Fermilab DUS. DEPARTMENT OF Office of Science

Searching for Heavy Neutral Leptons with muon detectors in the CMS experiment

Martin Kwok (Fermilab) Université Catholique de Louvain -<u>Centre for Cosmology, Particle Physics and Phenomenology Seminar</u> 5 September, 2023

Outline

- What is HNL?
- What is Muon Detector Shower(MDS)?
- How to search for HNL with MDS?
- What's to expect in Run 3?

Heavy Neutral Lepton

- SM is very successful, yet incomplete...
- Neutrino oscillation is a lab-accessible BSM effect!
 - Established experimentally ~2000s
 - Peculiarly light (but non-zero mass)
- But Left-handed weak currents cannot have mass term
- Idea: extend SM neutrino sector by adding new particle N
 - Allow Majorana/Dirac mass term for SM neutrinos
- Gives SM neutrino mass via see-saw mechanism
 - Connected to other unsolved problems (Baryon asymmetry, DM candidate, ν

Anomalous g-2 [1],[2],[3],[4],[5])

???

Theory landscape

- Simple idea, but can be realized in many different ways
 - How many are there?
 - What are their masses?
 - interaction with gauge bosons?

Experimental landscape

- Very rich phenomenon
- Searched for with all possible methods
 - Collider & fixed target
 - Nuclear decay
 - Atmospheric/solar neutrinos
- Accessible production/decay mode depends on the HNL mass
 - Kaon decays (e.g. NA62)
 - B or D meson decay (e.g. Belle, LHCb
 - Below W,Z: $Z \rightarrow N\nu$
 - Above W,Z mass: decay to on-shell W/Z production

The CMS experiment at the LHC

• A lot of the above phenomenon can be accessed at the LHC

NOW

Longer term LHC schedule

In January 2022, the schedule was updated with long shutdown 3 (LS3) to start in 2026 and to last for 3 years. HL-LHC operations now foreseen out to

 CMS is a hermetic, general purpose detector submerged in strong solenoidal magnetic field

HNL searches at CMS

- Prompt HNLs:
 - Probe different HNL models and/or final states (Multi-lepton / $2\ell + j$ / $2\tau + 2j$)
 - 100 GeV ~ TeV
- Displaced HNLs:
 - Typically type-I see-saw model, produced through W
 - ~1 10 GeV
- The list is growing!

pdf

‡ Fermilab

Muon Detector Shower (MDS)

- Teaching a particle detector new tricks
- LLP decays hadronically in the muon system: Shower is detected as multiple hits in either the CSC or DT chambers
- Steel between muon stations can act as absorbers in a sampling calorimeter
 - Shielding of 12-27 interaction length (Background suppression factor ~107)
 - Unique feature of CMS muon system

SM particles seen at CMS

LLP as Muon Detector Shower

Muon Detector Shower (MDS)

- Sensitive to LLP with longer $c\tau \sim O(1-10m)$
- Good efficiency in both barrel and end-cap

12

0.8

0.6

0.4

0.2

200

DT cluster efficiency

 $H \rightarrow S \rightarrow d\bar{d}$ decay, $c\tau = 1 - 10 m$

CMS-PAS-EXO-21-008

Muon Detector Shower (MDS)

EXO-20-015

- Cluster efficiency can be well parametrized by the hadronic energy and EM energy of the LLP
- Independent of LLP mass!

Searching long-lived HNL with MDS

Analysis Strategy

- Simple event topology:
 - Prompt lepton + single MDS cluster
- Consider all decay modes of the HNL
 - No penalty of signals due to W/Z branching ratios

Analysis Strategy

- Prompt Lepton selections:
 - One tight ID electron/muon for good triggering efficiency
 - Dominated SM background: W+Jets

Object	Muon Channel	Electron Channel
Lepton	$p_T > 25(28) GeV$, $ \eta < 2.4$	$p_T > 30(35) GeV, \eta < 2.4$
Lepton	TightID, I _{rel} < 0.15	TightID
Lepton		$N_{lepton}=1$
MET	p_{T}^{m}	iss > 30 GeV

- Cluster selections:
 - Improve S/B ratio
 - Veto specific patterns of extra detector activities to suppress punch-through jets/ muon bremm.
- Cluster size (Nhit) as main discrimination
 - ABCD method with $\Delta \phi({
 m cluster,lep})$ and cluster size
- Validate with control region(s)

Cluster selection

- Reject punchthrough jets:
 - Veto clusters matched to jets ($\Delta R < 0.4$)
- Reject muon bremsstrahlung shower:
 - Veto clusters matched to muons ($\Delta R < 0.8$)
- CSC:
 - Veto clusters with RecHits in ME-1/1, ME-1/2
 - Veto clusters that are matched to RE1/2 hits
 - Veto clusters that are matched to MB1segments or RB1 hits
- DT:
 - Veto clusters with > 1 RecHit in MB1 and in adjacent wheel
 - Veto region with no instrumentation (DT chimney)

Event selection summary

Object	Muon Channel	Electron Channel			
Lepton	$p_T > 25 GeV, \eta < 2.4$	$p_T > 35 GeV, \eta < 2.4$			
Lepton	TightID, $\sigma_{IP3D} < 4$, $I_{rel} < 0.15$	TightID			
Lepton	$N_{lepton}=1$				
MET	$p_{\rm T}^{\rm miss}$ > 30 GeV				
CSC cluster	$\overline{N_{rechits}} > 50$				
CSC cluster	No muons with $p_T > 20$ GeV, $ \eta < 2.4$ within $\Delta R(cls, \mu) < 0.8$				
CSC cluster	No jets with $p_T > 10 \text{ GeV}$, $ \eta < 2.4$ within $\Delta R(cls, j) < 0.4$				
CSC cluster	No ME-11/ME-12 hits matched within $\Delta R < 0.4$				
CSC cluster	No RE1/2 rechits matched within $\Delta R < 0.4$				
CSC cluster	No MB1 segments or RB1 rechits matched within $\Delta R < 0.4$				
CSC cluster	$-5ns < t_{cluster} < 12.5ns$				
CSC cluster	$t_{spread} < 20ns$				
CSC cluster	Cut-based ID, see [9]				
DT cluster	$N_{rechits} > 50$				
DT cluster	No muons with $p_T > 10$ GeV, $ \eta < 3.0$ within $\Delta R(cls, \mu) < 0.8$				
DT cluster	No jets with $p_T > 20 \text{ GeV}$, $ \eta < 3.0$ within $\Delta R(cls, j) < 0.4$				
DT cluster	No more than 1 MB1 hits within $\Delta R < 0.5$				
DT cluster	Matched to $>= 1$ RPC hit(s) in the same wheel within $\Delta \phi < 0.5$				
DT cluster	Mode of the BX of RPC hits=0, RPC matched within $\Delta \phi < 0.5$				

Event-level selection: suppress QCD backgrounds

Veto background sources: Punch-through jets Muon brem.

Timing selection: Remove OOT pileup

ABCD background estimation

- After cluster selections, background clusters and leptons are uncorrelated
 - Use ABCD method with N_{hits} and $\Delta \phi_{lep}$
 - Signals are back-to-back with cluster with large N_{hits}
- Use Out-of-Time(OOT) and in-time large $\Delta\phi(cls,{\rm MET})$ region as validation of ABCD method region

HNL signals

Backgrounds

ABCD background estimation

- After cluster selections, background clusters and leptons are uncorrelated
 - Use ABCD method with N_{hits} and $\Delta \phi_{lep}$
 - Signals are back-to-back with cluster with large N_{hits}
- Use Out-of-Time(OOT) and in-time large $\Delta\phi(cls, {\rm MET})$ region as validation of ABCD method region

In-time CR

OOT CR

CSC clusters

Closure test result

- Good agreement for closure tests both in-time/OOT validation regions
- Repeated this test with relaxed cluster selections in W+Jet MC
 - Also obtained good agreement (with limited statistics)

						~
Event category	Validation region	А	В	C	D	D (pred.)
Muon, DT-MB2	OOT	9	6924	944	0	1.2 ± 0.4
Muon, DT-MB3/MB4	OOT	11	593	86	1	1.6 ± 0.5
Muon, CSC	OOT	103	31074	4044	9	13.4 ± 1.3
Electron, DT	OOT	14	3301	366	2	1.6 ± 0.4
Electron, CSC	OOT	33	13774	1647	2	4.0 ± 0.7
Muon, DT-MB2	In time	10	5087	467	2	0.9 ± 0.3
Muon, DT-MB3/MB4	In time	9	785	107	2	1.2 ± 0.4
Muon, CSC	In time	31	7445	532	1	2.2 ± 0.4
Electron, DT	In time	8	2446	220	0	0.7 ± 0.3

$Z \to \mu \mu$ background in muon channel

- Bkg not tested in the closure-test : $Z \to \mu \mu$ bkg
- $Z \rightarrow \mu \mu$ could be an addition background process if
 - One muon not reconstructed, but creates showers in the muon system
 - Since muon is not reconstructed, create fake MET in the event
- 4 steps to predict the Zmumu bkg:
 - 1. Define Zmumu-enriched CR region (inverting ME11/12 and MB1 veto)
 - 2. Subtract ABCD background in CR
 - 3. Measure the transfer factor from CR to SR with $t\bar{t}$ sample
 - 4. Multiply the transfer factor to the Zmumu component in CR:

Zmumu Bkg in SR = Zmumu Bkg in CR x T.F

$Z \to \mu \mu$ background summary

- Summary of $Z \to \mu \mu$ background prediction
 - $W + J \operatorname{CR} Z \rightarrow \mu \mu \operatorname{CR}$ T.F. $Z \rightarrow \mu \mu \operatorname{SR}$

Region	$N_D^{\rm CR}$	$\lambda^{\mathrm{CR}}_{\mathrm{ABCD \ bkg,D}}$	$\lambda_{Z o \mu \mu, D}^{CR}$	ζ	$\lambda^{SR}_{\mathrm{Z} ightarrow\mu\mu,\mathrm{D}}$
CSC	129	45 ± 2	84 ± 12	$(4.8 \pm 1.3)\%$	3.9 ± 1.2
DT-MB2	35	12.2 ± 1.5	22.8 ± 6.1	$(36 \pm 31)\%$	8.2 ± 7.4
DT-MB3/MB4	6	2.9 ± 0.7	3.1 ± 2.6	$(2 \pm 1)\%$	0.06 ± 0.06

Zmumu Bkg in CR x T.F = Zmumu Bkg in SR

Checked additional validations with MC and data

Systematics uncertainties

- Background unc. dominated by statistical unc. of ABCD method
 - And uncertainty of T.F. for muon channel
- Uncertainty of cluster properties measured with tag-and-probe method in $Z \to \mu \mu$ brems
 - Corrections are applied to account for differences between data/MC if necessary
 - Uncertainties are propagated as systematic unc.

Signal systematics

Systematic Uncertainty	Object	Size of unc.
Luminosity	-	1.6%
Pile-up	-	1%
W cross section	-	3.8%
W $p_{\rm T}$	-	1.6%
Trigger	Muon	< 0.1%
Identification	Muon	0.4 - 0.5%
Isolation	Muon	0.2 - 0.6%
Trigger	Electron	0.2 - 0.3%
Identification	Electron	2.2 - 8.0%
Jet energy scale	MET	2.0%
Cluster reconstruction	CSC cluster	13%
Cut-based ID	CSC cluster	5.1%
Jet veto	CSC cluster	0.06%
Muon veto	CSC cluster	4.5%
CSC readout	CSC cluster	1.0%
Hits and segment veto	CSC cluster	0.1%
Cluster time	CSC cluster	0.9%
Cluster time spread	CSC cluster	2.8%
Cluster reconstruction	DT cluster	16%
MB1 veto	DT cluster	7.4%

Result

- No significant excess observed
 - ~1 sigma fluctuation in electron channel
- Proceed to set limits on HNL coupling v.s. mass plane

PAS-EXO-22-017

Limits on Majorana HNL

- Probes low-mass/small coupling parameter space
- ~2.3x better than EXO-21-013 in electron (muon) channel at 2GeV
 - Sensitivity driven by CSC channel
- Flavour independence:
 - Can set limit on au-HNL as well, triggered with muon/e from prompt-au decay
 - Worse limit than electron/muon type due to trigger acceptance

 $\tau^{\pm} \rightarrow \mu^{\pm}/e^{\pm}$

τιν

^{Чуу}w*z

 W^{\pm}

 N_{τ}

Limits on Dirac HNL

- Also interpreted as Dirac HNL model
- MDS do not distinguish the charge of the lepton final state
 - Not reconstructing the sign of the 2nd lepton
 - Same efficiency/cross-section limit for Dirac/Majorana HNL

Mixed-HNL coupling

• Flavour independence opens up mixed coupling interpretation

$$V = \begin{pmatrix} V_{eN} & 0 & 0 \\ 0 & V_{\mu N} & 0 \\ 0 & 0 & V_{\tau N} \end{pmatrix}$$

- Constrains the sum of relative couplings to 1
- Selected several benchmark at the edge of our sensitivity

 $m_N = 1.5 \text{ GeV}$

 $c\tau = 1m$

 $m_N = 1.5 \text{ GeV}$

口 Fermilab

Majorana

Can we do better in Run 3?

Muon Shower Triggers

- Many CMS run 2 LLP analysis do NOT have a dedicated LLP trigger
 - Major CMS Run 3 effort
- In MDS's case, the signal acceptance is ~O(1%)
 - Potentially **huge signal gain** from triggering on MDS
- "Simple" algorithm is not simple to implement
- But!

Commissioned successfully 2022 data taking!

DP note

Event display in 2022 data

Overview MDS trigger (HMT) logic

Muon Shower Triggers

- New L1 seeds triggering based on hit multiplicities in CSC chambers
 - Runs clustering algorithm in HLT
- Active for majority of 2022 data taking
 - Linear with PU, fully efficient for HLT
- Analysis effort on-going!

Martin Kwok I High multiplicity trigger

Muon Shower Triggers in 2023

- New capability enabled many new ideas for LLP triggers!
- Double-shower (lower thresholds)
- Heavy Ion run triggers
- Cross-triggers with taus
- + many more!

29

Double shower events from signal MC

HNL prospects

- Simple parametrization of cluster efficiency made extrapolation easier
- Can probe down to $|V_{\tau N}|^2 \sim 5 \times 10^{-7}$ with full HL-LHC data

2210.17446

Summary

- CMS has a lot of on-going effort for searching for HNLs
 - Latest addition: Muon Detector Shower(MDS) is a power new tool
 - Search with Run-2 data improves previous CMS limits ~2.3x at around 1-3 GeV
- Stay tuned for Run 3 results!

