Theo Heimel January 2023

Institut für theoretische Physik Universität Heidelberg

arXiv:2210.00019 Butter, Heimel, Martini, Peitzsch, Plehn

How can we find new physics at the LHC? Maybe it is hidden in rare processes

Need better analysis techniques!

Traditional analysis

- Hand-crafted observables
- Binned data

Only fraction of information used

Matrix element method

- Based on first principles
- Estimates uncertainties reliably
- Optimal use of information

Perfect for processes with few events

- Process with theory parameter α , hard-scattering momenta x_{hard}
- Likelihood at hard-scattering level given by differential cross section

$$p(x_{\text{hard}}|\alpha) = \frac{1}{\sigma(\alpha)} \frac{d\sigma(\alpha)}{dx_{\text{hard}}}$$

- ullet Neyman-Pearson lemma \Longrightarrow optimal use of information
- Differential cross section only known analytically at hard-scattering level

Introduction

Normalizing flows

Combining MEM and cINNs

LHC process

Results

- Random number generators sample from uniform distribution $r \sim u(r)$
- Want to sample from arbitrary distribution p(x) \rightarrow need function x = f(r) to transform $r \sim u(r)$ to $x \sim p(x)$
- Analytic form of f only known for simple distributions (e.g. Gaussian)
 → classical solutions: importance/rejection sampling, VEGAS, ...
- Alternative: Chain of invertible mappings with change of variables formula

$$z_n = f(z_1) = f_{n-1}(\dots f_2(f_1(z_1))\dots)$$
$$p(z_n) = p(z_1) \left| \det \frac{\partial z_1}{\partial z_n} \right| = p(z_1) \prod_{i=2}^n \left| \det \frac{\partial z_{i-1}}{\partial z_i} \right|$$

• Add parameter to express conditional distributions

$$z_{i+1} = f_i(z_i; c)$$
 and $z_i = \overline{f}_i(z_{i+1}; c)$

Conditional Invertible Neural Networks

- chain of learnable, invertible transformations with tractable Jacobian [Ardizzone et al., 1907.02392]
- Train network by maximizing log-likelihood for training dataset

$$\log p(z_n) = \log p(z_1) + \log \det \frac{\partial z_1(z_n;c)}{\partial z_n}$$

Coupling blocks

7

- Requirements for transformations: Invertible, tractable jacobian, expressive, allow correlations
- Coupling blocks with rotation or permutation R, coupling transformation C

→ triangular jacobian

Simplest: Affine coupling block
 [Dinh et al., 1410.8516]
 s, t: fully-connected sub-networks
 (u₁, u₂): input vector split in two
 (v₁, v₂): output vector split in two
 → s, t don't have to invertible

Spline coupling blocks

8

- Disadvantage: Affine transformations are not very expressive
- Better: Spline coupling blocks
 - → monotonic splines between points given by sub-networks

[Durkan et al., 1906.02145] [Durkan et al., 1906.04032]

Can learn complex 2D distributions with only two coupling blocks!

Applications in particle physics

- (c)INNs learn and sample from (conditional) probability distributions
- Useful in physics for
 - ightarrow getting access to otherwise intractable probability distributions
 - ightarrow making sampling more computationally efficient
- Applications include
 - → event generation [Butter et al., 2110.13632] [Verheyen, 2205.01697]
 - → importance sampling [Gao et al., 2001.05486] [Heimel et al., 2212.06172]
 - \rightarrow detector simulation [Krause, Shih, 2106.05285]
 - \rightarrow unfolding [Bellagente et al., 2006.06685]
 - → Bayesian inference [Butter et al., 2012.09873]
 - → kinematic reconstruction [Leigh et al., 2207.00664]

Flows with uncertainties

deterministic weights w_i

- Quantify training uncertainty with Bayesian Invertible Neural Networks (BINN)
 [MacCay, 1995] [Neal, 2012] [Bellagente et al., 2104.04543]
- Simple modification of deterministic network:
 - → Replace deterministic weights with distribution
 - → Additional term in loss function
- Extracting uncertainties: sample from weight distribution
- ullet Use as generator o Histograms with error bars
- Use as density estimator \rightarrow Error on density

Bayesian loss function

- Given a data set \mathcal{D} , we want to know (intractable) posterior $p(w|\mathcal{D})$ \rightarrow approximate with tractable $q_{\phi}(w)$ (e.g. q Gaussian, $w = (\mu, \sigma)$)
- Choose ϕ to minimize $\mathrm{KL}(q_{\phi}(w) \mid p(w|\mathcal{D}))$
- Rewrite posterior with Bayes' theorem: $p(w|\mathcal{D}) = \frac{p(\mathcal{D}|w)p(w)}{p(\mathcal{D})}$
- ullet Take evidence lower bound (ELBO) for evidence $p(\mathcal{D})$ to get

$$\mathcal{L}_{\mathsf{ELBO}} = \sum_{i=1}^{N} \left\langle \log p(x_i|w) \right\rangle_{w \sim q_{\phi}(w)} - \mathrm{KL}(q_{\phi}(w), p(w))$$

- Have to choose prior p(w)
 → sufficiently wide Gaussian for prior-independent results
- Get ensemble of networks by sampling from $q_{\phi}(w)$

Introduction

Normalizing flows

Combining MEM and cINNs

LHC process

Results

• Integrate out hard-scattering phase space

$$p(x_{\text{reco}}|\alpha) = \int dx_{\text{hard}} \ \underline{p(x_{\text{hard}}|\alpha)} \ \underline{p(x_{\text{reco}}|x_{\text{hard}},\alpha)}$$
 estimate with network

- Need to learn probability distribution $p(x_{\text{reco}}|x_{\text{hard}},\alpha)$ In practice: ignore α -dependence and learn $p(x_{\text{reco}}|x_{\text{hard}})$
- ullet Not known analytically o learn from data

Solution: normalizing flow → **Transfer-cINN**

- $|\mathcal{M}|^2$ spans several orders of magnitude
- Narrow distribution from Transfer-cINN
- Integration challenging
- Importance sampling with proposal distribution $q(x_{hard})$

$$p(x_{\text{reco}}|\alpha) = \left\langle \frac{1}{q(x_{\text{hard}})} \ p(x_{\text{hard}}|\alpha) \ p(x_{\text{reco}}|x_{\text{hard}},\alpha) \right\rangle_{x_{\text{hard}} \sim q(x_{\text{hard}})}$$

Bayes' theorem: Integration becomes trivial if

$$x_{\text{hard}} \sim q(x_{\text{hard}}) = p(x_{\text{hard}}|x_{\text{reco}}, \alpha)$$

Solution: normalizing flow → Unfolding-cINN

Putting it all together

• Training data

$$(\alpha, X_{\mathsf{hard}}, X_{\mathsf{reco}})$$

Transfer-cINN learns

$$p(x_{\text{reco}}|x_{\text{hard}})$$

- \rightarrow transfer function
- \rightarrow fast forward simulation
- Unfolding-cINN learns

$$p(x_{\text{hard}}|x_{\text{reco}}, \alpha)$$

 \rightarrow phase space sampling

Introduction

Normalizing flows

Combining MEM and cINNs

LHC process

Results

• Single Higgs production with anomalous non-CP-conserving Higgs coupling

$$\mathcal{L}_{t\bar{t}H} = -rac{y_t}{\sqrt{2}} \Big[\cos lpha \ \bar{t}t + rac{2}{3} \mathrm{i} \sin lpha \ \bar{t}\gamma_5 t \Big] H$$
 with CP-angle $lpha$

[Artoisenet et al, 1306.6464] [de Aguino, Mawatari, 1307.5607] [Demartin et al, 1504.00611]

• Decays $tHj \rightarrow (bW) (\gamma \gamma) j$. Test on different datasets

Why we need the MEM

Around the SM, $\alpha=0^\circ$: low total cross section (few events) $+ \\ {\rm low\ variation\ of\ rate} \\ + \\ {\rm kinematic\ observables\ still\ sensitive}$

need kinematic observables to use all available information

↓
ideal use case for MFM

Introduction

Normalizing flows

Combining MEM and cINNs

LHC process

Results

- To test performance:
 Transfer-cINN as forward simulator
- Test dataset: leptonic decay, $\alpha = 0^{\circ}, 45^{\circ}, 90^{\circ}, 135^{\circ}, 180^{\circ}$
- Histograms at reco-level
- Error bars from Bayesian network
- Good agreement with Truth
- Within BINN errors in bulk
- α -independence valid assumption

- Unfold each test event once
- Histograms at hard-scattering level
- Error bars from Bayesian network (deterministic Unfolding-cINN used for integration)
- Excellent agreement with Truth

- Deterministic network, $\alpha = 0^{\circ}, 45^{\circ}, 90^{\circ}, 400$ events each
- Extract likelihood for different α , sum events, fit polynomial (orange line)
- Compare to likelihood from hard-scattering data (blue line)
- Good agreement between hard-scattering and reco-level
 - → But how large is the systematic uncertainty from training?

- Extract likelihood for 10 sampled networks
 - → estimate of systematic error from training
- Most challenging around $\alpha = 0^{\circ}$
 - → larger statistical and Bayesian uncertainty
- Only uncertainty from finite training data
 - \rightarrow lack of expressivity not captured

- Minimum and 68% confidence intervals for 20×100 events
- Good correlation betwen reco- and hard-scattering level
- Slight bias can be removed by calibration
- Lagrangian almost symmetric around $\alpha=0^\circ$
 - → very asymmetric uncertainties in left panel

- Final state (*bjj*) $(\gamma \gamma)$ *j* + additional jets from FSR
- Networks must resolve combinatorics
- Variable number of jets
 - ightarrow Unfolding-cINN: zero-padded input
 - ightarrow Transfer-cINN needs fixed dimension
- Almost symmetric around $\alpha = 0^{\circ}$ \rightarrow sometimes wrong sign
- Nice correlation between reco- and parton-level

- Final state (bjj) $(\gamma\gamma)$ j + additional jets from ISR and FSR
- Can't resolve between relevant jets and ISR jets during reconstruction
 → combinatorics more difficult
- Loss of sensitivity around $\alpha=0^\circ$
- Worse calibration, more bias
- Increased systematic uncertainty captured by Bayesian network

Introduction

Normalizing flows

Combining MEM and cINN:

LHC process

Results

- Measure fundamental Lagrangian parameters from small numbers of events
- Transfer-cINN: encode QCD and detector effects
- Unfolding-cINN: efficient integration over hard-scattering phase space
- Without ISR: close to hard-scattering truth
- With ISR: worse performance from more challenging combinatorics
- Promising approach to use more expressive transfer functions without making the MEM computationally intractable
- Next steps, ideas
 - ightarrow Use information of additional jets in Transfer-cINN
 - → Better handling of ISR
 - → Better handling of jet combinatorics
 - → Include NLO QCD corrections