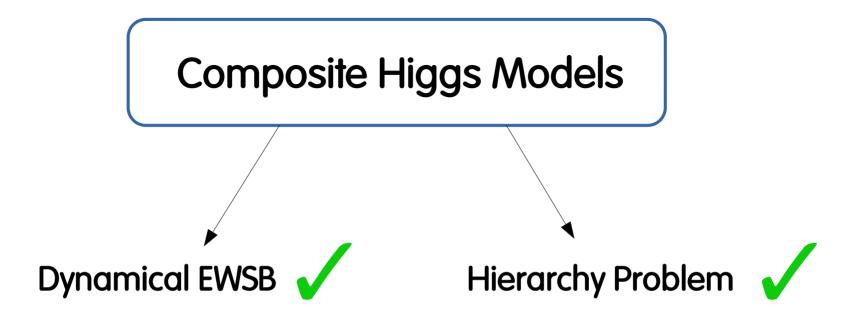
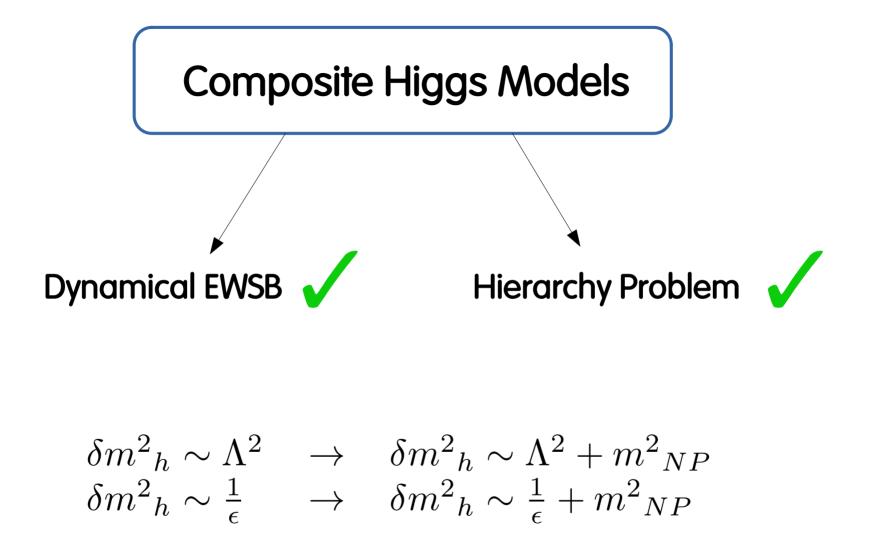
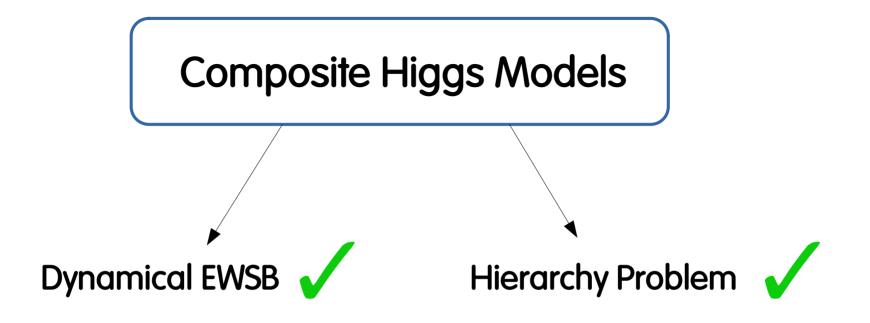


UV completion of Composite Higgs Models


Shahram Vatani





 $\delta m^2_h \sim \Lambda^2$

$$\begin{array}{l} \delta m^2{}_h \sim \Lambda^2 \\ \delta m^2{}_h \sim \frac{1}{\epsilon} \end{array}$$

Up to now... « Effective Composite Higgs Models »

Underlying Theory

Underlying Theory

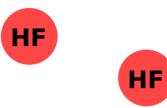
Large N

Underlying Theory

Large N

• 1 Composite Higgs

• 2 UV road

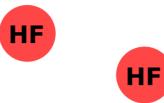

• 3 Alternatives

Composite Higgs

G4

1

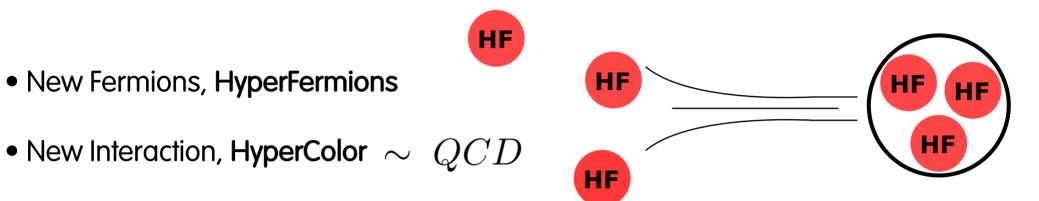
• New Fermions, HyperFermions



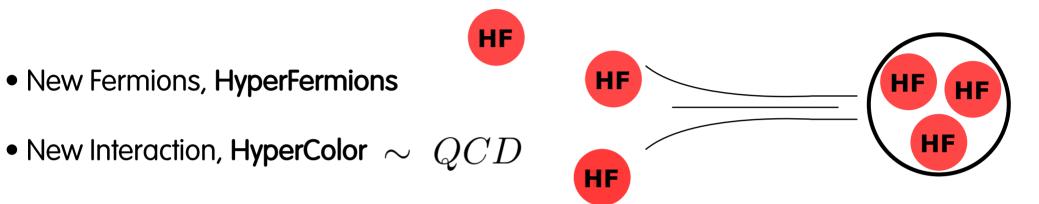
• New Fermions, HyperFermions

(Cy

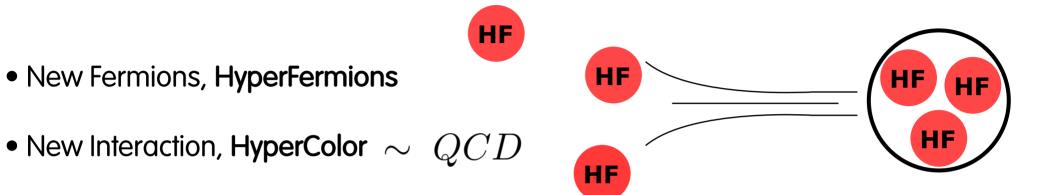
1

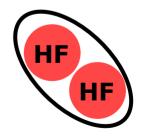


- New Fermions, HyperFermions
- \bullet New Interaction, HyperColor $\sim~QCD$

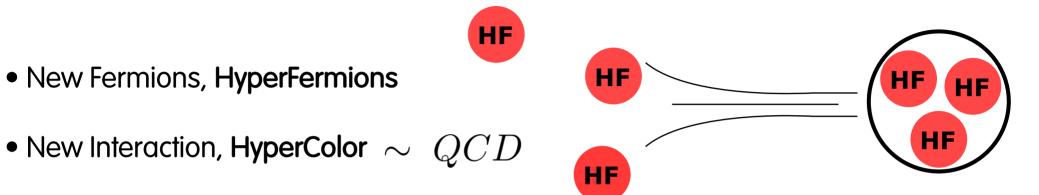


Ç,

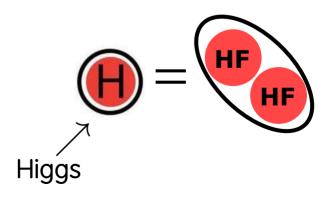

Ç,


 \mathcal{C}

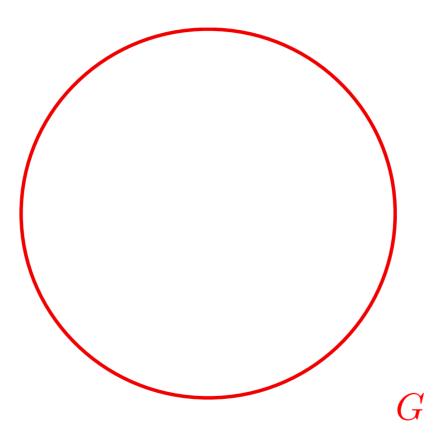
- Condensation
- \bullet Symmetry breaking pattern $\longrightarrow~G/H$
- Pions

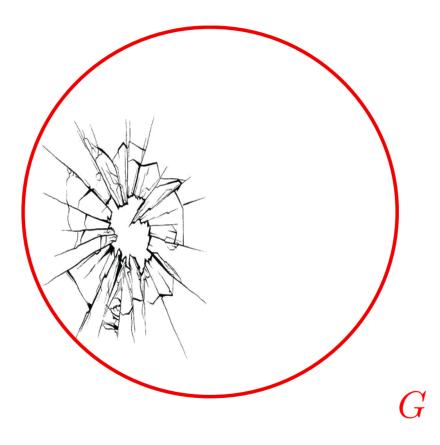


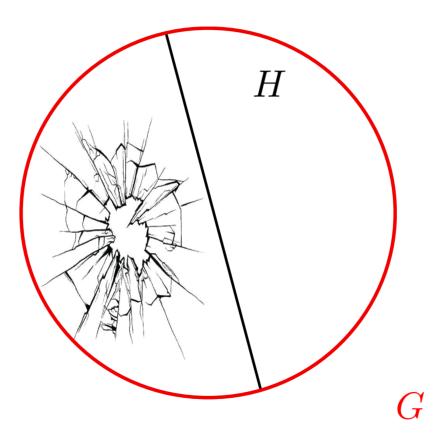
- Condensation
- \bullet Symmetry breaking pattern $\longrightarrow~G/H$

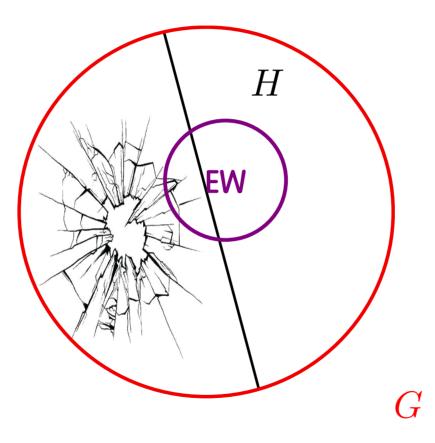


 \mathcal{C}


• Pions



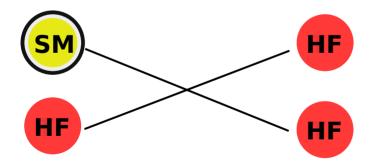

- Condensation
- ullet Symmetry breaking pattern $\longrightarrow~G/H$
- Pions



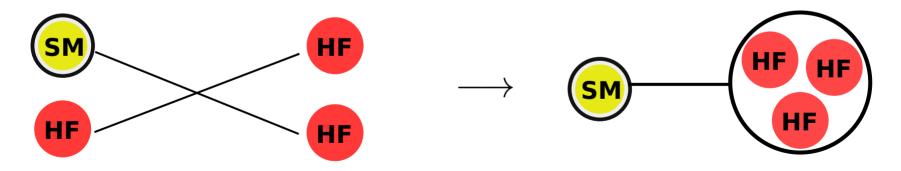
C,

• <u>Mass</u> of the SM fermions ?

• <u>Mass</u> of the SM fermions ?

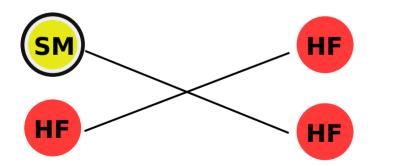

Effective 4-Fermion Interactions !

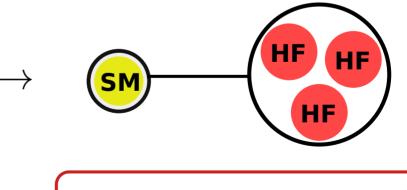
, Cy


• <u>Mass</u> of the SM fermions ?

Effective 4-Fermion Interactions !

• <u>Mass</u> of the SM fermions ?

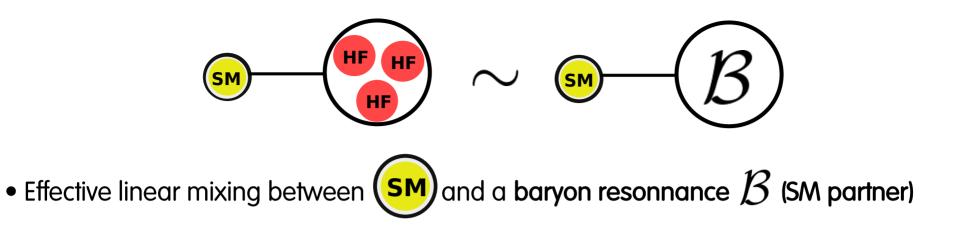

Effective 4-Fermion Interactions !



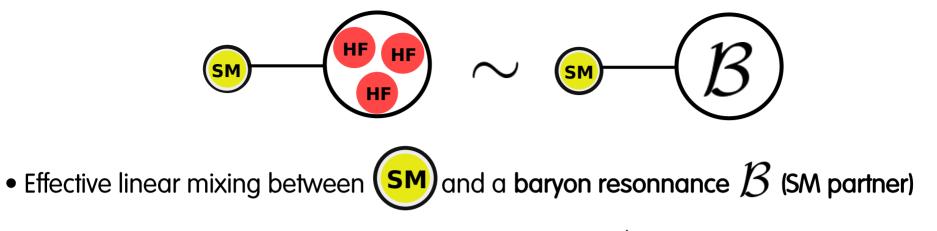
Ç,

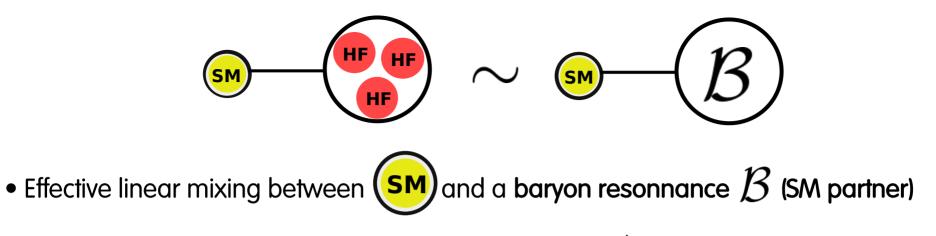
• Mass of the SM fermions ?

Effective 4-Fermion Interactions !

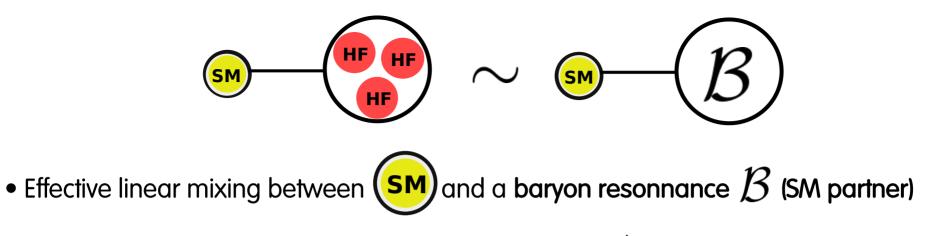


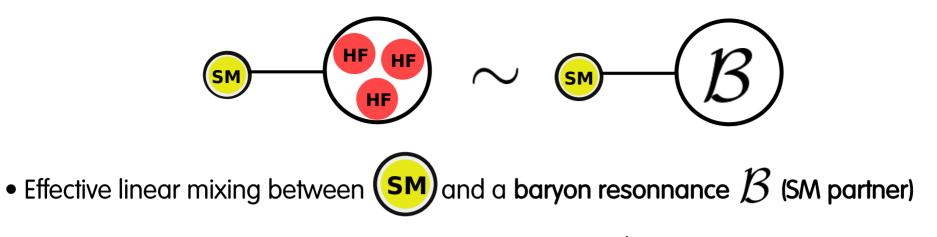



Partial Compositness

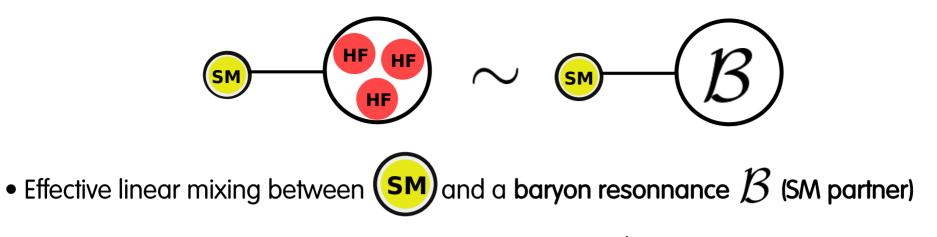


 \mathcal{A}

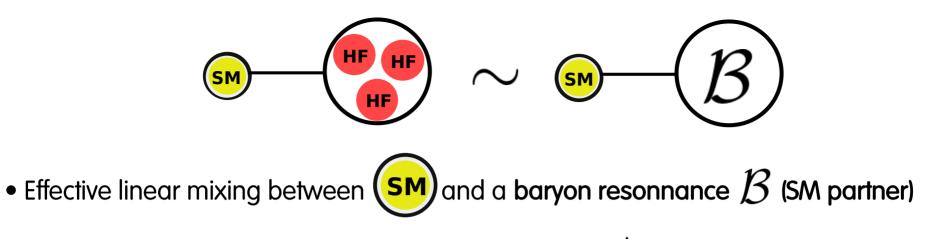



Free Dynamic

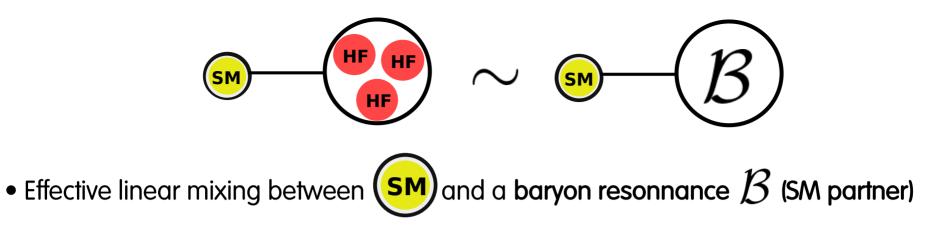
$$c \frac{t \mathcal{H} \mathcal{H} \mathcal{H}}{{\Lambda_F}^2}$$


Free Dynamic

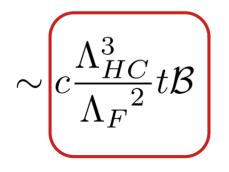
$$\left[\frac{c(\mu)}{\Lambda_F^2}\right] t \mathcal{H} \mathcal{H} \mathcal{H}$$

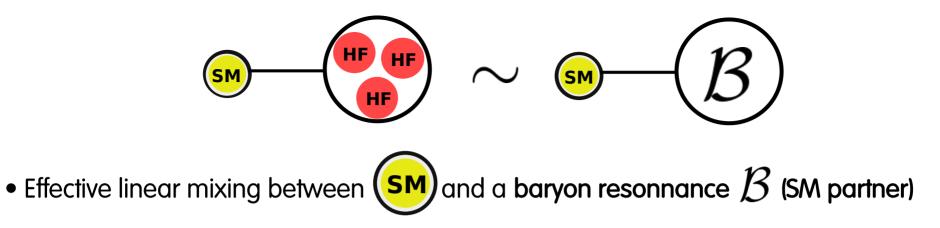

Free Dynamic

$$\left[c^{\left(\Lambda_{HC}
ight)} rac{\Lambda_{HC}^{3}}{{\Lambda_{F}}^{2}}
ight] t {\cal B}$$

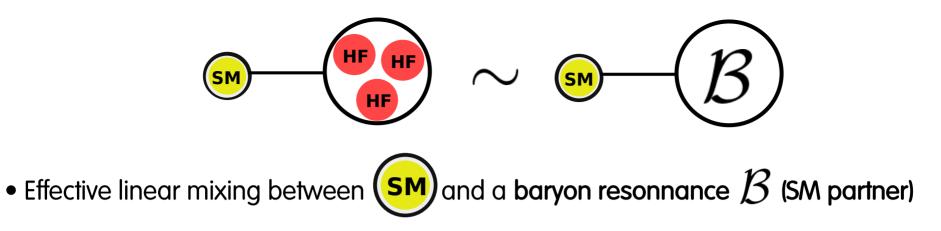

Free Dynamic

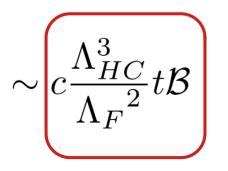
$$\left[c^{\left(\Lambda_{HC}
ight)} rac{\Lambda_{HC}^{3}}{{\Lambda_{F}}^{2}}
ight] t {\cal B}$$



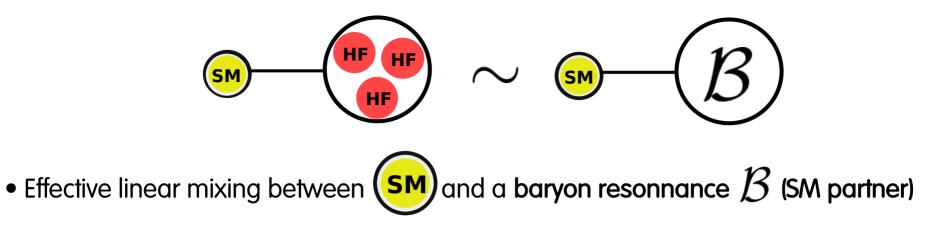

Free Dynamic

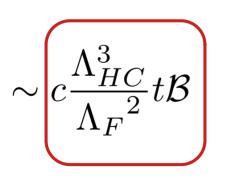
$$\sim c \frac{\Lambda_{HC}^3}{{\Lambda_F}^2} t \mathcal{B}$$




Free Dynamic

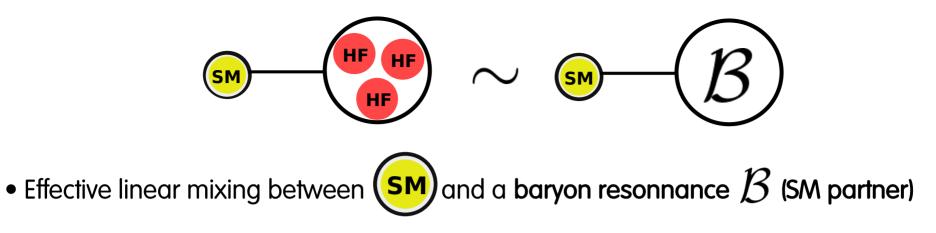
$$\rightsquigarrow \left[c \left(\frac{\Lambda_F}{\Lambda_{HC}} \right)^{\gamma} \frac{\Lambda_{HC}^3}{\Lambda_F^2} \right] t \mathcal{B}$$

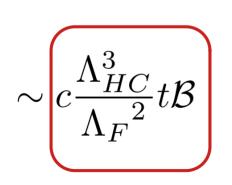

$$\sim \boxed{c \frac{\Lambda_{HC}^3}{{\Lambda_F}^2} t \mathcal{B}}$$


Free Dynamic

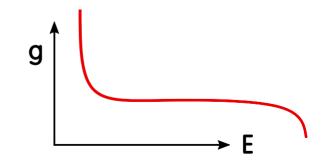
$$\rightsquigarrow \left[c \left(\frac{\Lambda_F}{\Lambda_{HC}} \right)^{\gamma} \frac{\Lambda_{HC}^3}{\Lambda_F^2} \right] t \mathcal{B}$$

Free Dynamic




Near Conformal Dynamic

$$\rightsquigarrow \left[c \left(\frac{\Lambda_F}{\Lambda_{HC}} \right)^{\gamma} \frac{\Lambda_{HC}^3}{\Lambda_F^2} \right] t \mathcal{B}$$


$$\leadsto [c \Lambda_{HC}] t \mathcal{B}$$

 $(\gamma = 2)$

Free Dynamic

What is Natural?

(Cy

Ç,

• Coupling are expected to be of order 1

 \mathcal{C}

- Coupling are expected to be of order 1
- Else, we need a **mechanism** (protecting symmetry...)

ĊŻ,

- Coupling are expected to be of order 1
- Else, we need a **mechanism** (protecting symmetry...)

ĊŻ,

- Coupling are expected to be of order 1
- Else, we need a mechanism (protecting symmetry...)

<u>(B)SM</u>

ĊŻ,

- Coupling are expected to be of order 1
- Else, we need a mechanism (protecting symmetry...)

	<u>(B)SM</u>	
• $y_t \sim 1$	Natural	

Ċ,

Ċ,

- Coupling are expected to be of order 1
- Else, we need a mechanism (protecting symmetry...)

<u>(B)SM</u>	
• $y_t \sim 1$	Natural
• $y_{b,c,s,d,u} \ll 1$	Need for a Mechanism

Ċ,

Λ

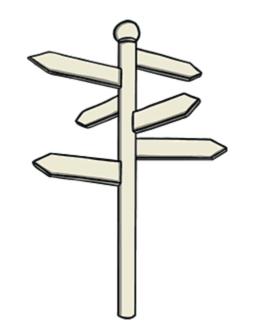
- Coupling are expected to be of order 1
- Else, we need a mechanism (protecting symmetry...)

<u>(B)SM</u>		HyperColor Theories
• $y_t \sim 1$	Natural	
• $y_{b,c,s,d,u} \ll 1$	Need for a Mechanism	

- Coupling are expected to be of order 1
- Else, we need a mechanism (protecting symmetry...)

<u>(B)SM</u>		<u>HyperColor</u>	<u>Theories</u>
• $y_t \sim 1$	Natural	• $y_{b,c,s,d,u} \ll 1$	Natural
• $y_{b,c,s,d,u} \ll 1$	Need for a Mechanism		

Ċ,


Ċ,

4

- Coupling are expected to be of order 1
- Else, we need a mechanism (protecting symmetry...)

<u>(B)SM</u>		<u>HyperColoi</u>	r Theories
• $y_t \sim 1$	Natural	• $y_{b,c,s,d,u} \ll 1$	Natural
• $y_{b,c,s,d,u} \ll 1$	Need for a Mechanism	• $y_t \sim 1$	Need for a Mechanism

Where do we go?

Composite Higgs Models

- Higgs as pNGB
- SM partner as HyperBaryons
- Asymptotically Free Theory

Composite Higgs Models

$G_{\rm HC}$	ψ	X	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Nam
	Real	Real	SU(5)/SO(5)	\times SU(6)	/SO(6)		
$SO(N_{\rm HC})$	$5 \times S_2$	$6 imes \mathbf{F}$	$N_{\rm HC} \ge 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	/	
$SO(N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 imes \mathbf{F}$	$N_{\rm HC} \geq 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	/	
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{\rm HC}=7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{ m HC}=7,9$	M1, M2
$SO(N_{\rm HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{\rm HC}=7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5)	$) \times SU(6)$	$/\mathrm{Sp}(6)$		
$Sp(2N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{ m HC} \ge 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/	
$Sp(2N_{\rm HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{ m HC} \ge 4$	$\frac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\rm HC} = 4$	M5
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$N_{\rm HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	$/\mathrm{SU}(3)$	•	
$SU(N_{\rm HC})$	$5 \times \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\rm HC} = 4$	$\frac{5}{3}$	1/3	$N_{\rm HC} = 4$	M6
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\mathrm{HC}} = 10, 14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{\rm HC} = 10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6),	SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC}=11,13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
	Complex	Real	$SU(4)^{2}/SU(4)^{2}$	$) \times SU(6)$	/SO(6)		
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{\rm HC} = 10$	$\frac{8}{3}$	2/3	$N_{\rm HC} = 10$	M10
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{\rm HC} = 4$	$\frac{2}{3}$	2/3	$N_{\rm HC} = 4$	M11
	Complex	Complex	$SU(4)^{2}/SU(4)$	\times SU(3)	$^{2}/SU(3)$		
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\rm HC} \ge 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{\rm HC} = 5$	M12
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{\rm HC} \ge 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/	
	_	_					

 $N_{\rm HC} = 5$

2/3

4

 $SU(N_{\rm HC})$ $4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$

 $3 imes (\mathbf{F}, \overline{\mathbf{F}})$

<u>Composite Higgs Models</u>

$G_{\rm HC}$	ψ	X	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conform	al Model Name
	Real	Real	SU(5)/SO(5)	\times SU(6),	/SO(6)		
$SO(N_{\rm HC})$	$5 \times \mathbf{S}_2$	$6 imes \mathbf{F}$	$N_{\rm HC} \ge 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	/	
$SO(N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{\rm HC} \geq 15$	$\tfrac{5(N_{\rm HC}-2)}{6}$	1/3	/	
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 imes \mathbf{Spin}$	$N_{\rm HC}=7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{ m HC} = 7,9$	M1, M2
$SO(N_{\rm HC})$	$5 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{\rm HC} = 7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5)	$) \times SU(6)$	$/\mathrm{Sp}(6)$		
$Sp(2N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{\rm HC} \geq 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/	
$Sp(2N_{\rm HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{ m HC} \ge 4$	$\tfrac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\rm HC} = 4$	M5
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$N_{\rm HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	$/\mathrm{SU}(3)$		
$SU(N_{\rm HC})$	$5 \times \mathbf{A}_2$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\rm HC} = 4$	$\frac{5}{3}$	1/3	$N_{\rm HC} = 4$	M6
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$3\times(\mathbf{Spin},\overline{\mathbf{Spin}})$	$N_{\rm HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{\rm HC} = 10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC}=11,13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
	Complex	Real	$SU(4)^2/SU(4)$	$) \times SU(6)$	/SO(6)		
$SO(N_{\rm HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{\rm HC} = 10$	$\frac{8}{3}$	2/3	$N_{\rm HC} = 10$	M10
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{\rm HC} = 4$	$\frac{2}{3}$	2/3	$N_{\rm HC} = 4$	M11
	Complex	Complex	$SU(4)^{2}/SU(4)$	\times SU(3) ²	$^{2}/\mathrm{SU}(3)$,
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{ m HC} \ge 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{\rm HC} = 5$	M12
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{\rm HC} \ge 5$	$\frac{4}{3(N_{HC}+2)}$	2/3	/	
$SU(N_{\rm HC})$	$4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 imes (\mathbf{F}, \overline{\mathbf{F}})$	$N_{\rm HC} = 5$	4	2/3	/	

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
	Psoudo Roal	Boal	SU(4)/Sp(4)	$\sim CII(c)$	$\langle CO(c) \rangle$		

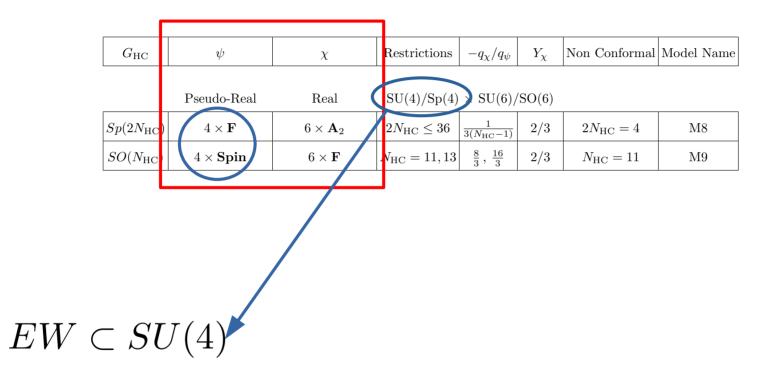
	Pseudo-Real	Real	50(4)/5p(4)	$\times 50(0)/$	50(0)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{ m HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9

(Y

				1			
$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
				•		•	
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
			·	•		,	

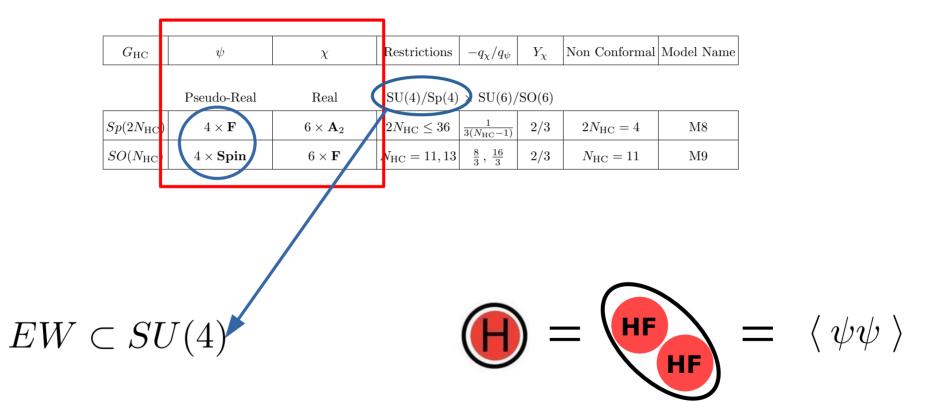
(Sy

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{\rm HC})$) $4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
						·	,


(Cy

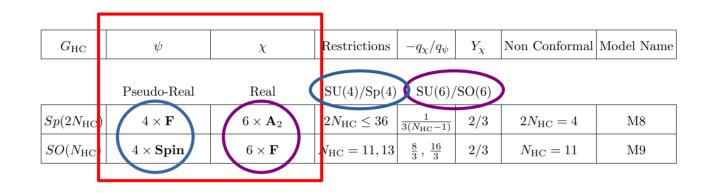
			1				
$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC}$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
				•			

⟨√y


$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name	
	Pseudo-Real	Real	SU(4)/Sp(4) SU(6)/SO(6)					
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8	
$SO(N_{\rm HC}$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{ m HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9	
							·	

⟨√y

8


(Cy

(Cy

-									
	$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name	
		Pseudo-Real	Real	SU(4)/Sp(4) $SU(6)/SO(6)$					
	$Sp(2N_{\rm HC}$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8	
	$SO(N_{\rm HC}$	$4 imes \mathbf{Spin}$	$6 \times \mathbf{F}$	$V_{ m HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9	
							,		

⟨√y

(Cy

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
						•	
	Pseudo-Real	Real	SU(4)/Sp(4)	< SU(6)/	SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
							·

⟨√y

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	$) \times \mathrm{SU}(6)/\mathrm{S}$	O(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\mathrm{HC}} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 1$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
							,

(Sy

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ} I	on Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)	$/\mathrm{SO}(6)$		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9
							,

(Sy

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	$^{\prime}\mathrm{SO}(6)$		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9

⟨√y

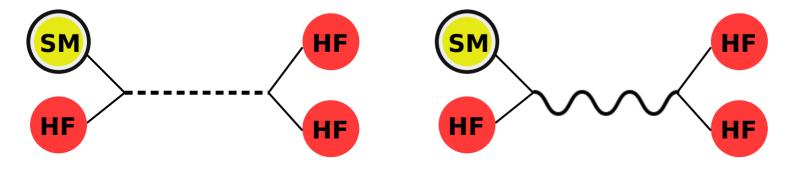
$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conforma	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{ m HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$		2/3	$N_{\rm HC} = 11$	M9
·							

€¥

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	$\rm SO(6)$		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9

$G_{ m HC}$	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name

	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9

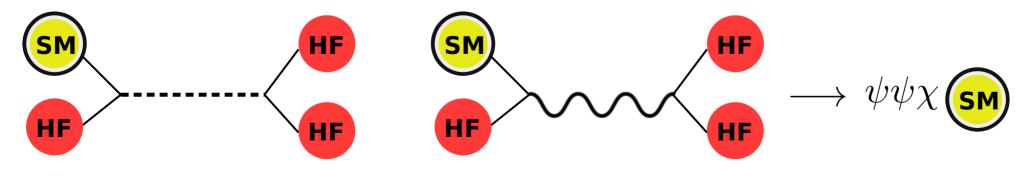

- Need well defined new strong sector
- Need to generate 4-F interactions

Ċ,

G _{HC}	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name
-----------------	--------	---	--------------	----------------------	------------	---------------	------------

	Pseudo-Real	Real	$SU(4)/Sp(4) \times SU(6)/$	SO(6)		
$Sp(2N_{ m HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$ $\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{ m HC})$	$4 imes \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$ $\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9

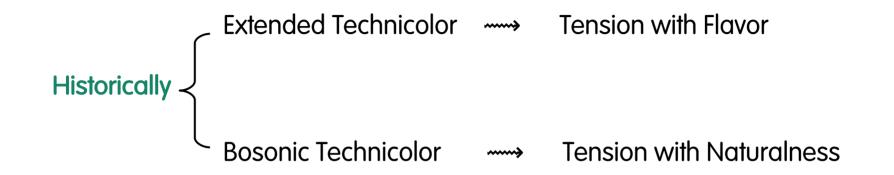
- Need well defined new strong sector
- Need to generate 4-F interactions



 \mathcal{C}

G_{H}	C	ψ	χ	Restrictions	$-q_{\chi}/q_{\psi}$	Y_{χ}	Non Conformal	Model Name

	Pseudo-Real	Real	$SU(4)/Sp(4) \times SU(6)$	$/\mathrm{SO}(6)$		
$Sp(2N_{\rm HC})$	$4 \times \mathbf{F}$	$6 imes \mathbf{A}_2$	$2N_{\rm HC} \le 36$ $\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{ m HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC} = 11, 13$ $\frac{8}{3}, \frac{16}{3}$	2/3	$N_{\rm HC} = 11$	M9


- Need well defined new strong sector
- Need to generate 4-F interactions

 \mathcal{A}

⟨√y

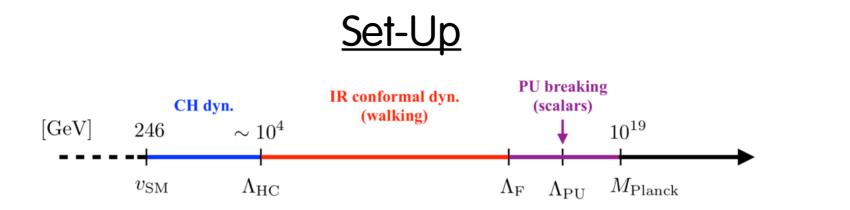
- Partially unify HC and SM
- High scale scalars to break the gauge group
- 4-F are generated automatically (gauge + scalars)

<u>Means</u>

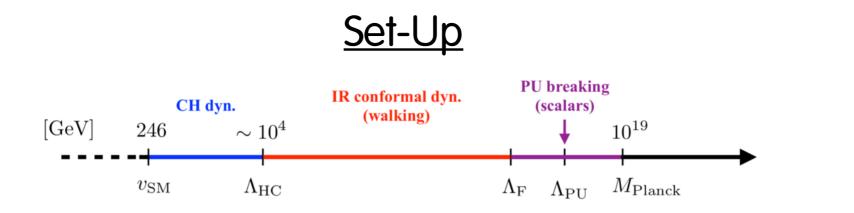
- AS

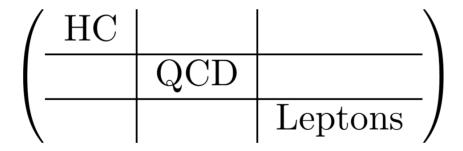
- Partially unify HC and SM
- High scale scalars to break the gauge group
- 4-F are generated automatically (gauge + scalars)

<u>Means</u>

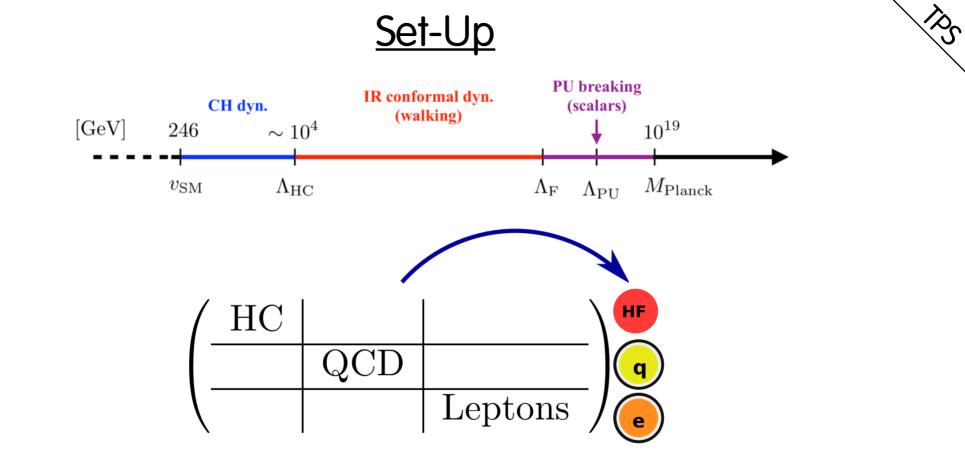

- AS

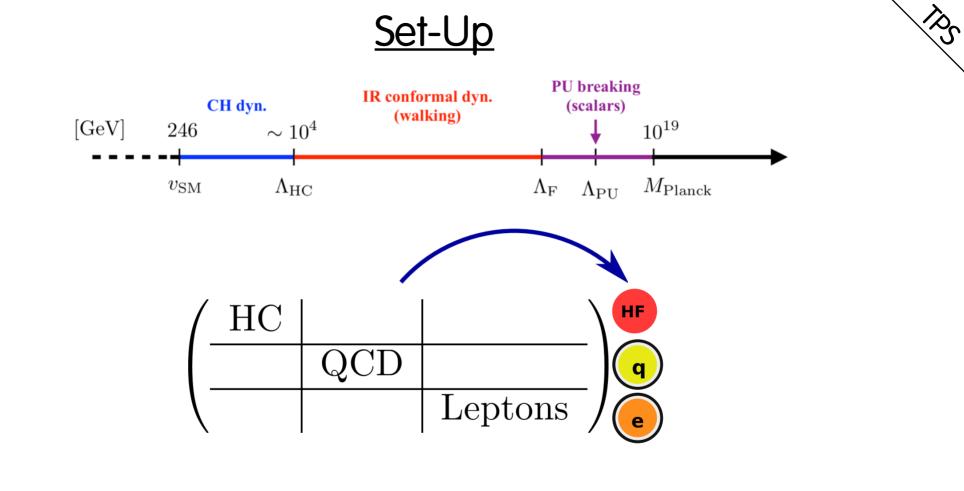
- Partially unify HC and SM
- High scale scalars to break the gauge group
- 4-F are generated automatically (gauge + scalars)

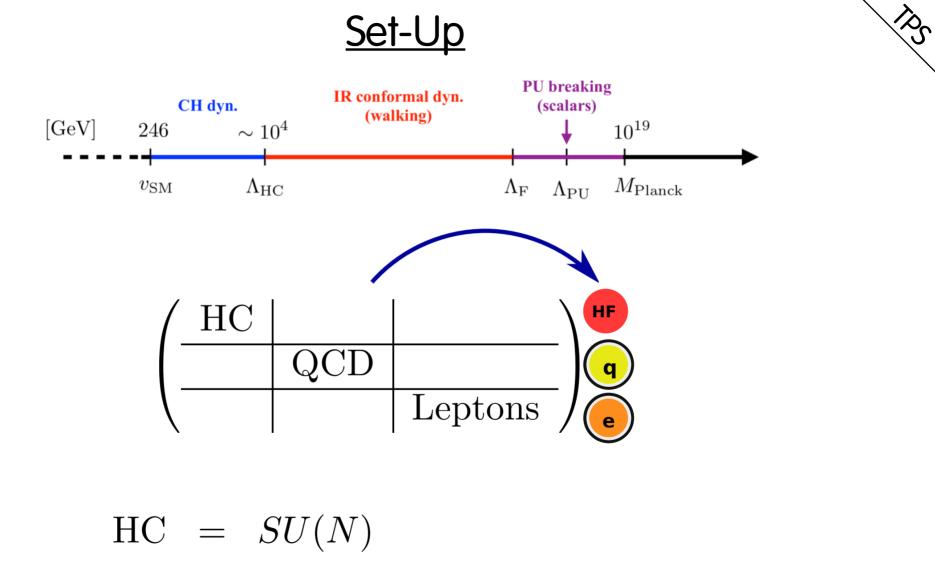


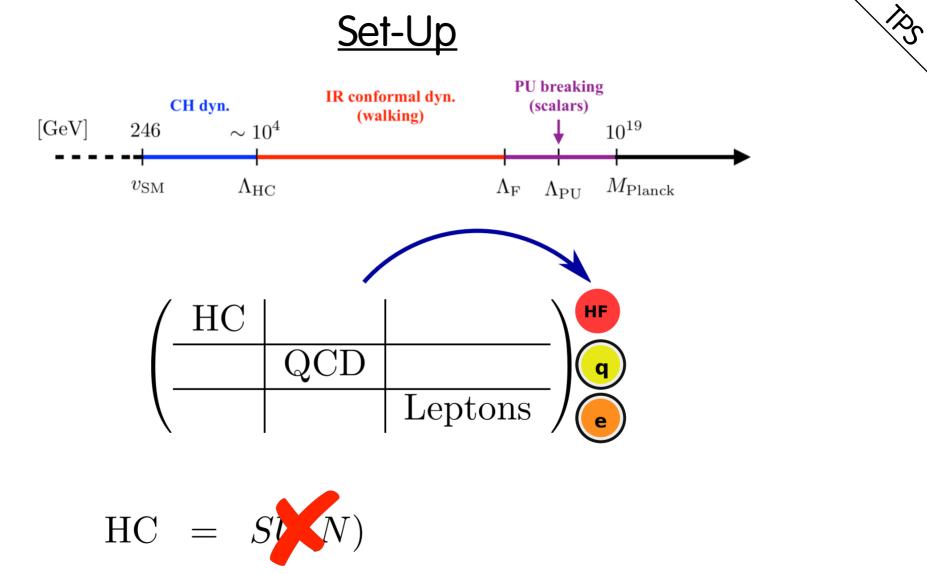

- Generate 4-F
- In a well defined theory
- Target at low energy a Composite Higgs scenario
- Realistic Flavor structure

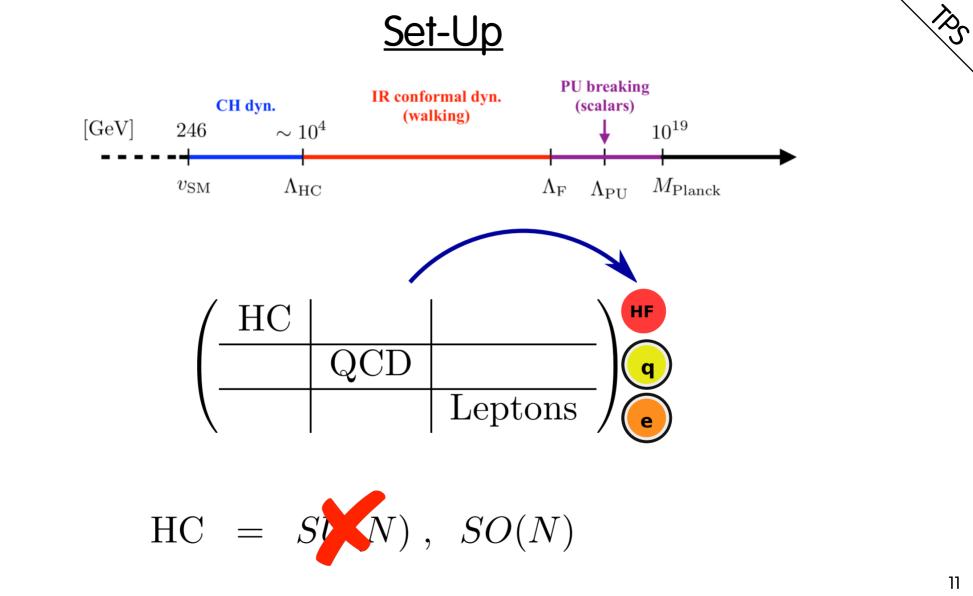
The Techni-Pati-Salam (TPS) a possible UV completion

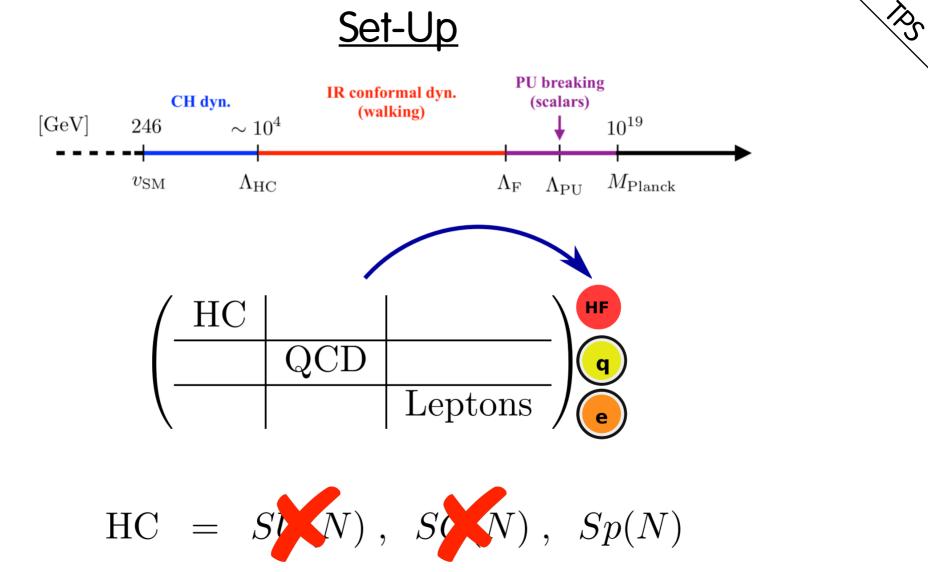


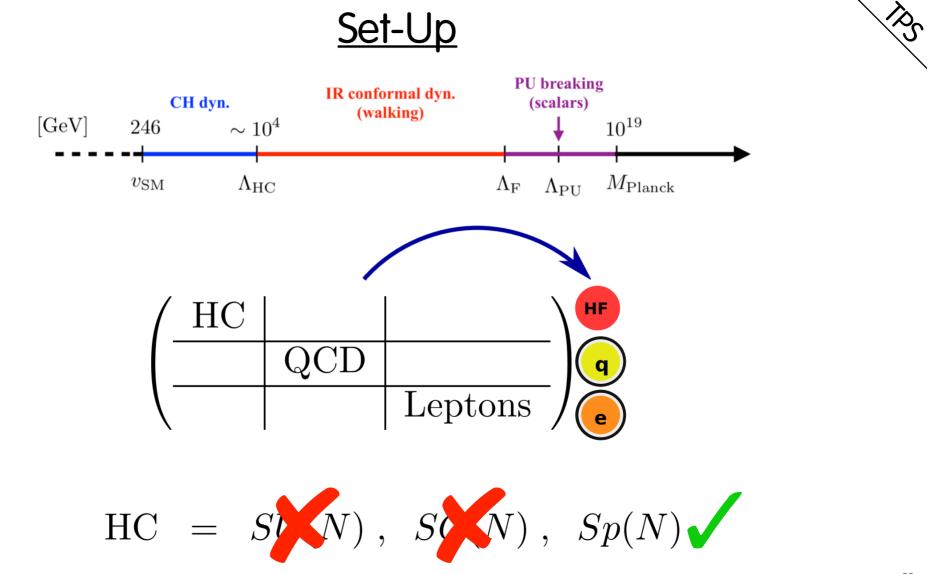

S.

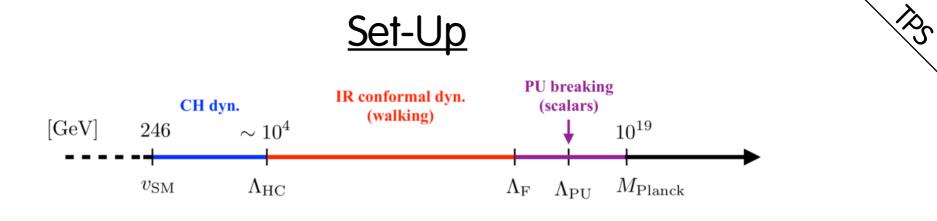





\$







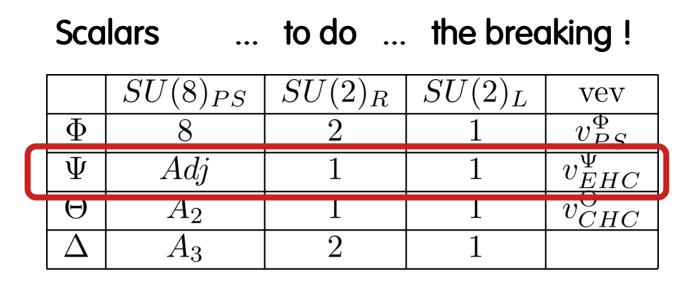
 $SU(8)_{PS} \times SU(2)_R \times SU(2)_L$

Scalars ... to do ... the breaking !

Scalars ... to do ... the breaking !

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$	vev
Φ	8	2	1	v_{PS}^{Φ}
Ψ	Adj	1	1	v_{EHC}^{Ψ}
Θ	A_2	1	1	v_{CHC}^{Θ}
Δ	A_3	2	1	

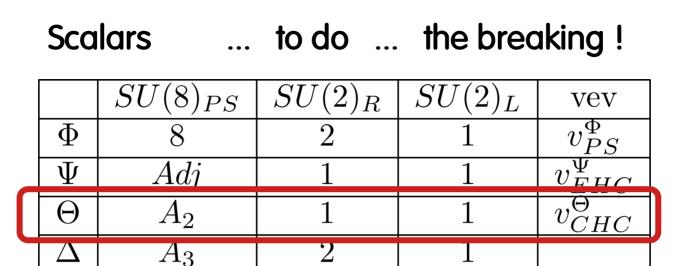
À,


Scalars ... to do ... the breaking !

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$	vev
Φ	8	2	1	v_{PS}^{Φ}
Ψ	ÂdJ	1	1	v_{EHC}^{Ψ}
Θ	A_2	1	1	v_{CHC}^{Θ}
Δ	A_3	2	1	

•
$$SU(8)_{PS} \times SU(2)_R \to SU(7)_{EHC} \times U(1)_E$$

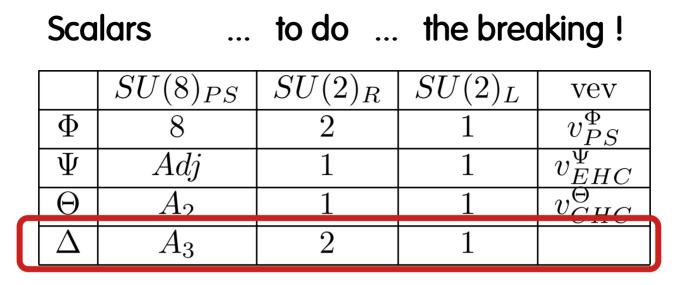
splits Leptons from Quarks


\Z

• $SU(8)_{PS} \times SU(2)_R \rightarrow SU(7)_{EHC} \times U(1)_E$ splits Leptons from Quarks

• $SU(7)_{EHC} \rightarrow SU(4)_{CHC} \times SU(3)_c \times U(1)_X$ splits HF from Quarks

No.



• $SU(8)_{PS} \times SU(2)_R \rightarrow SU(7)_{EHC} \times U(1)_E$ splits Leptons from Quarks

• $SU(7)_{EHC} \rightarrow SU(4)_{CHC} \times SU(3)_c \times U(1)_X$ splits HF from Quarks

• $SU(4)_{CHC} \times U(1)_X \times U(1)_E \to Sp(4)_{HC} \times U(1)_Y$

 $\langle \rangle_{\Gamma}$

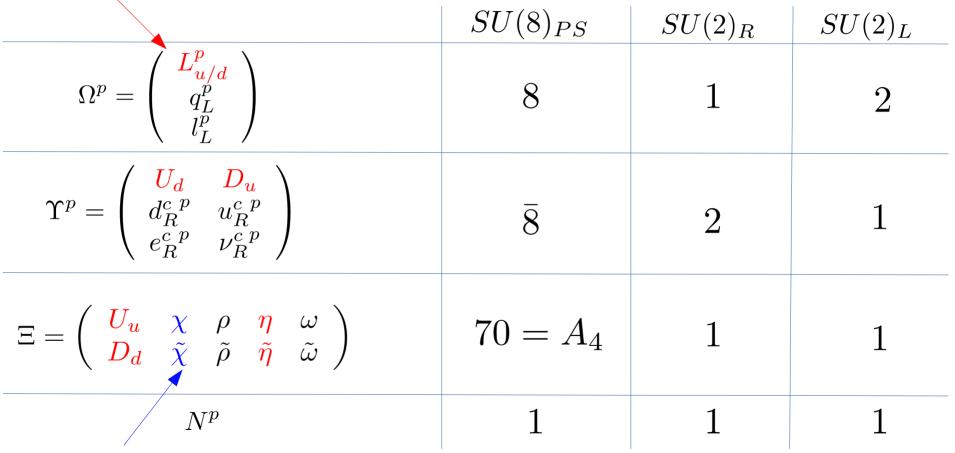
• $SU(8)_{PS} \times SU(2)_R \rightarrow SU(7)_{EHC} \times U(1)_E$ splits Leptons from Quarks

• $SU(7)_{EHC} \rightarrow SU(4)_{CHC} \times SU(3)_c \times U(1)_X$ splits HF from Quarks

• $SU(4)_{CHC} \times U(1)_X \times U(1)_E \to Sp(4)_{HC} \times U(1)_Y$

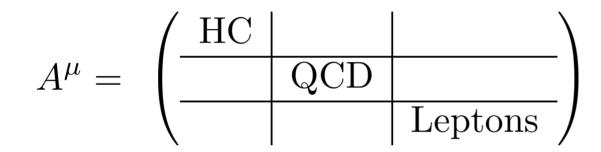
12 c

Fermion Content

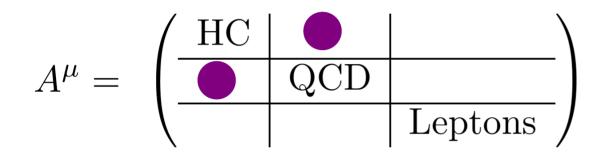


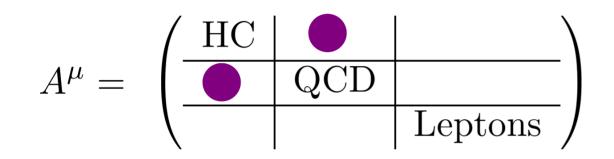
	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
Ω^p	8	1	2
Υ^p	8	2	1
Ξ	$70 = A_4$	1	1
N^p	1	1	1

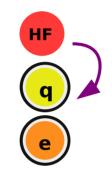
Fermion Content

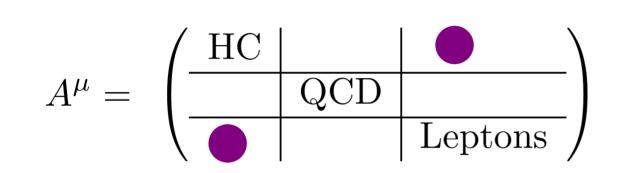


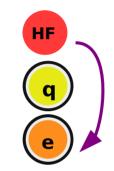
Partial Compositness


<u>4-F : Gauge Mediation</u>


S,






1 Nr

Quark-Lepton mass splitting !

S,

Scalar Mediation ?

RS -

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

KS -

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$({f 4},{f 1})_{-rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{2\over 3}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	-	_	-	-	_	-	_	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta ilde \eta)$			
								$(\tilde{\chi}\tilde{\eta})$	$(\chi \tilde{\eta})$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	$(\eta \nu_R^c)$	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$(4,1)_{\frac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	-	_	-	-	-	-	_	$(L^{3}L^{3})$	-	-	-
ΥΘΥ	$(U_d^2 u_{\overline{R}})$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta \tilde{\chi})$		$(\eta ilde \eta)$			
								$(ilde{\chi} ilde{\eta})$	$(\chi \tilde{\eta})$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

k S

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$({f 4},{f 1})_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4.1)_{\frac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	-	-	_	-	-	-)	-	-	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	<u> </u>	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta \tilde{\chi})$		$(\eta ilde \eta)$			
								$(ilde{\chi} ilde{\eta})$	$(\chi \tilde{\eta})$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	$(\eta \tau_R^c)$			(χau_R^c)	(χu_R^c)							

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$(4,1)_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$(4,3)_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	(I^{3l}_{L})	(L^3q_L)	_	_	_	-	_	_	_	-	(L^3L^3)	-	_	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^{\overline{c}})$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$		-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta ilde \eta)$			
								$(ilde{\chi} ilde{\eta})$	$(\chi ilde \eta)$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi}t_R^c)$		$(ilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			$(\chi \tau_R^c)$	$(\chi \nu_R^c)$							

-S

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$({f 4},{f 1})_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	-	-	-	-	\frown	-	-	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	- \	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	- /	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta ilde \eta)$			
								$(ilde{\chi} ilde{\eta})$	$(\chi ilde \eta)$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

-S

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$(4,1)_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{2\over 3}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	-	-	-	-	-	-	-	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta ilde \eta)$			
								$(\tilde{\chi}\tilde{\eta})$	$(\chi \tilde{\eta})$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

KS -

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

			1	SM field							0 SM field	1		
$arphi_i$	$({f 4},{f 1})_{-rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	-	_	-	-	_	-	_	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta \tilde{\chi})$		$(\eta ilde \eta)$			
								$(\tilde{\chi}\tilde{\eta})$	$(\chi \tilde{\eta})$		\bigcirc			
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$								_					
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

 $\frac{\lambda_{\Delta}^2}{M_{\varphi_4}^2} c_4 \ (\overline{U}_t \overline{U}_d^3)(\chi b_R^c)$

			1	SM field							0 SM field	ł		
$arphi_i$	$(4,1)_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$({f 4},{f 1})_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$(5,1)_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	-	-	_	-	-	_	-	-	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^{\overline{3}}b_R^{\overline{c}})$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta ilde \eta)$			
								$(ilde{\chi} ilde{\eta})$	$(\chi ilde \eta)$		\frown			
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(ilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

 $\frac{\lambda_{\Delta}^2}{M_{\varphi_4}^2} c_4 \ (\overline{U}_t \overline{U}_d^3)(\chi b_R^c)$

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

							_							
			1	SM field							0 SM field	1		
φ_i	$({f 4},{f 1})_{-rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$(4,3)_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	-	-	-	-	-	-	-	-	(L^3L^3)	-	-	-
ΥΘΥ	$\begin{array}{c} (U_d^3\nu_R^c) \\ (D_u^3\tau_R^c) \end{array}$	$\begin{array}{c} (U_d^3 t_R^c) \\ (D_u^3 b_R^c) \end{array}$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 \tau_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta \tilde{\chi})$		$(\eta ilde \eta)$			
								$(\tilde{\chi}\tilde{\eta})$	$(\chi \tilde{\eta})$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(ilde{\eta} b_R^c)$	$(\eta \nu_R^c)$	(ηau_R^c)			$(\chi \tau_R^c)$	(χu_R^c)							

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

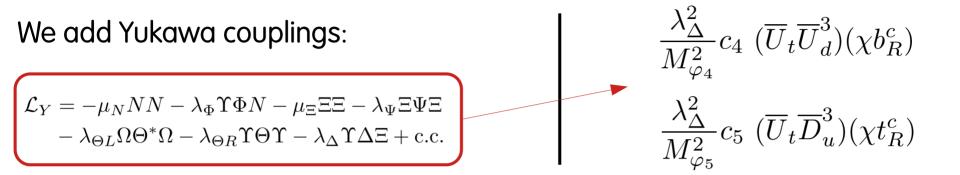
 $\frac{\lambda_{\Delta}^2}{M_{\varphi_4}^2} c_4 \ (\overline{U}_t \overline{U}_d^3)(\chi b_R^c)$

			1	SM field							0 SM field	1		
$arphi_i$	$(4,1)_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	-	_	_	-	-	-	-	_	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^{\overline{3}}b_R^{\overline{c}})$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta \tilde{\eta})$			
								$(ilde{\chi} ilde{\eta})$	$(\chi ilde \eta)$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(ilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							

$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

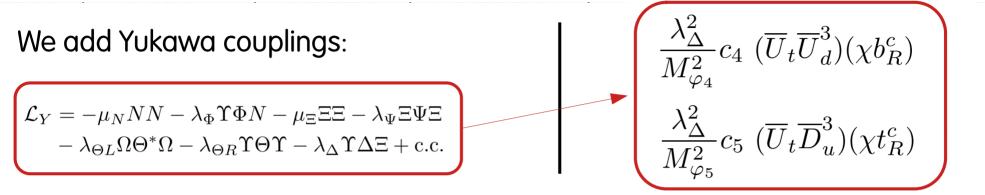
 $\frac{\lambda_{\Delta}^2}{M_{\varphi_4}^2} c_4 \ (\overline{U}_t \overline{U}_d^3)(\chi b_R^c)$ $\frac{\lambda_{\Delta}^2}{M_{\varphi_5}^2} c_5 \ (\overline{U}_t \overline{D}_u^3)(\chi t_R^c)$

			1	SM field							0 SM field	1		
$arphi_i$	$({f 4},{f 1})_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	-	-	_	-	-	_	-	-	(L^3L^3)	-	-	-
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$	$(D_u^3 b_R^c)$	-	-	-	-	-	-	-	-		-	-	-
$\Xi \Psi \Xi$	-	-	-	-	-	-	-		(χD_b)	-	$(U_t D_b)$	-	-	-
									$(U_t \tilde{\chi})$					
								$(\chi\eta)$	$(\eta ilde{\chi})$		$(\eta ilde \eta)$			
								$(ilde{\chi} ilde{\eta})$	$(\chi ilde \eta)$					
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta}U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(ilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	(ηu_R^c)	(ηau_R^c)			(χau_R^c)	(χu_R^c)							



$$\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi - \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$$

 $\frac{\lambda_{\Delta}^2}{M_{\varphi_4}^2} c_4 \ (\overline{U}_t \overline{U}_d^3)(\chi b_R^c)$ $\frac{\lambda_{\Delta}^2}{M_{\varphi_5}^2} c_5 \ (\overline{U}_t \overline{D}_u^3)(\chi t_R^c)$


]	SM field							0 SM field	1		
φ_i	$(4,1)_{-rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$(5,3)_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$(4,1)_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$(4,3)_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{2\over 3}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	_	_	_	_	_	_	_	(L^3L^3)	_	_	_
ΥΘΥ	$\left(U_d^3\nu_R^c\right)$	$(U_d^3 t_R^c)$	-	-	_	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$													-
$\Xi \Psi \Xi$	-													-
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					_	(χU_d^3)	$-(\chi D_u^3)$	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(\tilde{\chi}b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	$(\eta \nu_R^c)$	(ηau_R^c)			$(\chi \tau_R^c)$	$(\chi \nu_R^c)$							

	1 SM field								0 SM field							
φ_i	$({f 4},{f 1})_{-rac{1}{2}}$	$({f 4},{f 3})_{1\over 6}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$({f 4},{f 1})_{rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$		
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	_	_	-	-	-	-	-	$(L^3 L^3)$	-	-	-		
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	_	-	-		
	$(D_u^3 au_R^c)$.													-		
$\Xi \Psi \Xi$														-		
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$		
	$(U_t \tau_R^c)$															
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(\tilde{\chi}b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$						
	$(\tilde{\eta}b_R^c)$	$(\eta \nu_R^c)$	$(\eta \tau_R^c)$			$(\chi \tau_R^c)$	$(\chi \nu_R^c)$									

	1 SM field								0 SM field							
φ_i	$({f 4},{f 1})_{-rac{1}{2}}$	$({f 4},{f 3})_{1\over 6}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$({f 4},{f 1})_{rac{1}{2}}$	$({f 4},{f 3})_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{2\over 3}$	$({f 5},{f 3})_{-rac{1}{3}}$		
$\Omega\Theta^*\Omega$	$(L^3 l_L)$	(L^3q_L)	_	_	_	-	-	_	-	_	(L^3L^3)	-	_	-		
ΥΘΥ	$(U_d^3 \nu_R^c)$	$(U_d^3 t_R^c)$	_	_	_	-	-	_	_	_	$(U_d^3 D_u^3)$	_	_	-		
	$(D_u^3 au_R^c)$													-		
$\Xi \Psi \Xi$														-		
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					_	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$		
	$(U_t \tau_R^c)$															
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(\tilde{\chi}b_R^c)$	$(ilde{\chi} t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$						
	$(\tilde{\eta}b_R^c)$	$(\eta \nu_R^c)$	$(\eta \tau_R^c)$			$(\chi \tau_R^c)$	$(\chi \nu_R^c)$									

We add Yukawa couplings:

 $\mathcal{L}_{Y} = -\mu_{N}NN - \lambda_{\Phi}\Upsilon\Phi N - \mu_{\Xi}\Xi\Xi - \lambda_{\Psi}\Xi\Psi\Xi$ $- \lambda_{\Theta L}\Omega\Theta^{*}\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + \text{c.c.}$

 $\frac{\lambda_{\Delta}^2}{M_{\varphi_4}^2} c_4 \ (\overline{U}_t \overline{U}_d^3)(\chi b_R^c)$ $\frac{\lambda_{\Delta}^2}{M_{\varphi_5}^2} c_5 \ (\overline{U}_t \overline{D}_u^3)(\chi t_R^c)$

			1	SM field			0 SM field							
φ_i	$({f 4},{f 1})_{-rac{1}{2}}$	$({f 4},{f 3})_{1\over 6}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$({f 5},{f 3})_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$	$({f 4},{f 1})_{rac{1}{2}}$	$(4,3)_{rac{1}{6}}$	$({f 4},{f 3})_{-rac{5}{6}}$	$({f 5},{f 1})_0$	$({f 5},{f 1})_{-1}$	$(5,3)_{rac{2}{3}}$	$({f 5},{f 3})_{-rac{1}{3}}$
$\Omega \Theta^* \Omega$	$(L^3 l_L)$	(L^3q_L)	-	_	-	_	-	_	-	_	(L^3L^3)	-	_	-
ΥΘΥ	$\left(U_d^3 \nu_R^c \right)$	$(U_d^3 t_R^c)$	-	-	-	-	-	-	-	-	$(U_d^3 D_u^3)$	-	-	-
	$(D_u^3 au_R^c)$													-
$\Xi \Psi \Xi$	-													-
$\Upsilon \Delta^* \Xi$	$(U_t \nu_R^c)$	$(D_b t_R^c)$	$(D_b b_R^c)$					-	(χU_d^3)	(χD_u^3)	$(U_t U_d^3)$	$(U_t D_u^3)$	$(\tilde{\eta} U_d^3)$	$(\tilde{\eta}D_u^3)$
	$(U_t \tau_R^c)$													
	$(\tilde{\eta}t_R^c)$	(ηb_R^c)	(ηt_R^c)	(χb_R^c)	(χt_R^c)	$(ilde{\chi} b_R^c)$	$(\tilde{\chi}t_R^c)$		$(\tilde{\chi}D_u^3)$	$(\tilde{\chi} U_d^3)$				
	$(\tilde{\eta}b_R^c)$	$(\eta \nu_R^c)$	$(\eta \tau_R^c)$			$(\chi \tau_R^c)$	$(\chi \nu_R^c)$							

- CS

• We can have top-bottom mass splitting !

- AS

- We can have top-bottom mass splitting !
- Masses and mixing of the scalars

- AS

- We can have top-bottom mass splitting !
- Masses and mixing of the scalars ightarrow complete study
 - of the potential …

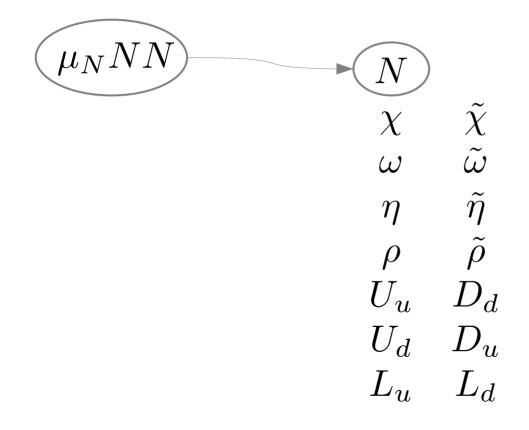
- CS

- We can have top-bottom mass splitting !
- Masses and mixing of the scalars ightarrow complete study
 - of the potential …

• Size of the Yukawa couplings

- AS

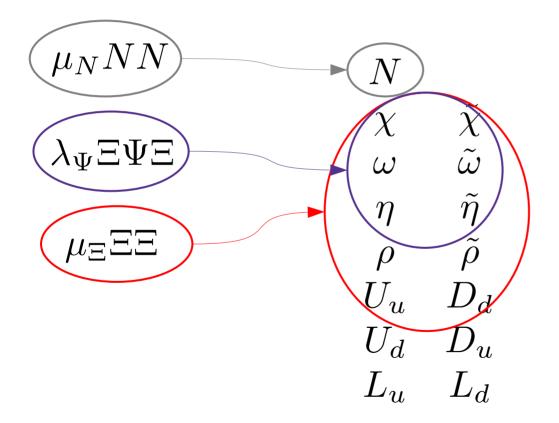
- We can have top-bottom mass splitting !
- Masses and mixing of the scalars ightarrow complete study

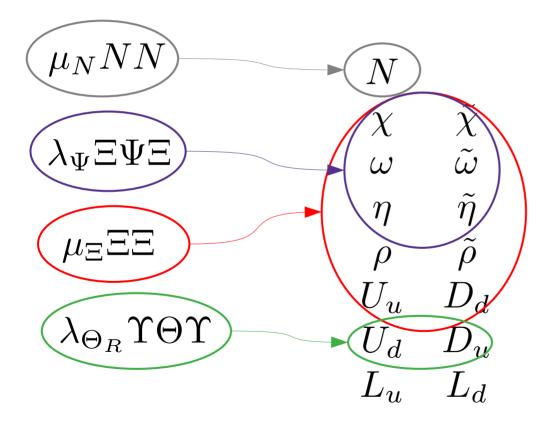

of the potential …

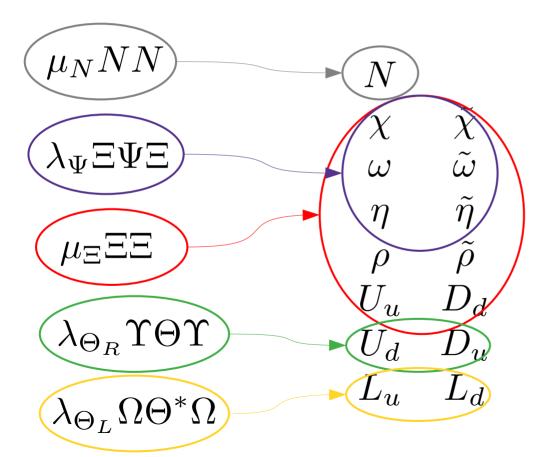
- Size of the Yukawa couplings \rightarrow constraints from HF masses

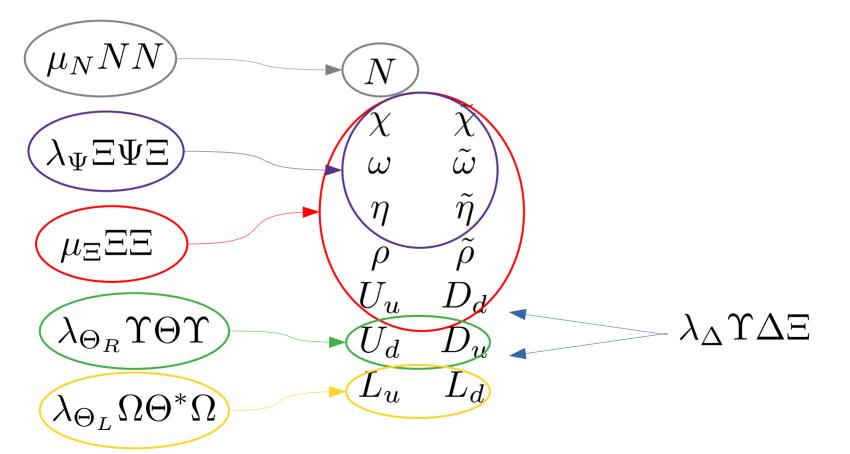

- × SS
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern

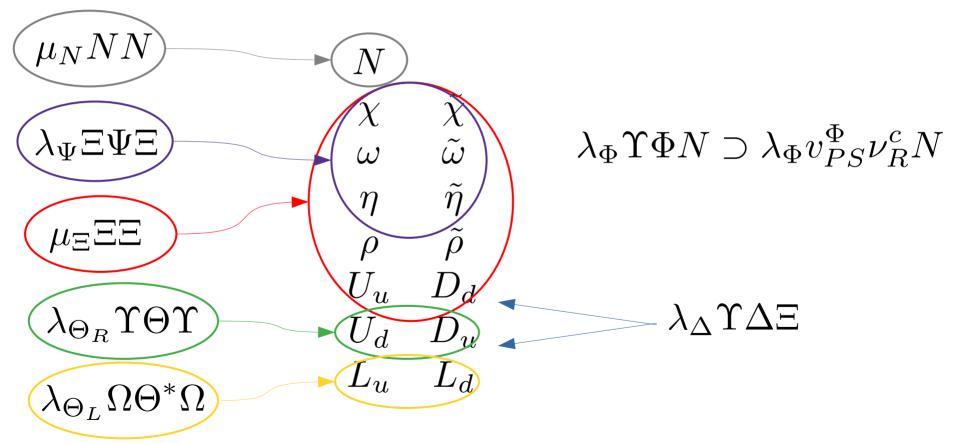
N $\chi \quad \tilde{\chi}$ ω $\tilde{\omega}$ $ilde\eta$ η $\tilde{\rho}$ ρ U_{u} D_d $U_d \quad D_u$ $L_u \quad L_d$


- K.
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern


- R.
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern


- R.
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern


- R.
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern


- R.
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern

- ×3
- Relevant for HyperColor Dynamics, low energy symmetry breaking pattern

• Relevant for HyperColor Dynamics, low energy symmetry breaking pattern

3

- Quark-Lepton \rightarrow masses of HF / massive gauge bosons

- Quark-Lepton ightarrow masses of HF / massive gauge bosons
- Top Bottom \rightarrow Different running 4F-Operator / Scalar Mediation

- Quark-Lepton ightarrow masses of HF / massive gauge bosons
- Top Bottom \rightarrow Different running 4F-Operator / Scalar Mediation
- What about neutrinos ?

- Quark-Lepton ightarrow masses of HF / massive gauge bosons
- Top Bottom \rightarrow Different running 4F-Operator / Scalar Mediation
- Neutrinos \rightarrow Inverse seesaw mechanism

So far so good

• UV completed the 4F (with scalars and gauge bosons)

So far so good

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**

So far so good

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions

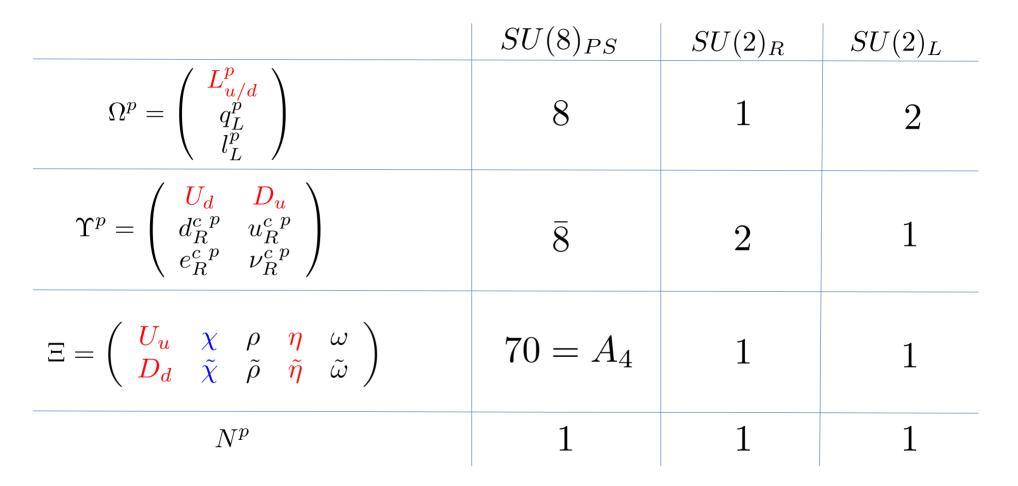
- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions
- Large window to get **Conformal Dynamics**?

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the entire family
- Mass Hierarchy between the fermions
- Large window to get Conformal Dynamics ? Need Lattice Input !!

- CS

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions
- Large window to get Conformal Dynamics ?

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions
- Large window to get **Conformal Dynamics**



- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions
- Large window to get **Conformal Dynamics**

How can we generalize that for the 3 families ?

Fermion Content

- AS

• Each species of fermion, $t, \ b, \ au, \
u_{ au}$ gets its own mass matrix :

• Each species of fermion, $t, \ b, \ au, \
u_{ au}$ gets its own mass matrix :

$$\begin{pmatrix} \langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\ \langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\ \langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle \end{pmatrix}$$

• Each species of fermion, $t, \ b, \ au, \
u_{ au}$ gets its own mass matrix :

$$\begin{pmatrix} \langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\ \langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\ \langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle \end{pmatrix}$$

• 3 families if rank 3 !

• Each species of fermion, $t, \ b, \ au, \
u_{ au}$ gets its own mass matrix :

$$\begin{pmatrix} \langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\ \langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\ \langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle \end{pmatrix}$$

• 3 families if rank 3 !

$$\mathcal{O}_{L,a} = y_{L,a}\mathcal{O}_L \qquad \mathcal{O}_{R,a} = y_{R,a}\mathcal{O}_R$$

• Each species of fermion, $t, \ b, \ au, \
u_{ au}$ gets its own mass matrix :

$$\begin{pmatrix} \langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\ \langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\ \langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle \end{pmatrix}$$

• 3 families if rank 3 !

$$\mathcal{O}_{L,a} = y_{L,a}\mathcal{O}_L \qquad \mathcal{O}_{R,a} = y_{R,a}\mathcal{O}_R \quad \rightarrow \quad \text{rank 1}$$

• Each species of fermion, $t, \ b, \ au, \
u_{ au}$ gets its own mass matrix :

$$\begin{pmatrix} \langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\ \langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\ \langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle \end{pmatrix}$$

• 3 families if rank 3 !

$$\mathcal{O}_{L,a} = y_{L,a}\mathcal{O}_L \qquad \mathcal{O}_{R,a} = y_{R,a}\mathcal{O}_R \rightarrow \operatorname{rank} 1$$

• We need different Baryonic Operators. How can we generate them ?

<u>3 Flavors</u>

+1

• Gauge mediation

<u>3 Flavors</u>

+1

- Contraction of the second se

- Gauge mediation
- Scalar mediation

- Gauge mediation
- Scalar mediation

+ 0

+1

<u>3 Flavors</u>

+1

+ 0

+1

- AS

- Gauge mediation
- Scalar mediation
- New $\,\Theta\,$, scalar mediation

<u>3 Flavors</u>

+1

+0

+1

+1

- CS

- Gauge mediation
- Scalar mediation
- New Θ , scalar mediation
- New Δ_L , or Loops induced

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions
- Large window to get a Conformal Dynamic

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the **entire family**
- Mass Hierarchy between the fermions
- Large window to get a **Conformal Dynamic**
- Enough ingredients for a Flavor Structure

What is next?

- CS

- Study of the complete potential
- Lattice input
- Well running of the gauge coupling

Alternatives ?

<u>4-F=Scalars, scalars, scalars...</u>

<u>4-F=Scalars, scalars, scalars...</u>

• Use of a scalar to generate 4-F

1 Nr

- S

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

- S

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

How to avoid the naturalness issue?

Naturalness?

• Push the scalar mass close to the Planck scale

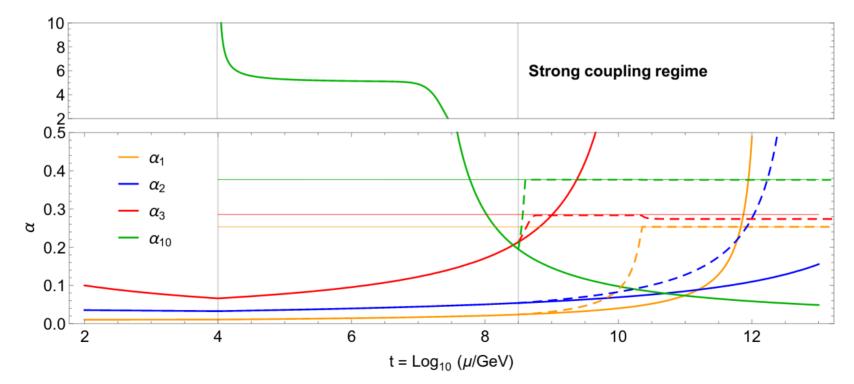
<u>Naturalness ?</u>

- Push the scalar mass close to the Planck scale
- Make use of the Large N

<u>Naturalness ?</u>

- Push the scalar mass close to the Planck scale
- Make use of the Large N

$$\beta = \sum_{k} \lambda_k \alpha^k = \sum_{k} \frac{F^{(k)}(\alpha)}{N^k}$$


Naturalness?

 $\beta \cong \alpha^2 \left[1 + \frac{F(\alpha)}{N} \right]$

Naturalness ?

$$\beta \cong \alpha^2 \left[1 + \frac{F(\alpha)}{N} \right]$$

- S

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

How to avoid the naturalness issue?

- Sec.

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

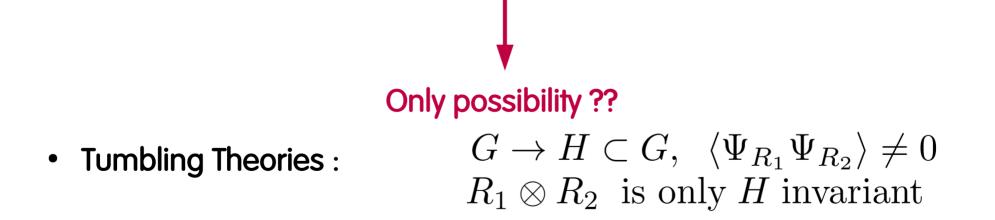
How to avoid the naturalness issue ?

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

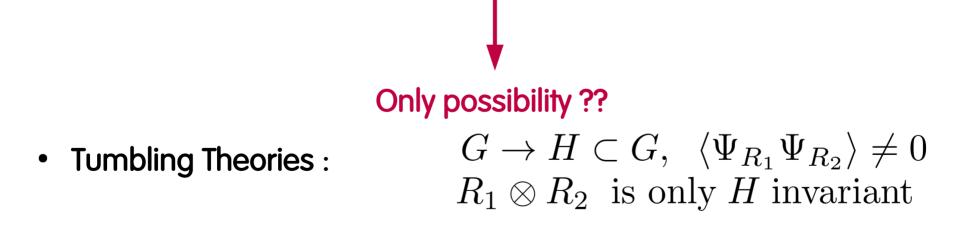
Only possibility ??

S

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...


• Tumbling Theories :

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...



• Tumbling Theories :

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

- Use of a scalar to generate 4-F
- Or gauge mediation, which requires scalars the breaking...

Composite Mediator ?

<u>Thank you !</u>

Set-Up

Strong Dynamics

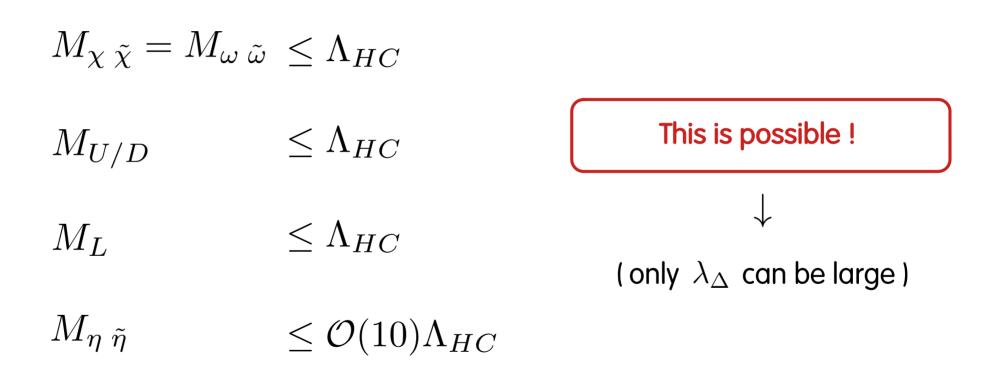
 ψ Fundamental : U_d , D_u , U_u , D_d , L, η , $\tilde{\eta}$, 4 + 2 + 6 = 12 HyperFermions

$$\rightarrow G = SU(n), \ n \le 12$$

How many are light ($\leq \Lambda_{HC}$)? L + 2 neutral

 χ AntiSymmetric : χ , $\tilde{\chi}$ = 6 HyperFermions

Analytic tools : (PS & SD) \rightarrow



<u>4-F : Gauge Mediation</u>

Step	Breaking Pattern	
PS	$SU(8)_{PS} \times SU(2)_R \to SU(7)_{EHC} \times U(1)_E$	$E_{\mu} : M_E^2 = \frac{g_{\rm PS}^2}{4} (v_{\rm EHC}^{\Psi})^2$
EHC	$SU(7)_{EHC} \rightarrow SU(4)_{CHC} \times SU(3)_c \times U(1)_X$	$\int C_{\mu} : M_C^2 = \frac{g_{\rm PS}^2}{4} (v_{\rm EHC}^{\Psi} + v_{\rm PS}^{\Phi})^2$
CHC	$SU(4)_{CHC} \times U(1)_X \times U(1)_E \to Sp(4)_{HC} \times U(1)_Y$	
$\begin{split} \mathcal{L}_{\text{Kinetic}} \supset &-\frac{g_{\text{EHC}}^2}{2M_E^2} \left(\bar{\boldsymbol{L}}^3 \bar{\sigma}^{\mu} q_L - \bar{t}_R^c \bar{\sigma}^{\mu} D_u^3 - \bar{b}_R^c \bar{\sigma}^{\mu} U_d^3 \right) \left(\frac{1}{2} \bar{\boldsymbol{\chi}} \bar{\sigma}_{\mu} U_t - \frac{1}{2} \bar{D}_b \bar{\sigma}_{\mu} \tilde{\boldsymbol{\chi}} - \bar{\eta} \bar{\sigma}_{\mu} \boldsymbol{\chi} + \bar{\tilde{\boldsymbol{\chi}}} \bar{\sigma}_{\mu} \tilde{\eta} \right) \\ &- \frac{g_{\text{PS}}^2}{2M_C^2} \left(\bar{\boldsymbol{L}}^3 \bar{\sigma}^{\mu} l_L - \bar{\nu}_{\tau R}^c \bar{\sigma}^{\mu} D_u^3 - \bar{\tau}_R^c \bar{\sigma}^{\mu} U_d^3 \right) \left(-\frac{1}{2} \bar{\boldsymbol{\chi}} \bar{\sigma}_{\mu} \tilde{\eta} - \frac{1}{2} \bar{\eta} \bar{\sigma}_{\mu} \tilde{\boldsymbol{\chi}} \right) \end{split}$		
$2M_C^2 (1 n a n a) (2 p 2 p c)$ Quark-Lepton mass splitting !		

HyperFermion Masses

