

Search for BSM Higgs decays to $aa \rightarrow 2\tau 2b$ at the CMS experiment

Pallabi Das Princeton University, USA

Université Catholique de Louvain 27th June, 2023

Introduction

- Motivation
- $\cdot\,$ LHC and CMS experiment
- Theoretical models

Analysis

- Methodology
- Object and event selection
- DNN categorisation
- Backgrounds
- Uncertainties

Results

- Signal region distributions
- Limits on exotic Higgs BR
- Summary

INTRODUCTION

Motivation

The discovery of the Higgs boson 10 years ago [1, 2] established the theory of the SM

→ But many questions remain!

- Several BSM theories which can explain Dark Matter origin, Hierarchy Problem, etc. and also predict a Higgs Resonance
 - → New physics particles preferentially couple to the Higgs boson
- Extended Higgs sector (MSSM, NMSSM etc.) allows the SM Higgs boson to act as a portal to a "hidden sector" of new physics interactions
- Run 2 focused on measuring the Higgs properties, including probes to BSM physics [3, 4]

New exotic phase space to be explored with additional data from Run 3

- Various SM Higgs couplings have only been constrained → new physics couplings may still be present
- Direct search for exotic particles is able to probe several TeV energy scales

This talk: reviewing full Run-2 results of $H \rightarrow aa \rightarrow 2b2\tau$ search from <u>CMS-PAS-</u><u>HIG-22-007</u>

The Large Hadron Collider

- World's largest and most powerful particle collider in discovery mode
- Run 2 (2015-18): beam energy = 6.5 TeV and peak luminosity up to 1.5×10^{34} cm⁻²s⁻¹
- Main physics goals:
 - Discover the Higgs boson and measure its properties
 - Search for beyond SM phenomena at TeV energy scale
- LHC is currently in Run-3 (2022-2024): beam energy = 6.8 TeV
- In future LHC will operate in the High Luminosity (HL) mode with a luminosity of about 7.5 * 10³⁴ cm⁻²s⁻¹ and accumulate 3 ab⁻¹ of collision data

Compact Muon Solenoid experiment

- One of the two general purpose detectors at the LHC, built around a superconducting solenoid
- Dedicated sub-detectors: silicon tracker, electromagnetic and hadronic calorimeters and muon system to identify and measure different particles
- Interesting physics events are selected online in two steps: Level-1 Trigger (hardware based) and High Level Trigger (computing farm)
- Combined information to reconstruct collision event → Particle Flow (PF)

Looking for a signal in collision events

- Low level reconstruction: hit positions or energy deposits in sub-detectors are combined to form track segments or energy clusters
- These are interpreted by PF algorithm as particle signatures: electrons, muons, photons, taus, jets, missing transverse momentum (p_T^{miss})
- Apply requirements to select events having expected signal-like features
 - This analysis: use Deep Neural Network to discriminate signal and background processes
- Extract total cross section by measuring observed data events:

 $\sigma^*BR(obs) = (N^{data} - N^{background}) / (\mathcal{L}^*A^*\epsilon)$

• Compare $\sigma^*BR(obs)$ with $\sigma^*BR(theoretical)$ using the signal strength parameter:

 $\mu = \sigma^* BR(obs) / \sigma^* BR(theoretical)$

- Upper limit on µ is obtained using Maximum Likelihood fit approach, taking into account related experimental and theoretical uncertainties
 - This analysis: results are interpreted in terms of upper limits on BR(H→aa→2τ2b) by assuming SM Higgs production cross-section, and BR(H→aa→2τ2b) = 100%

Higgs to pseudoscalar decays

- Viable decay in 2HDM+S: two scalar doublets and one scalar singlet, leading to seven scalars or pseudoscalars
- Assuming the singlet state has no direct Yukawa couplings, decays to fermions are a result of mixing with the Higgs sector
- Mixing is small enough to preserve the SM couplings of the Higgs, branching fractions of the pseudoscalars depend on the model and model parameters
 → Different BSM models can be tested considering H→aa but special interest is in constraining 2HDM+S that conserve observed features of the SM

2HDM+S

Four types of 2HDM+S are defined which forbid FCNC, based on coupling structure of the two Higgs doublets and the SM fermions

	Type I	Type II	Type III (lepton specific)	Type IV (flipped)
Right handed leptons	h ₁	h ₂	h ₂	h1
Up-type quarks	h ₁	h1	h1	h1
Down-type quarks	h ₁	h ₂	h1	h ₂

- Different BR is predicted depending on the model type and tanβ value (ratio of vacuum expectation values)
 - Highest production rate of H→aa→2τ2b is predicted by the Type III model
 - Type II scenario most interesting in terms of phenomenology: default coupling structure for most MSSM theories

H→aa→2T2b analysis in a nutshell

Relatively larger BR to bb and TT, improved T lepton reconstruction techniques

- Search for a masses within $12 < m_a < 60$
- Three final states explored: $e\mu$, $e\tau_h$, $\mu\tau_h$

Improved results compared to the previous analysis using partial Run-2 data (2016)

- Addition of > 1 b-jet category made possible due to increased statistics
- DNN categorisation vs. cut based event selection strategy
- <u>SVfit algorithm</u> to reconstruct di-tau invariant mass m_{ττ} including neutrino energies instead of only visible components of m_{ττ} distribution
- Better object reconstruction techniques based on DNN developed within CMS experiment in the recent years: <u>DeepJet</u>, <u>DeepTau</u> tagging
- More precise estimation of $Z \rightarrow \tau \tau$ using the <u>embedding technique</u>

<u>2016-only result</u>: BR(H \rightarrow aa \rightarrow 2 τ 2b) values constrained at 95% CL below 3-12% depending on m_a

The expected upper limits from the full Run-2 analysis improved due to changes in analysis strategy rather than the increase in data statistics alone

Trigger requirements and object selection

		eµ		eτ _h		μτ _h	
	Туре	е	μ	е	$ au_h$	μ	$ au_h$
2016	single	-	-	25	-	22	-
	leading	23	23	-	-	-	20
	sub-leading	12	8	-	-	19	-
2017	single	-	-	27, 32	-	24, 27	-
	leading	23	23	-	30	-	27
	sub-leading	12	8	24	-	20	-
2018	single	-	-	32, 35	-	24, 27	-
	leading	23	23	-	30	-	27
	sub-leading	12	8	24	-	20	-

- Electrons and muons are reconstructed within $|\eta| < 2.4$ and τ_h within $|\eta| < 2.1$
- Offline e, μ and τ_h are matched to the trigger objects, with p_T thresholds being 1 GeV larger than the online threshold for e, μ; offline p_T threshold for τ_h is 35 GeV
- In case both single and cross-triggers are present in the event, use lowest threshold
- Additional identification/isolation requirements on $e/\mu/\tau_h$ (e.g. DeepTau for taus)
- Anti-kT jets are reconstructed within lηl < 2.4 using a cone size of 0.4; they are required to have p_T > 20 GeV; b-tagged using DeepJet algorithm

June 27, 2023

Event selection

- Only three di-tau final states considered:
 - · ee and $\mu\mu$ have low BR and large background from Drell-Yan process
 - $\tau_h \tau_h$ has high trigger threshold
 - Extra lepton veto applied for each of the three final states to ensure mutually exclusive selection
- Events should have at least one loosely tagged b-jet with $p_T > 20 \text{ GeV}$
 - Two broad categories based on b-jet multiplicity: = 1 and > 1 b-jet
- DNN categorisation:
 - Discriminate signal against a combination of major backgrounds (tt+jets and Drell Yan)
 - Train one DNN for each of the three channels and two b-jet categories: six in total
 - Training variables are based on kinematics of reconstructed final state particles
 - Split the selected events further into smaller categories based on the DNN scores: in some of these categories more signal events are selected compared to the background enhancing sensitivity called the signal regions (SR); background rich categories are taken as control regions (CR)

DNN score distributions

- Discriminating observables include invariant mass of visible decay products, transverse mass between an object and p_T^{miss}, m_{bb}-m_{ττ} etc.
- Final observable used in maximum likelihood fit: $m_{\tau\tau}$, not used as an input to DNN

June 27, 2023

Background estimation

- VET NOV TAM EN TYM
- Irreducible physics backgrounds: genuine particles forming the final state from other physics processes are estimated from simulation
 - ► Z→ee/µµ
 - W+jets in the $e\mu$ channel
 - $t\bar{t}$ +jets in the e μ channel
 - ► Diboson, single top, SM Higgs→ττ/WW
- ► Reducible backgrounds: mis-identified or *fake* particles forming the final state are estimated from data, also Z→ττ that is not described well in simulation
 - Jets faking τ_h: W+jets and QCD processes have large jet multiplicity, leading to fake τ_h; they are estimated from a sideband region in data by multiplying with a scale factor derived from control region; this estimate also includes contributions from tt
 +jets, single top, diboson and Z+jets
 - QCD process in eµ channel: jets can also be mis-identified as e/µ and are most significant in QCD process, which has high jet multiplicity; thus it is estimated in a similar way using scale factors derived from control region
 - Z→ττ: the limitations in reconstructing taus is overcome by the embedding technique; well reconstructed Z→µµ events are selected from data and the muon candidates are replaced with simulated tau candidates having the same kinematics → includes better description of jets and detector conditions

Systematic Uncertainties

- Some uncertainties affect the shape of the $m_{\tau\tau}$ distribution, some only vary the yield
- Two broad categories: experimental and theoretical
- Experimental:
 - Luminosity measurement
 - Uncertainty in measuring efficiency scale factors for $e/\mu/\tau_h$ selection and trigger
 - Jet energy correction and b-tagging efficiencies
 - ECAL timing shift due to misalignment
 - Background estimations:
 - Normalisation of various SM process
 - Uncertainty in measuring different fake rates/scale factors for data-driven backgrounds
 - Uncertainty in estimating the embedded background
- Theoretical:
 - Uncertainty in the ggF and VBF production cross sections of the Higgs boson
 - Scale variations in $t\bar{t}$ +jets, single top and diboson simulations
 - Parton-shower uncertainties in $t\bar{t}$ +jets

RESULTS

Single region distributions: ep

Single region distributions: eTh

20

Single region distributions: μT_h

Upper limits on exotic Higgs BR

Limit is set on SM like Higgs $\rightarrow aa \rightarrow 2\tau 2b$:

- Most sensitive channel: $\mu \tau_h$, dominant background is $Z \rightarrow \tau \tau$ and τ_h fakes from QCD multijet
- Dominant systematic uncertainty from fake τ_h background estimation
- Analysis is still statistically limited

Only the $e\mu$ channel is sensitive to the 12 GeV mass point

- For low ma the decay products are boosted, need dedicated reconstruction
- In this analysis, a ΔR requirement is applied between the final state particles, which has a lower threshold in eµ channel

June 27, 2023

Combination with $H \rightarrow aa \rightarrow 2\mu 2b$ analysis

- Straightforward statistical combination: analyses utilise orthogonal data samples
- Some common uncertainties are treated as correlated, such as luminosity measurement, jet energy scale, variations in signal cross section etc
- Type-independent upper limits on BR(H \rightarrow aa \rightarrow Ilbb) in the context of 2HDM+S are derived as a function of m_a where I is a μ or τ

Interpreting in terms of different 2HDM+S: BR(H \rightarrow aa) values excluded above 23% (Type II tan $\beta > 1$), 7% (Type III tan $\beta = 2.0$) and 15% (Type IV tan $\beta = 0.5$)

Implications for different models

Stringent upper limits are set for most Type III and Type IV 2HDM+S scenarios

16% contour corresponds to combined upper limit on Higgs to BSM particle decays obtained from previous Run 2 results

TL; DL...

Higgs portal to hidden BSM sector being explored by CMS analyses in different final states → Many full Run-2 results are public, some are work in progress

Improved sensitivity compared to previous searches using novel analysis techniques and machine learning

Summary

- For H→aa→2τ2b, no significant excess over SM prediction just yet, many other possibilities remain to be explored
 - Asymmetric pseudoscalar masses unexplored
 - Signals with low pseudoscalar mass to be analysed using boosted reconstruction techniques

Direct searches benefit the most with increase in luminosity: exciting times ahead with the onset of LHC Run-3!

Thank You

Backup

H→aa→2µ2b

Clean signature with a precise mass resolution from $m_{\mu\mu}$ and large BR from bb

- Search for a masses within 15 < m_a < 60</p>
- Bump hunt analysis using the dimuon invariant mass $m_{\mu\mu}$
- Completely data-driven background estimation
- Thorough study of the signal to use a single discriminating variable to suppress background

Parametric fit of the signal model in different categories based on b-jet properties

Most stringent observed upper limit till date in this final state, slightly better than ATLAS results

No significant deviations from SM prediction, analysis is limited by statistics

Run-1 results: h→aa→l+l-,l+l-

Results from Run-1: using 19.7 fb⁻¹ p-p collision data at 8 TeV

- Pseudoscalar masses between 5 and 62.5 GeV are probed in final states 4τ , $2b2\mu$, and $2b2\tau$
- Results were compared to predictions from 2HDM and 2HDM+S models

B(a→ τ + τ -) is directly proportional to B(a→ μ + μ -) in any type of 2HDM+S, as is B(a→bb) in Type-1 & -2

Therefore, the results of all analyses can be expressed as exclusion limits on $\sigma(h)/\sigma$ SM x B(H \rightarrow aa)B²(a $\rightarrow \mu^+\mu^-$)

SM compatibility: combining ATLAS and CMS measurements an upper limit of 34% is set on exotic Higgs decays \rightarrow loose constraint on BSM physics