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Introduction

How can we find new physics at the LHC?
Maybe it is hidden in rare processes

4

Need better analysis techniques!

Traditional analysis Matrix element method
e Hand-crafted observables e Based on first principles
e Binned data e Estimates uncertainties reliably
e Optimal use of information
4 4

Only fraction of information used Perfect for processes with few events



Matrix Element Method

® Process with theory parameter «, hard-scattering momenta Xp4q
e Likelihood at hard-scattering level given by differential cross section

1 do(a)

P (Xhard|ar) = m WDparg

e Neyman-Pearson lemma = optimal use of information
e Differential cross section only known analytically at hard-scattering level
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Normalizing flows



Normalizing flows

Random number generators sample from uniform distribution r ~ u(r)

Want to sample from arbitrary distribution p(x)
— need function x = f(r) to transform r ~ u(r) to x ~ p(x)

Analytic form of f only known for simple distributions (e.g. Gaussian)
— classical solutions: importance/rejection sampling, VEGAS, ...

Alternative: Chain of invertible mappings with change of variables formula

zn = f(z1) = fn- 1( Sa(fi(z1)) )
:lel_[

=

0z;
de det =L

p(zn) = p(z1)

Add parameter to express conditional distributions

ziy =filzzo) and  z=fi(zi1130)



Conditional Invertible Neural Networks C6J

e chain of learnable, invertible transformations with tractable Jacobian
[Ardizzone et al., 1907.02392]

e Train network by maximizing log-likelihood for training dataset

071(zZn; C
log p(z,) = logp(z1) + log det 92,(21: €)
0zZn
training on samples
l density estimation ‘
p(21) p(z2|c) p(zslc) p(zalc)

A

-

Y

Simple latent oata
distribution i Jiy ~ Data
(Gaussian) f distribution

sampling




Coupling blocks

e Requirements for transformations:

Invertible, tractable jacobian,
expressive, allow correlations

Coupling blocks with
rotation or permutation R,
coupling transformation C

Simplest: Affine coupling block
[Dinh et al, 1410.8516]

s, t: fully-connected sub-networks
(uy,u2): input vector split in two
(vq,Vs): output vector split in two
— 5, t don’t have to invertible

— triangular jacobian
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Generic coupling block
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Spline coupling blocks C‘J

e Disadvantage: Affine transformations are Training data Flow density Flow samples
not very expressive
e Better: Spline coupling blocks
— monotonic splines between points
given by sub-networks ...

[Durkan et al., 1906.02145] [Durkan et al., 1906.04032]

1.01 —— Cubic Spline
—— Inverse
e Knots

Can learn complex 2D
distributions with only two
00 o5 10 coupling blocks!




Applications in particle physics

® (c)INNs learn and sample from (conditional) probability distributions

e Useful in physics for
— getting access to otherwise intractable probability distributions
— making sampling more computationally efficient

e Applications include
— event generation [Butter et al, 211013632] [Verheyen, 2205.01697]
— importance sampling [Gao et al, 2001.05486] [Heimel et al, 2212.06172]
— detector simulation [Krause, Shih, 2106.05285]
— unfolding [Bellagente et al, 2006.06685]
— Bayesian inference [Butter et al, 2012.09873]
— kinematic reconstruction [Leigh et al, 2207.00664]



Flows with uncertainties

deterministic weights w;

1
AP WA

weights w; ~ N (i, o)

Quantify training uncertainty with
Bayesian Invertible Neural Networks (BINN)
[MacCay, 1995] [Neal, 2012] [Bellagente et al., 2104.04543]

Simple modification of deterministic network:
— Replace deterministic weights with distribution
— Additional term in loss function

Extracting uncertainties:
sample from weight distribution

Use as generator — Histograms with error bars
Use as density estimator — Error on density



Bayesian loss function

* Given a data set D, we want to know (intractable) posterior p(w|D)
— approximate with tractable g4 (w) (e.g. g Gaussian, w = (u, o))
® Choose ¢ to minimize KL(gy(w) | p(w|D))

® Rewrite posterior with Bayes' theorem: p(w|D) = —"“ﬂ%%‘)’(w)

e Take evidence lower bound (ELBO) for evidence p(D) to get

N
Laso =3 (logp(xim)) = KL(Gs(w).p(W))

i=1

® Have to choose prior p(w)
— sufficiently wide Gaussian for prior-independent results

* Get ensemble of networks by sampling from g4(w)
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Combining MEM and cINNs



MEM at reconstruction level

e |ntegrate out hard-scattering phase space

P (Xreco|¥) = /dXhard P(Xhard|@)  P(Xreco|Xnard; )

diff. CS estimate with network

* Need to learn probability distribution p(Xreco|Xnhard, &)
In practice: ignore a-dependence and learn p(Xreco|Xhard)

e Not known analytically — learn from data

Solution:
normalizing flow — Transfer-cINN




How to compute the integral?

® | M|? spans several orders of magnitude
e Narrow distribution from Transfer-cINN
* Importance sampling with proposal distribution g(Xharqg)

} Integration challenging

P (Xrecolar) = < ) P(Xnhard|) p(Xreco|Xhard70‘)>

Q(Xhard
Xhard~9(Xhard)

e Bayes' theorem: Integration becomes trivial if

Xhard ~ G(Xhard) = P(Xhard [Xreco, @)

Solution:
normalizing flow — Unfolding-cINN

[Bellagente et al., 2006.06685]



Putting it all together

Xreco

YY

Unfolding
cINN

{Xhara}

P (Xrecol
Xhard)

e Training data

(@, Xhard Xreco)

e Transfer-cINN learns

P (Xreco|Xnard)

— transfer function
— fast forward simulation

e Unfolding-cINN learns

P (Xhard [Xreco, @)

— phase space sampling
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LHC process



LHC process

e Single Higgs production with anomalous non-CP-conserving Higgs coupling

Vi -2, - .
L :——[cosatt—l——lsmozt t}H with CP-angle o
ttH NG 3 Y5 g
[Artoisenet et al, 1306.6464] [de Aquino, Mawatari, 1307.5607] [Demartin et al, 1504.00611]
e Decays tHj — (bW) (yv) J. Test on different datasets

Leptonic decay Hadronic decay Hadronic decay + ISR
(b v) (v7)J (bjj) (vv) J (bjj) (v) j+QCD jets
— —
Challenge: Challenge: Challenge:
reconstruct v jet combinatorics no clear combinatorics




y we need the MEM (s

leptonic 1072 s Around the SM, o = 0°:
0.004 o 107 ﬂ
oo t Generated :’2 .
£ T low total cross section (few events)
€ 0.002 ém—s 2 N
025 - = low variation of rate
£ ool T
© 025 f Pt 107 - +
e OOV : kinematic observables still sensitive
0.20 lL
L0 need kinematic observables
Zow to use all available information
0.05 U
0.00 ideal use case for MEM
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Results



Testing the Transfer-cINN
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To test performance:
Transfer-cINN as forward simulator

Test dataset: leptonic decay,

a = 0°,45°,90°,135°, 180°
Histograms at reco-level

Error bars from Bayesian network
Good agreement with Truth
Within BINN errors in bulk
a-independence valid assumption



Testing the Unfolding-cINN

Unfold each test event once

Histograms at hard-scattering level

s R D Error bars from Bayesian network
(deterministic Unfolding-cINN
used for integration)

Excellent agreement with Truth




Likelihoods for leptonic decay

10 leptonic, a = 0°, 400 events 10 leptonic, a = 45°, 400 events 10 leptonic, a = 90°, 400 events
T
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e Deterministic network, a = 0°,45°,90°, 400 events each
e Extract likelihood for different o, sum events, fit polynomial (orange line)
e Compare to likelihood from hard-scattering data (blue line)

e Good agreement between hard-scattering and reco-level
— But how large is the systematic uncertainty from training?



Training uncertainty from BINN

10 leptonic, o = 0°, 400 events 10 leptonic, av = 45°, 400 events 10 leptonic, av = 90°, 400 events
hard
8 81 reco
= 6 < < 6
~ ~ =~
& & B
i 7 7
21 21 /
04 01
-20 -—10 0 10 20 40 45 50 80 90 100 110
CP-angle o [] CP-angle « [] CP-angle « [°]

e Extract likelihood for 10 sampled networks

— estimate of systematic error from training
e Most challenging around a = 0°

— larger statistical and Bayesian uncertainty
e Only uncertainty from finite training data

— lack of expressivity not captured



Calibration checks

leptonic, a = 0°, 20 x 100 events leptonic, a = 45°, 20 x 100 events leptonic, a = 90°, 20 x 100 events
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e Minimum and 68% confidence intervals for 20 x 100 events
® Good correlation betwen reco- and hard-scattering level
e Slight bias can be removed by calibration

e Lagrangian almost symmetric around o = 0°
— very asymmetric uncertainties in left panel



Dataset with hadronic decay

~2log L(a)

reco level a [7]

hadronic, a = 0°, 400 events

hadronic, a = 45°, 400 events
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Final state (bj)) (vv) J
+ additional jets from FSR
Networks must resolve combinatorics

Variable number of jets
— Unfolding-cINN: zero-padded input
— Transfer-cINN needs fixed dimension

Almost symmetric around a = 0°
— sometimes wrong sign

Nice correlation between reco- and
parton-level



Hadronic decay with ISR

—2log L(a)

reco level a [7]

hadronic+ISR, a = 0°, 400 events

10 hadronic+ISR, a = 45°, 400 events
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Final state (bjj) (vy) J
+ additional jets from ISR and FSR

Can't resolve between relevant jets and
ISR jets during reconstruction
— combinatorics more difficult

Loss of sensitivity around o = 0°
Worse calibration, more bias

Increased systematic uncertainty
captured by Bayesian network
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Outlook



Outlook

e Measure fundamental Lagrangian parameters from small numbers of events
e Transfer-cINN: encode QCD and detector effects

e Unfolding-cINN: efficient integration over hard-scattering phase space

e Without ISR: close to hard-scattering truth

e With ISR: worse performance from more challenging combinatorics

e Promising approach to use more expressive transfer functions without
making the MEM computationally intractable

® Next steps, ideas
— Use information of additional jets in Transfer-cINN
— Better handling of ISR
— Better handling of jet combinatorics
— Include NLO QCD corrections
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