \gamma_{soft} \rightarrow ... \rightarrow \pi^{0} \rightarrow \gamma \gamma$
- Candidate shock sites exist
  - $\rightarrow$  neutrino production?

#### IceCube and Fermi-LAT

- Neutrino telescope in 1 km<sup>3</sup> of South Pole ice
- Construction 2004 2011
- Discovered astrophysical neutrinos
- 100 GeV 10 PeV



- Gamma-ray space telescope
- Launched 2008
- Monitors O(1000) blazars every 3 hours
- 100 MeV 300 GeV



## Detection principle for muon neutrino "tracks"



#### Neutrino detection backgrounds

**Southern Sky** 



- High energies: astrophysical
- Low energies: atmospheric
  - South: muons
  - North: neutrinos (muons blocked)



#### IceCube neutrino sky

- Any sources in an all-sky search?
- High energies: only single astrophysical events (most not v<sub>µ</sub> tracks → worse resolution)
- Low-energy tracks: mostly background
   → No significant (5σ) source
   (most: NGC 1068, 4.2σ)
- Look for multi-messenger connection
   → source location from astronomy
  - $\rightarrow$  restrict hypothesis space



#### IceCube neutrino sky

- Any sources in an all-sky search?
- High energies: only single astrophysical events (most not v<sub>µ</sub> tracks → worse resolution)
- Low-energy tracks: mostly background
   → No significant (5σ) source
   (most: NGC 1068, 4.2σ)
- Look for multi-messenger connection
   → source location from astronomy
  - $\rightarrow$  restrict hypothesis space



Data set

 $\leftarrow$  software development  $\rightarrow$ 

... construction  $\rightarrow \leftarrow$  complete detector



2

# Gamma-ray Lightcurves

#### Two blazars, two flares

2017



right ascension

Flare of TXS 0506+056 dominates field



right ascension

Flare of PKS 0502+049 dominates **Only 1.2° away!** → example for method

15

#### Old method: aperture photometry



#### New method: PSF photometry



17

#### Bayesian blocks optimization

- Statistical fluctuations  $\rightarrow$  Bayesian blocks
- Smoothing strength  $\mathbf{p} \rightarrow \text{optimize}$
- Simulate steady lightcurves with toy MC
- "False flare" criterium
- $\rightarrow$  false flare rate (p<sub>opt</sub> = 3.05) = 32%





3

## Likelihood Method

#### Typical time-integrated search

#### **n**<sub>s</sub> events from a source $\rightarrow$ spatial PDF



→ combine into likelihood L → define test statistic **TS** = 2 sgn(n<sub>s</sub>)  $L(n_s, \gamma)/L(n_s=0)$ → maximize **TS** to free parameters of hypothesis **n**<sub>s</sub>,  $\gamma$ 

#### with a spectral index $\gamma \rightarrow$ energy PDF



#### Time PDF

- E.g. p- $\gamma$  in blazar jets  $\rightarrow v \propto \gamma$
- Hypothesis: only flares?
- Quiescent flux: free parameter  $\Phi_0$
- $\rightarrow$  Truncate lightcurve at threshold  $\Phi_0$
- $\rightarrow$  Extend likelihood with S(t)



#### Stacking motivation

- Previous time-dependent on single blazars
   → need single bright source for discovery
- Stacking: signal = Σ<sub>k=sources</sub> w<sub>k</sub> signal<sub>k</sub>
- Requires assumption on relative signal strength
   → "weighting scheme"



• **Time-integrated** IceCube stacking analyses set limits

 $\rightarrow$  Do not exploit blazar variability

Discovery could come from a stacking analysis that is also time-dependent

### Stacking method

- Problem: O(100) lightcurves, each a threshold
- Can not maximize w.r.t. O(100) free parameters
- $\rightarrow$  Retain one free parameter **T**

 $\rightarrow$  determines  $\Phi_{0,k}$  via estimate of quiescent state



4

## TXS 0506+056

#### IceCube-170922A

- EHE neutrino alert in 2017
- Coincident with blazar flare of TXS 0506+056
   → large MWL/MMA campaign
- Additional neutrinos
  - at lower energies?
  - correlated to entire lightcurve?
- $\rightarrow$  develop blinded analysis



#### Unblinded neutrino times



### Unblinding results

#### without IceCube-170922A

- maximize TS on unblinded data
- scramble times  $\rightarrow$  background realization
- $\rightarrow$  background TS distribution  $\rightarrow$  p-value



 $\rightarrow$  **no evidence** for other v correlated to  $\gamma$ -rays

• with IceCube-170922A



 $\rightarrow$  evidence reflects the original trigger 27

## Upper limits



- without IceCube-170922A
- ---- with IceCube-170922A



- To scrambled background:
- Add injected signal hypothesis like LLH
  - spectral index γ = 2
  - threshold  $\Phi_0 \in [0, max]$
- Vary signal strength
  - $\rightarrow$  limits at 90% CL
  - $\rightarrow$  express as fluence
- $\Phi_{_0} \leftrightarrow \text{lightcurve} \leftrightarrow \text{background} \leftrightarrow \text{limit}$
- These are not limits on possible neutrinos with other time distribution!

5

## Blazar Flare Stacking

#### Source list

- Start: 2254 extragalactic Fermi sources
- "Associated" to known blazar
- Monthly lightcurves provided by Fermi

   → develop cuts (more detail in thesis)
   → select bright and variable sources
- 179 blazars: BL Lac (65), FSRQ (114)
- Separated:
  - different physics
  - different intrinsic luminosity



## Weighting scheme



- equal
- catch-all
- need detector acceptance...



• FSROs • BL Lacs O TXS

ICECUBE PRELIMINARY

- **gamma**-ray energy flux
- same as likelihood

 $10^{-1}$ 

 $10^{-2}$ 

 $10^{-3}$ 

 $10^{-4}$ 

...and integrated Fermi data



- Iuminosity-squared
- neutrino production model
- …and redshift

#### Unblinding

- Combine  $p_{equal}$ ,  $p_{gamma}$ ,  $p_{luminosity} \rightarrow smallest p_{min}$
- Repeat under background hypothesis  $\rightarrow \mathbf{p}_{\min}$  distribution
- $\rightarrow$  compare  $\rightarrow$  trial-corrected **p**<sub>post</sub>



#### Limits



- ···· FSRQs luminosity

- Analogous to single-source limits
- spectral index y = 2
- threshold  $\tau \in [min, max]$
- fluence  $\rightarrow \Sigma_{sources}$  fluence

# **6** Final remarks

#### Conclusions

- IceCube searches for neutrino emission from blazars
- Correlated to their smoothed Fermi-LAT lightcurves
- TXS 0506+056
   → limits 0.05 GeV/cm<sup>2</sup> to 0.17 GeV/cm<sup>2</sup>
- Novel blazar flare stacking analysis with 64 + 114 sources
  - → p = 79.1%

#### Outlook

#### **Other targets**

- Markarian 421
  - nearby blazar
  - TeV variability
- Antiflares
  - dust/gas obscures gamma
     ↔
  - neutrino production

#### **Other data**

- X-ray lightcurves
  - also blazar flares
  - models predict neutrinos
- IceCube-Gen2
  - high-energy extension
  - point sources expected

#### Outlook

#### **Other targets**

- Markarian 421
  - nearby blazar
  - TeV variability
- Antiflares
  - dust/gas obscures gamma
     ↔
  - neutrino production



#### **Other data**

- X-ray lightcurves
  - also blazar flares
  - models predict neutrinos
- IceCube-Gen2
  - high-energy extension
  - point sources expected.