Four-top-quark signatures:

simplified models and EFT

Luc Darmé IP2I – CNRS 23/11/2022

Mostly based on 2104.09512 with B. Fuks and F. Maltoni

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101028626

Outline

Introduction: NP for top-philic particles

From simplified models to EFT: a cross-section study

Resonant vs non-resonant four-top search

Top-philic NP theories: the origin

- Why would New Physics (NP) prefers the top quarks over its lighter siblings ?
 - → This question has of course everything to do with why does the top quark is actually the heaviest one ...

Extended Higgs sector

- The large top mass implies large Yukawa couplings
 - → Very important in extended Higgs sector searches, as the coupling to top quark can be expected to be sizeable
 - → In 2HDM, up to factors from the mixing, the couplings arise proportional to the quark masses

$$\mathcal{L}_{\text{Yukawa}}^{\text{2HDM}} = -\sum_{f=u,d,\ell} \frac{m_f}{v} \left(\xi_h^f \overline{f} fh + \xi_H^f \overline{f} fH - i\xi_A^f \overline{f} \gamma_5 fA \right)$$

	Type I	Type II	Lepton-specific
ξ^u_H	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
ξ^u_A	\coteta	\coteta	\coteta

$$\tan \beta = \frac{v_2}{v_1} \qquad \qquad H^{\text{SM}} = h \sin (\alpha - \beta) - H \cos (\alpha - \beta)$$

See, e.g. 2202.02333 for a recent work

 In models with an inert scalar (e.g. Dark Higgs), the coupling arises from mixing, thus is dominantly with the top quark

Corresponding simplified model

$$\mathcal{L}_{S_1} \supset \frac{1}{2} \partial_{\mu} S_1 \partial^{\mu} S_1 - \frac{1}{2} m_{S_1}^2 S_1^2 + \bar{t} \left[y_{1S} + y_{1P} i \gamma^5 \right] S_1 t$$

Supersymmetric constructions

• Dirac Supersymmetric model See, e.g. 2107.13565 for a recent work

→ makes gauginos Dirac fermions instead of Majorana (supersoftness + match with N=2 SUSY models). which contains half of the gluino degrees of freedom and a new, color octet complex scalar

 $O = \frac{O_R + iO_I}{\sqrt{2}}$ The pseudo-scalar octet O_I only couples to gluinos at tree-level $\stackrel{\tilde{q}}{\longrightarrow} \stackrel{\tilde{q}}{\longrightarrow} \stackrel{$

Include direct QCD interactions

 O_a

Spin 1

 g_a

Spin 0

Spin 1/2

From resonant searches to EFT

Resonant vs non-resonant searches: Cross-section study

Simplified models

• We consider singlet top-philic particles...

$$\mathcal{L}_{S_1} \supset \frac{1}{2} \partial_{\mu} S_1 \partial^{\mu} S_1 - \frac{1}{2} m_{S_1}^2 S_1^2 + \bar{t} \left[y_{1S} + y_{1P} i \gamma^5 \right] S_1 t$$

Include EWSB contributions

→ contained for instance in
 2HDM type-I or type-II

$$\mathcal{L}_{V_1} \supset -\frac{1}{4} V_1^{\mu\nu} V_{1\mu\nu} - \frac{1}{2} m_{V_1}^2 V_1^{\mu} V_{1\mu} + \bar{t} \gamma_\mu \left[g_{1L} P_L + g_{1R} P_R \right] V_1^{\mu} t$$

 \rightarrow Via mixing with new VL quarks, etc...

• And color octets top-philic particles

$$\mathcal{L}_{S_8} \supset \frac{1}{2} D_{\mu} S_8^a D^{\mu} S_{8a} - \frac{1}{2} m_{S_8}^2 S_8^a S_{8a} + \bar{t} \left[y_{8S} + y_{8P} i \gamma^5 \right] S_8 t \xrightarrow{\rightarrow} \text{Composite models, N=2} \\ \mathcal{L}_{V_8} \supset -\frac{1}{4} V_8^{\mu\nu} V_{8\mu\nu} - \frac{1}{2} m_{V_8}^2 V_8^{\mu} V_{8\mu} + \bar{t} \gamma_{\mu} \left[g_{8L} P_L + g_{8R} P_R \right] V_8^{\mu} t \xrightarrow{\rightarrow} \text{Composite models, N=2} \\ \text{Include direct QCD interactions}$$

A minimal EFT basis

- Simplified models often include EWSB
 - → Using $SU(3)_c \times U(1)_{em}$ basis is important and leads to additional operators
- Typical SMEFT approach is redundant for top-only operators

 \rightarrow No need to keep track of b-quark

$$O_{tt} = (\bar{t}_R \gamma_\mu t_R)^2$$
$$O_{tq} = (\bar{t}_R \gamma_\mu t_R) (\bar{q}_L \gamma^\mu q_L)$$
$$O_{tq}^{(8)} = (\bar{t}_R \gamma_\mu t^A t_R) (\bar{q}_L \gamma^\mu t^A q_L)$$
$$O_{qq} = (\bar{q}_L \gamma_\mu q_L)^2$$
$$O_{qq}^{(8)} = (\bar{q}_L \gamma_\mu t^A q_L)^2$$

$$O_{qq}^{(8)} \sim O_{qq}/3$$

EW-breaking part (P-conserving)

$$\mathcal{O}_S^1 = \bar{t}t \ \bar{t}t$$
$$\mathcal{O}_S^8 = \bar{t}T^A t \ \bar{t}T_A t$$

EW-preserving part

$$\mathcal{O}_{RR}^{1} = \bar{t}_{R}\gamma^{\mu}t_{R}\ \bar{t}_{R}\gamma_{\mu}t_{R}$$
$$\mathcal{O}_{LL}^{1} = \bar{t}_{L}\gamma^{\mu}t_{L}\ \bar{t}_{L}\gamma_{\mu}t_{L}$$
$$\mathcal{O}_{LR}^{1} = \bar{t}_{L}\gamma^{\mu}t_{L}\ \bar{t}_{R}\gamma_{\mu}t_{R}$$
$$\mathcal{O}_{LR}^{8} = \bar{t}_{L}T^{a}\gamma^{\mu}t_{L}\ \bar{t}_{R}T_{a}\gamma_{\mu}t_{R}$$

Also two further P-breaking operators...

Four-top operators used in 2010.05915

Cross-section estimates

• The amplitude for the $pp \rightarrow \overline{t}t \ \overline{t}t$ with a NP simplified model can be (artificially) decomposed in 3 main pieces

$$M_{\bar{t}t\bar{t}t} \sim M_{SM} + M_{ttX} \times BR_{X \to tt} + M^{\text{off-shell}}$$

$$\sigma_{\bar{t}t\bar{t}t} \sim \sigma_{SM} + \sigma_{ttX} \times BR_{X \to tt}^2 + \sigma_{\text{int}} + \sigma^{NP^2}$$

Contrary to the "usual" case, we just started to measure σ_{SM} ...

• For the EFT, the on-shell piece is assumed to be subdominant

$$M_{\bar{t}t\bar{t}t} \sim M_{SM} + \frac{1}{\Lambda^2} M^{\text{EFT}} + (\dots)$$

$$\sigma_{\bar{t}t\bar{t}t} \sim \sigma_{SM} + \frac{1}{\Lambda^2} \sigma_{\text{int}} + \frac{1}{\Lambda^4} \sigma^{NP^2}$$

Given the current sensitivity, LHC (and HL-LHC) are in a regime with:

$$\sigma_{SM} \sim \frac{1}{\Lambda^4} \sigma^{NP^2} \gtrsim \frac{1}{\Lambda^2} \sigma_{\rm int}$$

Importance of EW interference effect (LO)

- Interferences become important for CS around the fb, and EW-contributions are dominant!
 Aoude et al. 2208.04962
- → Similar to the full SM result where $\alpha_S^2 \alpha_{EW}^2$ terms were found much larger than expected Frederix, Pagani, Zaro 1711.02116
- → For the "heavy quark" operators, $\alpha_S^2 \alpha_{EW}^1$ tend to dominate the interference contribution

For the $c/\Lambda \sim 1,$ the NP^2 terms are of the same order as the interferences

 Conclusion: always include EW interference in your simulations See also Ježo and Kraus (2110.15159)

EFT vs simplified model

- The projected EFT constraints, even at HL-LHC points to g/Λ at the TeV level
 - → In the low mass regime, on-shell production dominates
 - \rightarrow Either in associated

 \rightarrow Or if available, by pair

Going NLO

• We define the K-factor as the ratio between LO and NLO cross-section

 \rightarrow Can we estimate the size of NLO corrections from the SM estimate?

$$\tilde{\sigma}_{\mathrm{NP}}^{\mathrm{C-NLO}} = \sigma_{\mathrm{SM}}^{\mathrm{C-NLO}} \times \left(\frac{\sigma_{\mathrm{NP}}^{\mathrm{LO}}}{\sigma_{\mathrm{SM}}^{\mathrm{LO}}}\right) \equiv K_{\mathrm{SM}} \, \sigma_{\mathrm{NP}}^{\mathrm{LO}}$$

- No...only a partial knowledge of NLO effects ...
 - → In the SM, NLO-correction in QCD dominates → $K_{SM} \sim 2.3$ Frederix, Pagani, Zaro 1711.02116

→ In the SMEFT, much smaller effects, Depends on the operator, typically $K_{QCD} \gtrsim 1$ Degrande et al. 2008.11743

→ In simplified model: case of pseudo-scalar octet led to $K_{QCD} \sim 2$ LD, Fuks, Goodsell 1805.10835

 Altogether, pretty uncertain situation: we will present limits varying the K-factor between 1 and 2

Resonant vs non-resonant searches: Limits

Recasting setup

• Simple recasting chain:

Implement EFT and simplified models Lagrangians, e.g.

$$\mathcal{L}_{S_1} \supset \frac{1}{2} \partial_{\mu} S_1 \partial^{\mu} S_1 - \frac{1}{2} m_{S_1}^2 S_1^2 + \bar{t} \left[y_{1S} + y_{1P} i \gamma^5 \right] S_1 t$$

• FEYNRULES

[Christensen & Duhr (CPC '09); Alloul et al.(CPC'14) Degrande (CPC'16)]

MG5_aMC@NLO

Alwall et al. (JHEP'14)

• PYTHIA 8

Sjostrand et al. (CPC'15)

• MadAnalysis 5

[Conte et al.(CPC'12); Conte et al. (EPJC'14) Dumont et al. (EPJC'15)] Load UFO, generate $pp \rightarrow tttt$, including EW interferences

Decay tops inclusively t > w+ b, w+ > all al

The cross-section/signal shape depends only on the top-philic particle mass. → Scan over it

The CMS 4t analysis

- The most recent search are focusing on SM-like signals
 - → Large progresses in recent years!

→ Both BDT and SR-based strategy based on number of jets/leptons ...

→ Backgrounds include $t\bar{t}W, t\bar{t}Z$, non-prompt leptons etc ...

	N_{ℓ}	N_b	N_{j}	Region	$t\bar{t}t\bar{t}$ (SM - CM	(S) $t\bar{t}t\bar{t}$ (Bkd - CMS)
	2	3	6	SR5	1.61 ± 0.90	5.03 ± 0.77
	2	≥ 4	≥ 5	SR8	2.08 ± 1.23	3.31 ± 0.95
	≥ 3	≥ 3	4	SR12	0.56 ± 0.32	2.03 ± 0.48
	≥ 3	≥ 3	5	SR13	0.66 ± 0.38	1.09 ± 0.28
	≥ 3	≥ 3	≥ 6	SR14	0.76 ± 0.45	0.87 ± 0.30
CMS (17)				C	VIS (19)	CMS (19) + CMS (22)
$\sigma_{4t}^{SM} = 16.9^{+13.8}_{-11.4} \text{ fb}$			^{3.8} fb	$\sigma_{4t}^{SM} =$	12.6 ^{+5.8} fb	$\sigma_{4t}^{SM} = 17^{+5}_{-5} \text{ fb}$
35.9 fb^{-1}					137 fb^{-1}	138 fb^{-1}
(CMS 1710.10614))		(CMS 1908.06463)	(CMS-PAS-TOP-21-005) All hadronic final states

• Since SM-driven, we need a full recast to get reliable NP bound

MadAnalysis 5 implementation

- Challenging analysis to reproduce
 - → High-multiplicity final states: isolation criteria (defined back in CMS' 1605.0317)
 - → Relatively strong cuts (sizeable MC dataset required), signal efficiency < 0.002
- Signal regions depend crucially on number of b-tagged jets;
- → Reproduce the efficiency of
 DeepCSV algorithm, medium working point in Delphes (MA5 tune)

Ht data from CMS

• We add a signal region with $H_T > 1.2$ TeV to the CMS search

 $N_{\rm bkd+SM} = 6.26 \pm 1.3$ $N_{\rm obs} = 9$

 Actually the tail of the distribution is in excess

→ Possible link with the issues plaguing ttW and ttZ + multijets ?

CMS, 1908.06463 The values and uncertainties of most nuisance parameters are unchanged by the fit, but the ones significantly affected include those corresponding to the t $\bar{t}W$ and t $\bar{t}Z$ normalizations, which are both scaled by 1.3 ± 0.2 by the fit, in agreement with the ATLAS and CMS measurements of these processes [71-73].

Signal efficiencies

- EFT efficiencies close to simplified models ones for CMS analysis
 - → This is because on-shell effects are not really leveraged/used here
- With a high-Ht cut, the "onshell" effects becomes more important
 - → High Ht analysis has a very good signal efficiency in the 1-3 TeV mass window
 - → The EFT of course cannot capture this effect

Results, singlet case

- Bands are from varying CS by factor of 2 (K factor 1 or 2)
- Note that the simplified approach quickly breaks down at large masses (width $\Gamma_{\!S}$ too large)

Results, octet case

- Pair production dominates → A dedicated search strategy could deliver a massive improvement here
- Small region at large masses with good EFT/simplified match

 S_8

Comments on the "low masses" range

- When the top-philic particle is lighter than two top masses: no on-shell decay (to tops) available
- Situation closely mimics the existing SM processes
 - \rightarrow Interference plays an important role
 - → Measurement gets close to the SM precision prediction (NP will become "systematics"-dominated at HL-LHC if no advance on theory side) $\sigma_{4t}^{SM} = 11.97^{+2.15}_{-2.51}$ fb

• Use another decay channel in ttX configuration, or compare with gluon fusion ? → With reconstruction of the $X \rightarrow bb$, $\mu\mu$, $\tau\tau$, $\gamma\gamma$ etc...

Conclusion

Conclusion

- Fast experimental progresses on $t\bar{t}t\bar{t}$ searches
 - \rightarrow Experiments are still statistically limited
- Still a pretty active field on the theory side !
 - → We are getting a better control over the SMEFT predictions for this process and its range of validity (NLO estimates are going to be long run effort)
- A focus on "on-shell" NP production (resonant opportunities) is critical to properly leverage the capability of both LHC and HL-LHC
 - \rightarrow Illustrated by high-Ht analysis approach, m_{tttt} tail, etc ...
 - →New dedicated analysis strategies probably required

