

Search for BSM Higgs decays to aa→2τ2b at the CMS experiment

Pallabi Das Princeton University, USA

Université Catholique de Louvain 27th June, 2023

• Introduction

- Motivation
- LHC and CMS experiment
- Theoretical models

‣ Analysis

- Methodology
- Object and event selection
- DNN categorisation
- Backgrounds
- Uncertainties

▶ Results

- Signal region distributions
- Limits on exotic Higgs BR
- ‣ Summary

INTRODUCTION

Motivation

The discovery of the Higgs boson 10 years ago [[1,](https://arxiv.org/abs/1207.7214) [2](https://arxiv.org/abs/1207.7235)] established the theory of the SM ➞ *But many questions remain!*

- ‣ Several BSM theories which can explain **Dark Matter** origin, **Hierarchy Problem**, etc. and also predict a **Higgs Resonance**
	- ➞ **New physics particles preferentially couple to the Higgs boson**
- ► Extended Higgs sector (MSSM, NMSSM etc.) allows the SM Higgs boson to act as a portal to a "hidden sector" of new physics interactions
- \triangleright Run 2 focused on measuring the Higgs properties, including probes to BSM physics $[3, 4]$ $[3, 4]$ $[3, 4]$

New exotic phase space to be explored with additional data from Run 3

- ‣ Various SM Higgs couplings have only been constrained→new physics couplings may still be present
- ‣ Direct search for exotic particles is able to probe several TeV energy scales

This talk: reviewing full Run-2 results of H→aa→2b2τ search from [CMS-PAS-](http://cds.cern.ch/record/2853298?ln=en)[HIG-22-007](http://cds.cern.ch/record/2853298?ln=en)

The Large Hadron Collider

- ‣ World's largest and most powerful particle collider in discovery mode
- Run 2 (2015-18): beam energy = 6.5 TeV and peak luminosity up to 1.5 $*$ 10³⁴ cm⁻²s⁻¹
- Main physics goals:
	- Discover the Higgs boson and measure its properties
	- Search for beyond SM phenomena at TeV energy scale
- \blacktriangleright LHC is currently in Run-3 (2022-2024): beam energy = 6.8 TeV
- ▶ In future LHC will operate in the High Luminosity (HL) mode with a luminosity of about 7.5 * 1034 cm-2s-1 and accumulate 3 ab-1 of collision data

Compact Muon Solenoid experiment

- ‣ One of the two general purpose detectors at the LHC, built around a superconducting solenoid
- ▶ Dedicated sub-detectors: silicon tracker, electromagnetic and hadronic calorimeters and muon system to identify and measure different particles
- Interesting physics events are selected online in two steps: Level-1 Trigger (hardware based) and High Level Trigger (computing farm)
- \triangleright Combined information to reconstruct collision event \rightarrow [Particle Flow \(PF\)](https://doi.org/10.1088/1748-0221/12/10/P10003)

Looking for a signal in collision events

- Low level reconstruction: hit positions or energy deposits in sub-detectors are combined to form track segments or energy clusters
- These are interpreted by PF algorithm as particle signatures: electrons, muons, photons, taus, jets, missing transverse momentum (p_T ^{miss})
- ‣ Apply requirements to select events having expected signal-like features
	- This analysis: use Deep Neural Network to discriminate signal and background processes
- ‣ Extract total cross section by measuring observed data events:

 $\sigma^*BR(obs) = (N^{data} - N^{background}) / (\mathcal{L}^*A^* \epsilon)$

• Compare σ*BR(obs) with σ*BR(theoretical) using the signal strength parameter:

 $\mu = \sigma^*BR(obs) / \sigma^*BR(theoretical)$

- \triangleright Upper limit on μ is obtained using Maximum Likelihood fit approach, taking into account related experimental and theoretical uncertainties
	- This analysis: results are interpreted in terms of upper limits on BR(H→aa→2τ2b) by assuming SM Higgs production cross-section, and $BR(H\rightarrow aa\rightarrow 2T2b) = 100\%$

Higgs to pseudoscalar decays

- ▶ Viable decay in 2HDM+S: two scalar doublets and one scalar singlet, leading to seven scalars or pseudoscalars
- Assuming the singlet state has no direct Yukawa couplings, decays to fermions are a result of mixing with the Higgs sector
- ‣ Mixing is small enough to preserve the SM couplings of the Higgs, branching fractions of the pseudoscalars depend on the model and model parameters ➞ Different BSM models can be tested considering H→aa but special interest is in constraining 2HDM+S that conserve observed features of the SM

2HDM+S

‣ Four types of 2HDM+S are defined which forbid FCNC, based on coupling structure of the two Higgs doublets and the SM fermions

- ‣ Different BR is predicted depending on the model type and tanβ value (ratio of vacuum expectation values)
	- Highest production rate of H→aa→2τ2b is predicted by the Type III model
	- Type II scenario most interesting in terms of phenomenology: default coupling structure for most MSSM theories

H**→**aa**→**2**τ**2b analysis in a nutshell

Relatively larger BR to bb and ττ, improved τ lepton reconstruction techniques

- Search for a masses within $12 < m_a < 60$
- \triangleright Three final states explored: $e\mu$, $e\tau_h$, $\mu\tau_h$

Improved results compared to the previous analysis using partial Run-2 data (2016)

- ‣ Addition of > 1 b-jet category made possible due to increased statistics
- DNN categorisation vs. cut based event selection strategy
- [SVfit algorithm](http://dx.doi.org/10.1016/j.nima.2017.05.001) to reconstruct di-tau invariant mass $m_{\tau\tau}$ including neutrino energies instead of only visible components of $m_{\tau\tau}$ distribution
- ► Better object reconstruction techniques based on DNN developed within CMS experiment in the recent years: **DeepJet**, **[DeepTau](http://dx.doi.org/10.1088/1748-0221/17/07/P07023) tagging**
- More precise estimation of $Z \rightarrow \tau\tau$ using the [embedding technique](http://dx.doi.org/10.1088/1748-0221/14/06/P06032)

[2016-only result](http://dx.doi.org/10.1016/j.physletb.2018.08.057): BR(H→aa→2τ2b) values constrained at 95% CL below 3-12% depending on m_a

The expected upper limits from the full Run-2 analysis improved due to changes in analysis strategy rather than the increase in data statistics alone

Trigger requirements and object selection

- \blacktriangleright Electrons and muons are reconstructed within $|\eta| < 2.4$ and τ_h within $|\eta| < 2.1$
- \triangleright Offline e, μ and τ_h are matched to the trigger objects, with p_T thresholds being 1 GeV larger than the online threshold for e, μ ; offline p_T threshold for τ_h is 35 GeV
- In case both single and cross-triggers are present in the event, use lowest threshold
- \triangleright Additional identification/isolation requirements on e/ μ/τ_h (e.g. DeepTau for taus)
- Anti-kT jets are reconstructed within $|η| < 2.4$ using a cone size of 0.4; they are required to have $p_T > 20$ GeV; b-tagged using DeepJet algorithm

June 27, 2023 13 P. Das

Event selection

- ‣ Only three di-tau final states considered:
	- \cdot ee and $\mu\mu$ have low BR and large background from Drell-Yan process
	- \cdot τ_hτ_h has high trigger threshold
	- Extra lepton veto applied for each of the three final states to ensure mutually exclusive selection
- \blacktriangleright Events should have at least one loosely tagged b-jet with $p_T > 20$ GeV
	- Two broad categories based on b-jet multiplicity: $= 1$ and > 1 b-jet
- **DNN** categorisation:
	- Discriminate signal against a combination of major backgrounds (t \bar{t} +jets and Drell Yan)
	- Train one DNN for each of the three channels and two b-jet categories: six in total
	- Training variables are based on kinematics of reconstructed final state particles
	- Split the selected events further into smaller categories based on the DNN scores: in some of these categories more signal events are selected compared to the background enhancing sensitivity called the signal regions (SR); background rich categories are taken as control regions (CR)

DNN score distributions

- Discriminating observables include invariant mass of visible decay products, transverse mass between an object and p_T ^{miss}, m_{bb} - $m_{\tau\tau}$ etc.
- \triangleright Final observable used in maximum likelihood fit: $m_{\tau\tau}$, not used as an input to DNN

Background estimation

-
- ‣ Irreducible physics backgrounds: genuine particles forming the final state from other physics processes are estimated from simulation
	- ‣ ^Z→ee/µµ
	- \triangleright W+jets in the e μ channel
	- If the e μ channel
	- ‣ Diboson, single top, SM Higgs→ττ/WW
- ‣ Reducible backgrounds: mis-identified or *fake* particles forming the final state are estimated from data, also $Z \rightarrow \tau\tau$ that is not described well in simulation
	- \blacktriangleright Jets faking τ_h : W+jets and QCD processes have large jet multiplicity, leading to fake τh; they are estimated from a sideband region in data by multiplying with a scale factor derived from control region; this estimate also includes contributions from $t\bar{t}$ +jets, single top, diboson and Z+jets
	- QCD process in eu channel: jets can also be mis-identified as e/μ and are most significant in QCD process, which has high jet multiplicity; thus it is estimated in a similar way using scale factors derived from control region
- June 27, 2023 16 P. Das \triangleright $\mathsf{Z}\rightarrow\tau\tau$: the limitations in reconstructing taus is overcome by the embedding technique; well reconstructed $Z \rightarrow \mu\mu$ events are selected from data and the muon candidates are replaced with simulated tau candidates having the same kinematics \rightarrow includes better description of jets and detector conditions

Systematic Uncertainties

- Some uncertainties affect the shape of the $m_{\tau\tau}$ distribution, some only vary the yield
- ‣ Two broad categories: experimental and theoretical
- ‣ Experimental:
	- Luminosity measurement
	- \cdot Uncertainty in measuring efficiency scale factors for $e/\mu/\tau_h$ selection and trigger
	- Jet energy correction and b-tagging efficiencies
	- ECAL timing shift due to misalignment
	- Background estimations:
		- Normalisation of various SM process
		- Uncertainty in measuring different fake rates/scale factors for data-driven backgrounds
		- Uncertainty in estimating the embedded background
- ▶ Theoretical:
	- Uncertainty in the ggF and VBF production cross sections of the Higgs boson
	- Scale variations in $t\bar{t}$ +jets, single top and diboson simulations
	- Parton-shower uncertainties in $t\bar{t}$ +jets

RESULTS

Single region distributions: ep

Single region distributions: e**τ**^h

Single region distributions: µ**τ**^h

Upper limits on exotic Higgs BR

Limit is set on SM like Higgs→aa→2τ2b:

- Most sensitive channel: $\mu\tau_h$, dominant background is $Z\rightarrow\tau\tau$ and τ_h fakes from QCD multijet
- \triangleright Dominant systematic uncertainty from fake τ_h background estimation
- ‣ Analysis is still statistically limited

Only the $e\mu$ channel is sensitive to the 12 GeV mass point

- \triangleright For low m_a the decay products are boosted, need dedicated reconstruction
- \blacktriangleright In this analysis, a ΔR requirement is applied between the final state particles, which has a lower threshold in $e\mu$ channel

June 27, 2023

Combination with H**→**aa**→**2µ2b analysis

- ‣ Straightforward statistical combination: analyses utilise orthogonal data samples
- ‣ Some common uncertainties are treated as correlated, such as luminosity measurement, jet energy scale, variations in signal cross section etc
- ‣ Type-independent upper limits on BR(H→aa→llbb) in the context of 2HDM+S are derived as a function of m_a where I is a μ or τ

Interpreting in terms of different 2HDM+S: BR(H→aa) values excluded above 23% (Type II tan β > 1), 7% (Type III tan β = 2.0) and 15% (Type IV tan β = 0.5)

Implications for different models

Stringent upper limits are set for most Type III and Type IV 2HDM+S scenarios

16% contour corresponds to combined upper limit on Higgs to BSM particle decays obtained from previous Run 2 results

TL; DL…

Higgs portal to hidden BSM sector being explored by CMS analyses in different final states ➞ **Many full Run-2 results are public, some are work in progress**

- Improved sensitivity compared to previous searches using novel analysis techniques and machine learning
- ‣ For H→aa→2τ2b, no significant excess over SM prediction *just yet*, many other possibilities remain to be explored
	- Asymmetric pseudoscalar masses unexplored
	- Signals with low pseudoscalar mass to be analysed using boosted reconstruction techniques

Direct searches benefit the most with increase in luminosity: exciting times ahead with the onset of LHC Run-3!

Thank You

Backup

H**→**aa**→**2µ2b

Clean signature with a precise mass resolution from $m_{\mu\mu}$ **and large BR from bb**

- Search for a masses within $15 < m_a < 60$
- \triangleright Bump hunt analysis using the dimuon invariant mass $m_{\mu\mu}$
- ‣ Completely data-driven background estimation
- Thorough study of the signal to use a single discriminating variable to suppress background

Parametric fit of the signal model in different categories based on b-jet properties

Most stringent observed upper limit till date in this final state, slightly better than ATLAS results

No significant deviations from SM prediction, analysis is limited by statistics

Run-1 results: h→aa→l+l-,l+l-

[Results from Run-1](http://www.apple.com/uk): using 19.7 fb-1 p-p collision data at 8 TeV

- ‣Pseudoscalar masses between 5 and 62.5 GeV are probed in final states 4τ, 2b2µ, and 2b2^τ
- ‣ Results were compared to predictions from 2HDM and 2HDM+S models

B(a→τ+τ−) is directly proportional to B(a→ μ + μ ⁻) in any type of 2HDM+S, as is $B(a \rightarrow bb)$ in Type-1 & -2

Therefore, the results of all analyses can be expressed as exclusion limits on σ(h)/σ SM x B(H→aa)B2(a→µ+µ−)

SM compatibility: combining ATLAS and CMS measurements an upper limit of 34% is set on exotic Higgs decays → loose constraint on BSM physics