

Office of Science

Heavy metal hits the top

<u>Georgios K Krintiras</u> The University of Kansas

20th Anniversary

KU

PhD @ UCLouvain/CP3 with Andrea G. (2015-2019)

• Precision

• sustaining new "channels of observation" at LHC (*)

 \rightarrow coordinated the luminosity group @ CMS

• Precision

• sustaining new "channels of observation" at LHC

 \rightarrow coordinated the luminosity group @ CMS

- High-density/temperature QCD
 - → coordinating the heavy ion group @ CMS

• Precision

sustaining new "channels of observation" at LHC

 \rightarrow coordinated the luminosity group @ CMS

- High-density/temperature QCD
 - testing the fundamentals of QCD with free partons
 \rightarrow coordinating the heavy ion group @ CMS
- Beyond the Standard Model (BSM) quest
 - complementing searches with the photonic mode of LHC

 \rightarrow coordinated the Forward Physics group @ CMS

CP3 - UCLouvain December 4-5 2018

Organising Committee Marco Drewes Andrea Giammanco Jan Hajer Fabio Maltoni

peakers include Roderik Bruce **Pieter** David David d'Enterria Glennys Farrar Oliver Gould Lucian Harland-Lang Sonia Kabana Simon Knapen Georgios Krintiras Guilherme Milhano Swagata Mukherjee Jeremi Niedziela Jessica Prisciandaro Valerii Pugach Federico Redi Michaela Schaumann

HEAVY IONS AND HIDDEN SECTORS In the recent past, several proposals have been made to search for new phenomena in heavy ion collisions at the Large Hadron Collider, e.g. axion-like

particles, long-lived particles or magnetic monopoles. The objective of this workshop is to connect members of the involved communities to explore these ideas. It provides a unique opportunity for theorists, experimentalists and accelerator physicists who previously had little interaction with each other to discuss new approaches as well as practical and fundamental

limitations, and to form collaborations for future research. Registration: agenda.irmp.ucl.ac.be/event/3186

UCLouvain

Is of observation" at LHC nosity group @ CMS **CD** of QCD with free partons ion group @ CMS **BSM)** quest vith the photonic mode of LHC d Physics group @ CMS

(the first "Heavy lons and Hidden Sector" @ CP3)

QCD works spectacularly well (the top quark paradigm)

• Theory & experiment go hand in hand

(*) provided that the characteristic energy scales are "large enough" $\rightarrow \alpha_s \ll 1$ (

How to test QCD as "the strong" interaction?

• A phase transition was predicted on the lattice

Fermi's initial idea

Discovery announcements at CERN (2000) and BNL (2005)

How to test QCD is "the strong" interaction?

W.A. Zajc (Anniversary for 30 Years of Heavy Ions)

Joining forces to the BSM quest

- A phase transition was predicted on the lattice
- Discovery announcements at CERN (2000) and BNL (2005)
- We still run a LEP-like configuration @ 160 GeV

The CMS experiment (1992–)

Evian "debut" (**1992**)

ATLAS & CMS turned 30

- EOI in 1992: LHC to handle protons and lead
- CMS capabilities with heavy ions were early recognized
- CMS is a thriving community of HEP & NP

The CMS experiment (1992–)

Evian "debut" (**1992**)

High Density QCD with Heavy Ions in CMS (**2007**)

- EOI in 1992: LHC to handle protons and lead
- CMS capabilities with heavy ions were early recognized
- CMS is a thriving community of HEP & NP
 - we're releasing a detailed review of Run1&2 NP studies

- LHC comfortably surpassed the target with Run 2 pp data at 13 TeV
 - This is a collider FOM for delivering statistically significant data samples

• The precise knowledge of luminosity scale is of equal importance

• We measured it with 1% precision \rightarrow CMS publication > 350 citations

Large Hadron Collider

- We have about 2000 times less nuclear (pPb or PbPb) than pp data
- Why?
 - acceleration limitations
 - o running time: 4 months vs > 4 years!

proton-proton

Nuclear collisions

- Top quark observed at Tevatron
- PRL 73 (1994) 225 (PRL Retrospective) PRL 119 (2017) 242001 (editor's suggestion)
- further studied in pp collisions at LHC
- We established a top quark program in the nuclear environment
 - \circ going from baseline ("reference") pp \rightarrow pPb \rightarrow PbPb data

GIZMODO, Dec 2017

Biggest Quark Spotted in Whole New Way

science 2.0, Sep 2017

science 2.0

Top Quarks Observed In Proton-Nucleus Collisions For The First Time 2nd 2017 05:28 AM | 🖨 Print | 🖾 E-ma

🔊 🖪 Share / Save 🔽 🚓 투 ... 🕑 Tweet 👔 Mou

FNRS News, Mar 2018 News

ÉTUDE DES NOYAUX LOURDS

Le Large Hadron Collider (LHC) du CERN produit des collisions entre protons (collisions pp) afin d'étudier les particules élémentaires, telles que le boson de Brout-Englert-Higgs. Moins connue est

sa capacité à produire également des collisions impliquant des noyaux atomiques lourds : plomb contre plomb (PbPb) et proton contre plomb (pPb). Le « quark lop » est la plus lourde particule élémentaire connue, découverte en 1995 au Tevatron (États-Unis), el scrutée sous tous les angles par de nombreuses études au LHC, jusqu'ici loujours basées sur les données pp. Pour la première fois, la production de quark top a été observée dans les collisions pPb, avec une méthode innovante qui pourrait être appliquée aux prochaines données PbPb. Le but est de mieux comprendre la matière nucléaire en conditions extrêmes, semblables aux premiers instants après le Big Bang.

Physics Review Letters Phys. Rev. Lett. - Observation of top quark production in proton-nucleus collisions

Andrea Glammanco, PhD Chercheur qualillé F.R.S.-FNRS Georgios Krintiras, dociorant

Centre for Cosmology, Particle Physics and Phenomenology, UCL

CERN Courier, Nov 2017

CMS

CMS observes top quarks in protonnucleus collisions

elementary particle in the Standard Model, has been the subject of numerous detailed studies in proton-

The top quark, the heaviest

antiproton and proton-proton collisions at the Tevatron and LHC since its discovery at Fermilab in 1995. Until recently, however, studies of top-quark production in nuclear collisions remained out of reach due to the small integrated luminosities of the first heavy-ion runs at the LHC and the low nucleon-nucleon (NN) centre-of-mass energies ($\sqrt{s_{NN}}$) available at other colliders such as RHIC in the US.

Proton-lead runs at vs_n = 8.16 TeV performed in 2016 at the LHC have allowed the CMS collaboration to perform the

(Above) Top-quark pair-production cross-section in pp and pPb collisions as a function of the centre-of-mass energy per nucleon pair. (Right) Invariant mass distribution of the hadronic top-quark candidates in selected events with two b-tagged jets.

first-ever study of top-quark production in nuclear collisions. Top-quark cross-sections at the LHC

can be computed with great accuracy via perturbative quantum chromodynamics

pPb (174 nb⁻¹, $\sqrt{s_{NN}}$ = 8.16 TeV) $e^{\pm}/\mu^{\pm} + \ge 4j (\ge 2b)$ CMS + data 30 tt correct tt wrong background £20 € $\chi^2/dof = 32.1/50$ 10 300 100 200 m_{top} (GeV)

(pQCD) methods, thus making this quark a "standard candle" and a tool for further investigations. In proton-nucleus collisions in particular, the top quark is a novel probe o the nuclear gluon density at high virtualities in the unexplored high Bjorken-x region. In addition, a good understanding of top-quark production in proton-nucleus collisions is crucial for studies of the space-time

PRL Synopsis, Dec 2017

Synopsis: Top Quark in Nuclear Collisions

December 14, 2017

The top quark-previously seen in proton collisions-has now been identified in collisions between protons and lead nuclei.

The road is finally open

CMS-PHO-EVENTS-2018-010-5 (PbPb 5.02 TeV)

"Heavy metal hits the top"

This result from @CMSExperiment, opens the path to study in a new and unique way the extreme state of matter that is thought to have existed shortly after the #BigBang.

CMS sees evidence of top quarks in collisions between heavy nuclei The CMS collaboration has seen evidence of top quarks in collisions between heavy nuclei at the Large Hadron Collider (LHC). This isn't the first time this ... \mathscr{O} home.cern

CMS Experiment at CERN October 9 at 9:08 AM

For the first time the CMS Collaboration demonstrates evidence that top quarks are produced in nucleus-nucleus collisions! Read more how the top quark interacts with the heavy metal & * * of the lead-lead collisions in this CMS physics briefing: I https://cms.cern /news/heavy-metal-hits-top

Phys Rev Lett **125** (2020) 222001 CERN <u>press release</u> CERN <u>video</u>

...

Maybe just a hype?

A series of followup results

<u>Re-observation</u> (Oct 2023) 19

The anomalous anomaly for e's & μ 's

Nature **622** (2023) 53 PRL **26** (2021) 141801, 2308.06230

• ALPHATRAP tested high-field QED in hydrogen-like heavy nuclei

- FNAL g-2 reconfirmed previous discrepancy
 - the exact level depends on theory considerations

Maybe their heavier cousin is more sensitive to new physics?

T's in ultraperipheal ion-ion collisions

- Exceptionally clean events
 - price to pay: ion-ion luminosity is low @ LHC
- This process can be studied in pp too (more complex but doable)

A dedicated physics program @ LHC to improved constraints on a

The anomalous anomaly for $\ensuremath{\mbox{\scriptsize T}}\xspace^{\ensuremath{\mbox{\scriptsize s}}}$

arXiv:2206.05192 (PRL, editor's suggestion)

- We observed $\gamma\gamma \rightarrow \tau^{+}\tau^{-}$ at LHC
 - obtained only with a single final state
- First constraints on a₁ obtained at LHC

ATLAS+CMS: improvements on a₊ with more data and final states

- Synergy is the key
 - "Cold" & "Hot" QCD → QCD (Equipment & infrastructure)
 - CMS shows the way: HEP & NP (R&D, operation, analysis)
- In the next 5 years
 - RHIC concludes its operation: > 20 /nb of AuAu
 - LHC completes Run 3: > 5 /nb of PbPb
 - Final EIC design (we're missing 2nd det ;) and construction
- In the next 10 years
 - Upgraded LHC detectors: > 5 /nb of PbPb
 - EIC starts its operation with 1.5 /fb / month

Thank you

Enrico Fermi's lectures on statistical physics ~1953

Something that molecularly is the same can still behave in a dramatically different way

QGP: the earliest and simplest form of complex matter

- The earliest: µs after Big Bang
- The simplest: q/g vs organic chemistry ;D
- Portal to the understanding of ordinary complex matter?

QGP: the earliest and simplest form of complex matter

- The earliest: µs after Big Bang
- The simplest: q/g vs organic chemistry ;D
- Portal to the understanding of ordinary complex matter?

QGP and Higgs boson physics at a crossroads

"Poetic license"

- We know that they both exist
- What are their properties? H properties < 10%, QGP?
- Are these unique? *The* or *a* QGP/H?

Nucleus: a new laboratory

arXiv: 1708.01527

- Efforts focused on how q/g propagate in QGP ("en. loss")
- How q/g transport inside the nuclear medium?
- A novel application of QCD developments

arXiv: 1708.01527

- Mostly terra incognita
- Hadron properties the result of the confined q/g
- A novel regime of QCD may exist: gluons saturate?

Improvements relative to Run 2 for CMS

- 3x increase in DAQ rate
- 4 layer pixel in our software
- ALICE & LHCb/SMOG2

	LHC									HL-LHC											
PbPb 2 nb ⁻¹					PbPb 7 nb ⁻¹ , pPb, pO, OO						PbPb 7 nb ⁻¹ , pPb					AA, small systems?					
R	un 2	Long shutdown 2			Run 3			Long Shutdown 3			Run 4			LS4		Run 5					
	2018 2		2020	2021	2022	WE ARE HERE	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Phase 1 Upgrade					Phase 2 Upgrade						Phase 3 Upgrade										

Improvements relative to Run 2 for CMS

- **3x increase in DAQ rate**
- 4 layer pixel in our software
- Upgraded detectors in Run 4
 - **3x increase in DAQ rate**
 - PID and 4D tracking
 - **f**tracking and muon coverage
 - high-granularity Hcal
 - radiation-hard ZDCs

		l	LHC									HL-	LHC]			
PbPb 2 nb ⁻¹ PbPb 7 nb ⁻¹ , pPb, pO, OO										PbPb 7 nb ⁻¹ , pPb					AA, small systems?					
Run 2	Long shutdown 2			Run 3			Long Shutdown 3			Run 4			LS4		Run 5					
2018	2019	2020	2021	2022	WE ARE HERE	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Pha	se 1 U	pgrad	e	Phase 2 Upgrade						Phase 3 Upgrade										

p/K/π separation

- Improvements relative to Run 2 for CMS
 - 3x increase in DAQ rate
 - 4 layer pixel in our software
- Upgraded detectors in Run 4
- Run 5 unique chance to enrich the NP program
 - dedicated taskforce for lighter ions
 - benchmark performance with O in 2024

- Upgraded detectors, major ones in sPHENIX
 - \sim extended coverage \rightarrow closing the gap with the LHC
- Realization of the 2015 NSAC Long Range Plan
 - Study the microstructure of the QGP
 - Precision jet and heavy flavor measurements

A high luminosity $(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ polarized electron proton / ion collider with $\sqrt{s_{ep}} = 28 - 140 \text{ GeV}$

- Only new collider in foreseeable future
 - frontier of Accelerator S&T
- ePIC Collaboration formed (IR6)
- General purpose detector

EIC: the nuclear HERA

- -4<η<4 & fwd/bkw coverage</p>
 - Iow-mass tracking
- PID capabilities (π , K, p, e/ π)
- hermetic ECAL & HCAL
- tagging p/n \rightarrow beamline detectors
- High control of systematics
 - Iuminometry, e & h polarimetry
- Integration into IR6 is critical

LbyL production in UPC AA

Z^4 enhancement: $\gamma\gamma$ luminosities \gg pp ones at low $W_{\gamma\gamma}$

- NP naturally complements BSM efforts Ο
 - concerted effort with large AA samples at RHIC+LHC
- **Event statistics already allow for differential studies**
 - low-**m**_{vv} excess triggered already dedicated efforts Ο

30

LbyL production in UPC AA

Nature Phys. 13 (2017) 852 Krintiras *et al*, <u>arXiv: 2204.02845</u> JINST 16 (2021) P05014

- Event statistics already allow for detailed studies
 - low-mass excess triggered already dedicated efforts
 - optimized the low-energy photon reconstruction
 - I performed the first combination with NP data at LHC
- NP naturally complements BSM efforts

LHC+RHIC data: a great boost to our search for new physics

Exotic hadrons and top quarks in

PRL 128 (2022) 032001 PRL 125 (2020) 222001

• NP can revolutionize exotic hadron spectroscopy

- o quark configurations for many exotics remain elusive
- Use top quark production as a new tool
 - reducing nPDF uncertainty; the most primordial b jets ³⁹

Probing the "final state": the yoctosec GGP lifetime

- Probes for jet quenching, e.g., dijets, Z/ɣ+jet, are produced **simultaneously** with the collision
- Top decay products have the potential to resolve the QGP evolution instead
- Leptonic & hadronic branches as "tag" & "probe"
- qq' start interacting with the medium at later times
- top p_{τ} acts as the "trigger" on the onset of the interaction

W mass vs top p_{T} and QGP lifetime reach

- What would be the observable to measure the amount of energy loss?
- By reconstructing **W** mass vs top p_{T} we can trace the quenching time dependence
- At HL-LHC, possible to distinguish low-duration scenarios (inclusively)
- At FCC, possible to assess the QGP density evolution (i.e., 'triggering on' top p_{τ})

Phys. Rev. Lett. 120 (2018) 232301

Prospects for top quark production at pA HL-LHC

- The y of the decay leptons sensitive probe of the nuclear gluon density
- comparable experimental and nPDF uncertainty with the pPb data set in Runs 3-4
- depending on the expected systematic error and bin-by-bin correlations
- to showcase **another potential**: In a pAr mode, the higher \sqrt{s} + lumonsity \rightarrow increased tt yield

nPDFs from several groups but long way to go

2203.13923

Nuclear (most recent) PDFs	nCTEQ15	EPPS16	nNNPDF 2 .0 (1 .0)	TUJU19	
Perturbative order	NLO	NLO	NLO, NNLO	NLO, NNLO	2.0 σ nNNPDF2.0
Heavy quark scheme	ACOT	S-ACOT	FONLL	ZM-VFN	\bullet = EPPS16
Value of $\alpha_s(m_Z)$	0.118	0.118	0.118	0.118	· 1.5-
Input scale Q_0	$1.30~{\rm GeV}$	$1.30~{\rm GeV}$	$1.00~{\rm GeV}$	$1.69~{ m GeV}$	8
Data points	708	1811	1467 (451)	2336	8 10
Fixed Target DIS	\checkmark	\checkmark	\checkmark (w/o ν -DIS)	\checkmark	
Fixed Target DY	\checkmark	\checkmark			
LHC DY and W		\checkmark	√ (X)		
Jet and had. prod.	$(\pi^0 \text{ only})$	$(\pi^0, LHC dijet)$			$O^2 = 100 \text{ G}_{-} \text{V}^2$
Independent PDFs	6	6	3	6	$Q^{-} = 100 \text{ GeV}$
Parametrisation	simple pol.	simple pol.	neural network	simple pol.	
Free parameters	16	20	256(178)	16	10^{-4} 10^{-5} 10^{-2} 10^{-1}
Statistical treatment	Hessian	Hessian	Monte Carlo	Hessian	\sim
Tolerance	$\Delta\chi^2 = 35$	$\Delta \chi^2 = 52$	- <u></u>	$\Delta\chi^2 = 50$	\mathcal{A}

• Features of the current fits

- Less available sets compared to proton PDFs
- Different sets, theoretical assumptions, and methodological settings
- The nuclear modification of the gluon distribution not well understood

nPDFs: long way to go

arXiv: 2203.13923 JHEP 09 (2020) 183

- LHC data gave an increase in kinematic coverage
- The nuclear modification of gluons not well understood
 - available data sets still limited

Tools for precise nPDF extraction

PLB 800 (2020) 135048

- LHC data reduced the gluon nPDF uncertainty
- The large-x (> 0.1) region is not affected though
 - only <u>dijets</u> and <u>top quarks</u> probe this *x* region

LHC data unique chance to pin down nPDF uncertainties

Are nPDFs global or not?

arXiv: 2103.05419 PRD 96 (2017) 114005

- EIC will also offer a huge increase in kinematic+A coverage
- We'll answer whether nPDFs are universal or not
- nPDFs are only the "LO" of a tomography/spatial imaging

EIC provides key constraints on nPDFs and at different Q²

Still this would be the first step for a **long journey**

arXiv:2205.00045 (accepted by PRL)

<cos(2Φ)> for exclusive dijets not well described by MC tuned in ep

- sensitive to primordial asymmetry due to the linearly polarized gluons
- nPDFs are only the "LO" of a 4+1D tomography/spatial imaging
 - \circ inclusive DIS \rightarrow semi-inclusive DIS \rightarrow exclusive processes

- We see a milder energy dependence than predicted
 - gluon saturation? if so, independent of particle species

 10^{-2}

• Accessible Q_s values at EIC thanks to ion species and energies

Explore LHC with more particles; EIC can discover a new state of matter 48

• ALICE and CMS dissentagled low- and high-γ energy contributions

- experimental uncertainty correlated across or W^{Pb}_{VN}
 - flattening of coherent $\sigma(J/\psi)$ vs. W_{vN}^{Pb} not predicted by models

• Nonlinear QCD regime reached at lower \sqrt{s} in nuclei than in proton?

- EIC can map the transition to a nonlinear QCD evolution of Qs with x
 - EIC can discover a new state of matter, e.g., counting # jets in ep/eA

- Bridging large with exceedingly small systems
 - PYTHIA8 describes v_2 in γp collisions \rightarrow jet-like correlations still dominate
- A simplified CGC model can describe the γ*Pb UPC data
 - contribution from final-state effects is yet an open question

• Gluon saturation models describe LHC anisotropy (U₂) data

but equally well with orthogonal models → an open question

These models predict sizeable U₂ values at EIC

LHC with more data; EIC unprecedented opportunity to study the origin of U_2 51

What's the small size QGP limit?

arXiv:2204.13486 arXiv:2008.03569

- Bridging large with exceedingly small systems
 - PYTHIA8 describes v_2 in γp collisions \rightarrow jet-like correlations still dominate
- A simplified CGC model can describe the γ*Pb UPC data
 - contribution from final-state effects is yet an open question
 - EIC an unprecedented opportunity to study v_2 vs system size (Q^2)

Y(ns) suppression in LHC and RHIC

HIN-21-007 (to appear) PLB 835 (2022) 137397

• Observation of Y(3S) also in PbPb

- indication of sequential suppression up to Y(3S), ATLAS and STAR Y(2S)+Y(2S)
- \circ strong challenge for models to reproduce Y(3S) R_{AA}>0
- Strong complementarity between LHC and RHIC
 - Excited states will set constraints on transport, hadronization, etc models

Large uncertainty in nuclear transport

- \mathbf{R}_{eA} probes interactions inside nuclei and nPDFs at moderate and large x
- $R_{eA}(R)/R_{eA}(R=1)$ eliminates initial-state effect; extra insights from varying \sqrt{s} (steeper β_T^4)

• "Jet charge" strongly correlated with the parton's electric charge

- with flavor separation (Olga's group at LHC): final-state interaction with varying k
- inclusive jets: constrain isospin effects and the up/down quark nPDFs

• Jet substructure of DIS jets: wealth of new opportunities

• independent constraints on the parton transport coefficient in nuclei

It's an excess, bkg, mismodeling?

LHC

RHIC

• Key ingredients so far missing from UPC modeling

- Ion EM form factor, survival factor probability, mutual diss.
- next to LO effects (FSR, multiscattering, ..)

EMPTY! Ion EM form factor 56

LO $\gamma \gamma \rightarrow l^+ l^$ matrix element

It's an excess, bkg, mismodeling?

LHC

RHIC

• Key ingredients so far missing from UPC modeling

- Ion EM form factor, survival factor probability, mutual diss.
- next to LO effects (FSR, multiscattering, ..)

Data/MC comparison encouraging

- applicable to other final states?
- essential for precision QED program

ElC far-fwd & far-bkw regions

• Apart from central detector, dedicated systems into the beamline

 \bigcirc Complicated layout + limited space \rightarrow integration a challenge

• At hadron- (far-forward) and electron-going (far-backward) directions

- systems crucial for delivery of full EIC physics program
 - Large acceptance for diffraction, proton tagging, and neutrons from breakup 58
 - High control of systematics: luminometry, electron & hadron polarimetry

Road to luminosity precision

Direct γ measurement @ 0°

- simple concept
- straightforward γ acceptance
- in primary sync. rad. fan
- 'fuzzy' cutoff @ $E_v \rightarrow 0$
 - pileup: many γ's per bunch ×ing _

• Pair spec. + tracking measurement

- outside primary sync. rad. fan
- natural low-E_v cutoff
- rate adjustable: converter, geometry, dipole | B
- Successfully implemented by ZEUS @ HERA
- complex implementation \rightarrow ML assistance?
 - γ acceptance requires accurate simulation

• Two approaches complement each other

Coincidence in pair spec.?

Ο

low-Q²

taggers

- conversion probability, verify simulation
- [→] Shower in γ-calorimeter?
 - calibrate Ecal

CMS Phase 2 Upgrades (HI related)

CMS-DP-2021-037

Yen-Jie Lee: Tue 2.00 pm

Phase 2 Upgrade

CMS Phase 2 for Run 4

- Tracker |n|<4
- Muon ID up to |η|<2.8
- High Granularity Calorimeter
- MIP timing detector
 - 4D vertexing
 - p/K/π PID (CMS MTD)
- L1 trigger update: 750 kHz for CMS
- DAQ: 51 GB/s for CMS
- L1 track triggers
- ZDC

- Main batch of CMS Upgrades in Run 4
 - Among others, unique hermetic particle identification coverage by CMS MTD

Physics requests documented in past years over a diverse set of reports

• WG5 HL-LHC, ATLAS+CMS Snowmass'22, QCD Town Meeting WP, CMS HIN

Luminosity calibration: PbPb @ 5.02 TeV (2018 Nov)

Among most precise PbPb luminosity determinations

Three systems with independent calibration:

- Fast Beam Conditions Monitor (BCM1F)
- Forward Hadron Calorimeter (HFOC)
- Pixel Luminosity Telescope (PLT)

Stability monitored using emittance scans (short vdM-like scans)

Total uncertainty: 1.5% PAS-LUM-18-001

150th LHCC Meeting

EIC luminosity monitors

- Luminosity systems with challenging target
 - \circ $\delta L/L \sim 1\%$ or rel. determination > 10⁻⁴ precision

• Based on bremsstrahlung from $ep(A) \rightarrow ep(A)$

- \circ Bethe-Heitler σ known with ~0.5%
- for 18x275 GeV: σ ~275 mb (σ_{eA} ∝ Z²)
- Two systems with different technologies
 - orthogonal systematics

Previous experiments managed at ~2%; can we do better?

EIC luminosity monitors

- Luminosity systems with challenging target
 - \circ $\delta L/L \sim 1\%$ or rel. determination > 10⁻⁴ precision
- Based on bremsstrahlung from $ep(A) \rightarrow ep(A)$
 - \circ Bethe-Heitler σ known with ~0.5%
 - \circ for 18x275 GeV: σ~275 mb (σ_{eA}∝ Z²)
- Two systems with different technologies
 - orthogonal systematics

Clean photoproduction in low-Q² taggers

- e's from bremsstrahlung will hit them
 - $\blacksquare \quad \mathsf{E}_{\mathsf{y}} = \mathsf{E}_{\mathsf{beam}} \mathsf{E}_{\mathsf{e}} \to \mathsf{calibration}$
 - necessary to reconstruct photoproduced VMs
- PbWO4 ECal and AC-LGAD trackers

