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From theory to experiment in LHC physics

LHC physics is at its core simulation-based inference

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder
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Enhancing the simulation chain with ML

Loop integrals: arXiv:2112.09145

Importance Sampling: arXiv:2212.06172

Event unweighting: arXiv:2012.07873
Hadronization: arXiv:2305.17169

Detector simulation: arXiv:2110.11377

End-to-end event generation: arXiv:2305.10475

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder
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Generative Machine Learning

@ Given a set of samples Xiain from a distribution, the task is to learn
the underlying density pgata(X)

@ Most generative models are based on learning a transformation
between a simple latent space and the complex target phase space

X~ pmodeI(X|9) ~ pdata(X) S r~ platent(r) - N(07 1)

where the dependence on 6 represents the network training

@ So far only Normalizing Flows have been shown to achieve
percent-level precision for LHC event generation (arXiv:2110.13632)
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Normalizing Flows

@ Define the mapping between the latent and the target space as a
bijective function

GG_I(X)—>
X~ pmodel(xle) A — r~ platent(r)
+Go(r)
@ Make use of the change of variables formula to write the model
density as

9Gy ' (x)

det
€ Ox

PmodeI(X|0) = PIatent(Gerl(X))

and train via Maximum Likelihood Estimation

@ Construct the bijective map G as a composition of simple invertible
nonlinear maps such that it is versatile enough to model complex
densities yet still allows for efficient Jacobian calculation
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New generative models

Diffusion Transformer

State-of-the-art image generation State-of-the-art language generation
Midjourney, StableDiffusion, ... ChatGPT, Bard, ...

= State-of-the-art for LHC physics applications as well?
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Diffusion Models

Generative models
Learn mapping between simple latent space and target phase space

X ~ pmodeI(X|‘9) A — A Platent(z) = N(07 ]-)

Diffusion models
Define mapping as time-dependent diffusion process

t
Xg ~ pmodel(XO‘e) S XT platent(XT) = N(O7 1)

=-: Gradually add noise to data samples to transform them to gaussians
< Gradually remove noise from gaussians to obtain data samples
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Conditional Flow Matching [arxiv:2210.02747]

@ The time evolution of individual samples follows an ODE

Cb;(tt) = v(x,t)
@ The time evolution of the density follows a continuity equation
0 t
POST) 9 ol vl 0] = 0.

@ Define the time-dependent density via
p(x,t) = /dXO p(x, t|X0) Pdata(X0)
= /dXo N(x: (1 — t)x0, t) Pdata(X0)

s pdata(X) t—0
platent(X) = N(X; 0, 1) t—1

= Learn the associated velocity field vy from data
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CFM Training

_ B 2
Lorm = <[V9(X’ ) = vlx tho)l >t~u([o,11),x<)~pdata,ew(o,l)

t~U((0,1]) l

Ty ~ Pdata(0), € ~ N(0,1) — @(tlao) = (1 — t)ao + te @

L= (vg—(e—xo))2

10/29



CFM models as Continuous Normalizing Flows

@ Once the model is trained, the ODE defines a bijective mapping

%x(t) Cw(x(E),8)  with x1 = x(t = 1) ~ A7(0, 1)

1
= Xo = X1 —/ vg(x, t)dt = Gy(x1)
0
@ CFM models have access to phase space likelihoods like NFs

96y (x0)
8X0

— exp < /O LY (x(0), t))

pmodeI(XO|9) - platent(Gg_l(XO)) det with

oGt
et o0 (XO)

d
8x0
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Denoising Diffusion Probabilistic Model [arxiv:2006.11239]

@ The forward time evolution follows a discrete Markov process

-
p(xt; ... XT|x0) = H p(xt|xt-1)
t=1

with p(xelxe—1) = N(xe; /1 = Bexe—1, Br) -

@ The reverse time evolution is approximated to follow the same form

;
(%0, -, x7—1lx7) = [ [ qo(xe-1lxe)
t=1

with qg(Xt—llxt) = N(Xt—l; /“1’9(Xt7 t)v Ug(xtv t)) :

@ A neural network is trained to fit the reverse process to the inversion
of the forward process

qB(Xt—l‘Xt) ~ P(Xt—lfxtaxo)
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DDPM Training

L ={C tlxo) — t)]? .
DDPM < ele(x tho) — eo(x, )] >t~u(o,T),x0~pdata,e~/\/(o,1)

t~ULT)

Y

Ty ~ (xO)_’th V1= B+ /Bre

A

S — ()
-
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DDPM Sampling

T,~N01 27 INN( 1)

(- f*WW ~1~N< 2

xofT )+0222
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Autoregressive Transformer: JetGPT

@ Estimate the density autoregressively
Pmodel X|0 HP X/|X17 -~-aXi71) ~ pdata(X) )

@ Fit each of the conditional probabilities as a Gaussian mixture

p(x|wD) = Z Wj(i—l)N(Xl_;Mj(i—l)jajgi—l)).

Gaussian j

e Train a neural network to predict the parameters w(—1) successively,
always conditioned on the previous components
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AT Training

n
Lar = > (~log plxif D))
i1 X~ Pdata
zg —> WO > Proda(@|w®) —>
: jetGPT : L=—3"10g pmoda(@i|wi=)
Tp—1 —> w1l —p pmodel(xn\w("’l)) —>
o )
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AT Sampling

Ty w(o) - pmodel<$1|w<0)>
> (0)
olietGPT| ¥
L T (¢ w(l) —> pmodcl(m2|w(l))

> P S w©
B > jetGPT :
i—»g; '71 > \/_> w1 = pmodel(x"|w(n71))

L
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What about uncertainties?

The learned phase space density comes with uncertainty due to
— Lack of training data
— Insufficient model flexibility
— Stochastic optimization of model parameters

Bayesian Neural Networks

1 Promote the deterministic network weights 6 to distributions
2 Place a (meaningless) prior p(#) over the weights

3 Train the network via variational approximation of the posterior

p(Xtrain|0)p(9)
p(Xtrain)

4 Evaluate the network by calculating the posterior expectation

q(e) ~ p(9|Xtrain) —

(p)(x) = / 40 p(x16)p(6]Xrain)
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Toy example 1: Linear Ramp

CFM AT

Can we understand the difference?
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Toy example 1: Linear Ramp

We follow the discussion of arXiv:2104.04543:

@ Consider a constrained fit to the density:

1
p(xx) =axx+b=a (x2 — 2> +1 with xo € [0,1]
@ Estimating a then leads to an uncertainty in the density of

c=Ap~

1
X2 — 2' Aa 5
featuring a local minimum in xo = 0.5

@ Making this setup one step more realistic and also estimating the
interval boundaries leads to a constant offset in the uncertainty,
consistent with what is observed for Diffusion models and NFs
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Toy example 2: Gaussian Ring

pﬁng(XlaXQ)::-A/( X% +-X§;1,0.1)

EN

p(x1,x5) —— Truth
1 g —— AT
‘E‘z Train
£ 0 z
0
< 1.1 &R — -
Ll BET I e wen At
R KA T s I f
) ) T oI JTHA st ]
0.8 1.0 12
X, R

Following a similar discussion to the ramp, we find that a parametric fit

would feature a minimum in the uncertainty at R ~ 1
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Toy example 2: Gaussian Ring

DDPM
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Toy example 2: Gaussian Ring
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LHC use case: Z+jets

@ We follow the example process proposed in arXiv:2110.13632:
Leptonically decaying Z boson with a variable number of QCD jets

pp — Zuu +{1,2,3} jets.

o Events are generated with Sherpa at 13 TeV, including ISR and parton
shower with CKKW merging, hadronizaton, but no pile-up. The jets
are defined using the anti-kt algorithm and appliying the basic cuts

prj > 20 GeV and AR;; > 0.4

e Events are represented as {pr, 7, », m} and ordered by transverse
momentum. The phase space dimensionality reduces to 9, 13, 17 by
dropping the muon masses and one azimuthal angle
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Z+jets: Transverse momenta

Z+1 jet exclusive

Z+1 jet exclusive Z+1 jet exclusive
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/+jets: Jet seperation

Z+2 jet exclusive Z+2 jet exclusive Z+2 jet exclusive
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Z+jets: Lepton mass peak
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Summary

o We adapted two diffusion models and an autoregressive transformer
model to LHC event generation and developed Bayesian versions that
allow us to quantify their uncertainties

@ Experiments on toy examples indicate that diffusion models, similar to
Normalizing Flows, show patterns of a constrained fit while the
transformer learns the density patch-wise

@ These new models match or even surpass the percent-level precision
of Normalizing Flows in end-to-end LHC event generation

@ The next step is to incorporate these models into different parts of
the LHC simulation and analysis chain

@ This includes, but is not limited to Importance Sampling, Matrix
Element Methods, Unfolding, ...

@ We expect that LHC physics will benefit from different model classes
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Conditional Flow Matching

@ Define a conditional diffusion process that evolves a sample xg

x(t|xo) = (1 — t)xo + te

dX(t|Xg)
dt

p(x, t|xo) = N(x; (1 — t)xo, t) .

v(x, t|xo) =—x0t+¢€

@ Define the whole process as

p(x.8) = [ b plx tx0) pasnal) -

@ It turns out that we can write the according velocity field as

v(x, t) = /dxo V(X7tXO)p,(;(ZfL);O)pdata(XO) ‘
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Backup: Conditional Z+jets setup

njets
Zy P> Pys Pjy
njets
24 » 2.NN Pj,
l \ 4
24 > 3.NN Pj,
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DDPM Hyperparameters

toy models LHC events
Timesteps 1000 1000
Time Embedding Dimension - 64
# Blocks 1 2
Layers per Block 8 5
Intermediate Dimensions 40 64
# Model Parameters 20k 75k
LR Scheduling one-cycle one-cycle
Starter LR 1074 10~4
Maximum LR 103 103
Epochs 1000 1000, 3000, 10000
Batch Size 8192 8192, 8192, 4096
# Training Events 600k 3.2M, 850k, 190k
# Generated Events 1M 1M, 1M, 1M
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CFM Hyperparameters

Embedding Dimension
# Blocks

Layers per Block
Intermediate Dimensions
# Model Parameters
LR Scheduling

Starter LR

Epochs

Batch Size

# Training Events

# Generated Events

toy models LHC events
- 32
1 2
8 5
40 128, 64, 64
20k 265k, 85k, 85k
cosine annealing  cosine annealing
1072 1073
1000 1000, 5000, 10000
8192 16384
600k 3.2M, 850k, 190k
1M 1M, 1M, 1M
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AT Hyperparameters

toy models LHC events
# Gaussians m 21 43
# Bins m 64 -
# TransformerDecoder N 4 4
# Self-attention Heads 4 4
Latent Space Size d 64 128
# Model Parameters 220k 900k
LR Scheduling one-cycle one-cycle
Starter LR 3x107% 1074
Maximum LR 3x1073 1073
Epochs 200 2000
Batch Size 1024 1024
RADAM ¢ 1078 107
# Training Events 600k 2.4M, 670k, 190k
# Generated Events 600k 1M, 1M, 1M
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