Formalism for power spectral density estimation
for non-identical and correlated noise using the
null channel in Einstein Telescope
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Introduction of the formalism
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Null Channel T
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By combination of the three detector output

T—\/_Z[ +d[ ” ]—\/_Zn
i No GW signal in the T channel

https://arxiv.org/abs/1201.3563



https://arxiv.org/abs/1201.3563

Toy Model Null channel

Toy model, 3 sinusoidal signals dephased by 21/3 phase + 3 independent Gaussian noise.

M IAWIAWIA AL
T Y W W W




The formalism

Identical noisein X, Y and Z
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For an isotropic SGWB with equal levels of tensor cross- and plus- polarization,
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The formalism
Unique noise in X,
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The formalism

Unique noise in X, Y and Z

(T(HA™(f)) = (ANT* () =
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ET Correlation noise : Newtonian noise and

Schumann resonance
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FIG. 13: Strain of the NN with CSD of the Homestakes
underground seismometers D2000 and E2000 vertical
displacement measurement (see Fig. @) with a
horizontal distance of 405m at a depth of ~ 610m (red
curve). The solid line is the body waves NN strain from
the 50 % percentile and the surface associated is
delimited by the 10** and 90" percentiles CSD. The
gray surface, delimited by the low and high limits of
Peterson measurement [36], are the body wave NN
strain at 610 m depth. The black line is the
ET-Xylophone design sensitivity

https://arxiv.org/abs/2206.06809
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FIG. 3: “ASD” and “GWB" magnetic coupling function

upper limits for ET — X design sensitivity. Also
included are the average of the measurements of the

coupling functions at LIGO Hanford, LIGO Livingston

and Virgo during the O3 run for comparison.

https://arxiv.org/abs/2110.14730
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FIG. 1: Diagram summarizing the formalism one can use for the estimation of noise spectral densities. In the
presence of non-identical noise more information can be gained by using the CSD between T'X, TY and T'Z
compared to just using the PSD 7T, as shown in Eq. 8



Toy example for the Einstein Telescope
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FIG. 1: The PSDs of the X, Y, Z channels, the ET noise and the injected correlated noise SS¥+10 SGP:50 and
SGP90(see text for a more detailed description). The contribution of the injected SGWB SFSWE is also shown. We
point out that at high frequencies the X, Y and Z PSDs seem to not match the ET noise curve. This is due to the

small but non-neglighle contribution of the GW signal, as can be seen by the perfect match for the 7" PSD in Fig.



Toy example for the Einstein Telescope
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FIG. 3: Left: the coherence between the T and A, E channels. The black dashed line represents the level of
coherence expected from independent Gaussian data, which goes approximately as 1/N, where N is the number of
time segments over which was averaged. Right: the modulus of the CSD between the T" and A, E channels. The
expected cross spectral densities associated with the 7" and A channels, and 7" and E channels given by Eq. |17|for
the toy model example are shown in black. The expected CSD is in agreement with the observed CSD.



Toy example for the Einstein Telescop
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FIG. 2: Top left: The PSDs of the A, E, T channels and the ET noise. Top right/bottom left/bottom right: The
PSD of the null channel T', the CSD of the T and X /Y /Z channels, normalised such that it can serve as an estimate
of SX/SY /SZ. The expected PSD of X /Y /Z, as shown in Eq. [13|and the estimated PSD as calculated in Eq.

and Eq.



Recipe to transform the extended null channel
formalism into a PSD estimation framework
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MCMC for Einstein telescope in
non-identical noise and correlation

e MCMC software to test different configuration of noise/correlation/SGWB

e Testing the different channel ‘XYZ', ‘AET’, ‘AET+TXTYTZ,...

e F[or now, we are testing ETD + correlate Gaussian peaks + SGWB (Toy-model)
e \We have a large number of parameters (Toy model = 26)

e Statistical comparison use Deviance information criterion (DIC), Bayes Factor.



Analytic model for ET-D Ad Hoc
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MCMC (Markov chain
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e Using uniform prior

® Estimate parameters:

L(D|9) = lz [DiTC(8, fi)Di + det (27C(6, fi))]
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Case of XY Z channels :
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Case Study: ET Channel/sources and noise

ETD
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Possibility to update the MCMC soft with different scenarios ET, Gaussian peaks (GP), SGWB
(isotropic %3 slope from CBC population)

Comparison of the different channels to investigate the “best” configuration to separate the
different components



Example : AET+TXYZ channel ETD+GPs+SGWB
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Deviance Information Criterion (DIC)

e Analogous to Akaike information criterion and Bayesian information criterion : criterion for model
comparison (BF not sensible for improper prior).

® |t combines a measure of model fit with a penalty for the number of independent parameters.

e Easyto compute based on MCMC samples.

DIC = D(@) + de
D) = —2logL(d]g) ~ BPIC= DI = DlCgpm,
pa= D(0)— D(0)
ADIC < 2 : Not worth more than a bare mention

ADIC € [2,10] : positive
ADIC = 10 : very strong




Example of DIC result for SGWB in the
context of ETD noise and Gaussian peaks

ADIC: SGWB ETD+GP+SGWB
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Uncertainty of the MCMC fitting

Uncertainty AT?" : ETD+GP+SGWB CrossTerm False
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Conclusion

e We introduced an extension to the AET formalism where we take into account both
non-identical as well as correlated noise.

e The correlation between <TX>, <TY> and <TZ> are valuable channels, free of signal, that could
help to fit all the noise parameters and understanding the differences in PSD between the X, Y
and Z channels.

e The coherence between the T and the A and E channels is an indicator of the non-identical
behavior of the X, Y and Z channels.

e We have demonstrated the formalism in the case of the Einstein telescope for a simple toy
example.

e We have developed a software to fit different scenarios ET, Gaussian peaks (GP), SGWB
(isotropic 73 slope from CBC population) on different scenarios

® Next step: Update the code with NN and magnetic correlation

o Magnetic : Use different coupling functions, Phys. Rev. D, 102:102005, Nov 2020.
o NN : Consider different level of correlation in X, Y and Z (10%, 50% and 90%)



