Neutrinos in cosmology: A match made in the Heavens

Yvonne Y. Y. Wong, UNSW Sydney

Colloquium, CP3 Louvain, October 12, 2022

An unlikely partnership?

Neutrino = one of the lightest and most weakly-interacting known particles

Cosmology = gravitation on the largest observable scales

Formation of the CvB...

Interaction rate: $\Gamma_{\text{weak}} \sim G_F^2 T^5$

Expansion rate: $H \sim M_{\rm pl}^{-2} T^2$

The CvB is formed when neutrinos decouple from the cosmic plasma.

Above $T \sim 1$ MeV, even weakly-interacting neutrinos can be produced, scatter off e^+e^- and other neutrinos, and attain thermodynamic equilibrium

Below $T \sim 1$ MeV, expansion dilutes plasma, and reduces interaction rate: the universe becomes transparent to neutrinos.

The cosmic neutrino background...

Standard model predictions

What can cosmology do for neutrino physics?

Precision cosmological observations allow us to infer the properties of the cosmic neutrino background, from which to determine :

- Absolute neutrino mass scale, $\sum m_{\nu}$
- Number of neutrino families, N_{eff}
 - Deviations from SM prediction of $N_{
 m eff}pprox 3$
 - e.g., test for the existence of light sterile states
- Neutrino decay/lifetime, au_0

...

- Non-standard neutrino interactions
 - Self, neutrino-dark matter, neutrino-dark energy

More exotic, but of growing interest

"Standard" tests

What can neutrino physics do for cosmology?

From the theoretical perspective:

- Origin of dark matter = keV sterile neutrinos as a dark matter candidate
- **Origin of the matter-antimatter asymmetry** = leptogenesis linked to neutrino mass generation

More directly, neutrino experiments can also help to pin down parameters of the $C\nu B$.

• Allow us to gain more precise and accurate information about the other stuff in the universe.

1. What can cosmology do for neutrino physics?

Cosmological observables...

+ Supernova Ia, local H₀, etc.

(No direct neutrino effects)

Light element abundances from primordial nucleosynthesis

Cosmic microwave background anisotropies

Lifetime (free-streaming)

Large-scale matter distribution

g) $\sum m_{
u}$ (perturbation growth)

LE FIGARO · fr

What do these probes really probe?

They may look different, but ultimately the information contained is

- Universal expansion rate at different times
 - How much matter, radiation, "in-between" (e.g., neutrinos), vacuum energy, etc.
- Growth of fluctuations under gravity
 - Kinematic properties and interactions of the various types of stuff in the universe; good for neutrino physics
- Distance measurements
 - Spatial geometry, dark energy; not directly relevant for neutrino physics but has indirect effects on inference

What do these probes really probe?

They may look different, but ultimately the information contained is

- Universal expansion rate at different times
 - How much matter, radiation, "in-between" (e.g., neutrinos), vacuum energy, etc.

Neutrinos & the expansion rate...

The Hubble expansion rate depends on the energy content of the universe:

$$H^{2}(a(t)) = H^{2}_{0}(\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{k}a^{-2} + \cdots)$$
Scale factor
Matter
Radiation
Cosmological
Cosmological
Constant
Co

Neutrinos & the expansion rate...

The Hubble expansion rate depends on the energy content of the universe:

$$H^{2}(a(t)) = H^{2}_{0}(\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{k}a^{-2} + \cdots)$$
Cale factor
Matter
Radiation
Cosmological
Spatial
constant
Cosmology
Standard cosmology
$$\rho_{CMB} + \sum \rho_{CVB} = \left[1 + N_{eff} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right] \rho_{CMB}$$

$$N^{SM}_{eff} = 3.0440 \pm 0.002$$
Bennett et al, 2020, 2021;
Froustev Pitron & Voing 2020
For 3 SM families, includes m
non-instantaneous decouplin
temporature OED and points

T corrections,

g, finiteno oscillations.

Journal of Cosmology and Astroparticle Physics

Towards a precision calculation of the effective number of neutrinos N_{eff} in the Standard Model: the QED equation of state

Jack J. Bennett¹, Gilles Buldgen², Marco Drewes² and Yvonne Y.Y. Wong¹

Published 2 March 2020 • © 2020 IOP Publishing Ltd and Sissa Medialab

Journal of Cosmology and Astroparticle Physics, Volume 2020, March 2020

Citation Jack J. Bennett et al JCAP03(2020)003

$$N_{\rm eff}^{\rm SM} = 3.0440 \pm 0.0002$$

Journal of Cosmology and Astroparticle Physics

PAPER

Towards a precision calculation of the effective number of neutrinos N_eff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finitetemperature QED

Jack J. Bennett¹, Gilles Buldgen², Pablo F. de Salas³, Marco Drewes², Stefano Gariazzo^{4,5}, Sergio Pastor⁵ and Yvonne Y.Y. Wong¹

Published 28 April 2021 • © 2021 IOP Publishing Ltd and Sissa Medialab

Journal of Cosmology and Astroparticle Physics, Volume 2021, April 2021

Citation Jack J. Bennett et al JCAP04(2021)073

Neutrinos & the expansion rate...

The Hubble expansion rate depends on the energy content of the universe:

$$H^{2}(a(t)) = H^{2}_{0}(\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{k}a^{-2} + \cdots)$$
Scale factor
Matter
Radiation
Cosmological
Cosmological
Constant
Constant
Curvature
$$\rho_{\text{CMB}} + \sum \rho_{\text{CvB}} = \left[1 + N_{\text{eff}} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right] \rho_{\text{CMB}}$$

Any relativistic, feebly-interacting, thermalised particle species **will look like a neutrino** cosmologically, e.g., light sterile neutrinos, thermal axions, etc.

 $N_{\rm eff}^{\rm SM} = 3.0440 \pm 0.0002$ Bennett et al, 2020, 2021; Froustey, Pitrou & Volpe, 2020

For 3 SM families, includes m_e/T corrections, non-instantaneous decoupling, finitetemperature QED, and neutrino oscillations.

Nucleosynthesis & N_{eff}...

Constraining $N_{\rm eff}$ with the primordial elemental abundances has a long history.

Volume 66B, number 2	PHYSICS LETTERS	17 January 1977
COSMOLOGI	CAL LIMITS TO THE NUMBER OF MASSIVE	LEPTONS
COMINECCI	CAL LIMITS TO THE NUMBER OF MASSIVE	LEFTONS
	Gary STEIGMAN	
Natio	onal Radio Astronomy Observatory ¹ and Yale University ² , USA	
	David N. SCHRAMM	
University of Ch	iicago, Enrico Fermi Institute (LASR), 933 E 56th, Chicago, Ill.	60637, USA
	James E. GUNN	
Univ	versity of Chicago and California Institute of Technology ² , USA	
	Received 29 November 1976	
If massive leptons exist, the hot, big bang cosmology. The effect of speeding up the exp	heir associated neutrinos would have been copiously produced in ese neutrinos would have contributed to the total energy density pansion of the universe. The effect of the speed-up on primordial	n the early stages of the v and would have had the nucleosynthesis is to

effect of speeding up the expansion of the universe. The effect of the speed-up on primordial nucleosynthesis is to produce a higher abundance of ⁴He. It is shown that observational limits to the primordial abundance of ⁴He lead to the constraint that the total number of types of heavy lepton must be less than or equal to 5.

How much of these elements is produced depends on how fast the universe expands.

Nucleosynthesis & N_{eff}...

Constraining $N_{\rm eff}$ with the primordial elemental abundances has a long history.

Volume 66B, number 2	PHYSICS LETTERS	17 January 1977
COSMOLO	GICAL LIMITS TO THE NUMBER OF MASSIVE LI	EPTONS
Δ	Gary STEIGMAN	
	David N. SCHRAMM	
University o	f Chicago, Enrico Fermi Institute (LASR), 933 E 56th, Chicago, Ill. 600	637, USA
	James E. GUNN University of Chicago and California Institute of Technology ² , USA	
	Received 29 November 1976	
If massive leptons exi	st, their associated neutrinos would have been copiously produced in th	e early stages of the

It massive teptions exist, their associated neutrinos would have been copiously produced in the early stages of the hot, big bang cosmology. These neutrinos would have contributed to the total energy density and would have had the effect of speeding up the expansion of the universe. The effect of the speed-up on primordial nucleosynthesis is to produce a higher abundance of ⁴He. It is shown that observational limits to the primordial abundance of ⁴He lead to the constraint that the total number of types of heavy lepton must be less than or equal to 5.

Consistent with Standard Model prediction $N_{\rm eff} \approx 3$

CMB anisotropies & N_{eff}...

 $N_{\rm eff}$ also affects the expansion rate at recombination.

• Observable in the CMB temperature power spectrum

What do these probes really probe?

They may look different, but ultimately the information contained is

- Growth of fluctuations under gravity
 - Kinematic properties and interactions of the various types of stuff in the universe; good for neutrino physics

Neutrino masses, $\sum m_{\nu}$ (large-scale structure) Neutrino decay/lifetime, τ_0 (CMB) Non-standard neutrino interactions (CMB)

Neutrino masses & large-scale structure...

Cold dark matter only
 $\Omega_{CDM} \approx 25\%$ Cold dark matter +
neutrinos ($\sum m_{\nu} = 6.9 \text{ eV}$) $\Omega_{\nu} = \frac{\sum m_{\nu}}{93 h^2} \approx 15\%$

Simulations by Troels Haugbølle

Neutrino masses & large-scale structure...

 $\Omega_{\rm CDM} \approx 25\%$

 $\Omega_{\rm CDM} \approx 10\%$ Cold dark matter only Cold dark matter + neutrinos ($\sum m_{\nu} = 6.9 \text{ eV}$) $\Omega_{\nu} = \frac{\sum m_{\nu}}{93 h^2} \approx 15\%$

Simulations by Troels Haugbølle

Why? Free-streaming suppression...

Neutrino thermal motion prevents efficient clustering on small length scales.

$$v_{\text{themal}} = \frac{T_{\text{CvB}}}{m_{v}} \approx 50 \ (1+z) \left(\frac{\text{eV}}{m_{v}}\right) \text{km s}^{-1}$$

$$v \longrightarrow c$$

$$Gravitational potential wells$$

Free-streaming scale:
$$\lambda_{\rm fs} \equiv \sqrt{\frac{8\pi^2 v_{\rm thermal}^2}{3\Omega_m H^2}} \approx 4.2 \sqrt{\frac{1+z}{\Omega_{m,0}} \left(\frac{{\rm eV}}{m_\nu}\right)} h^{-1} \,{\rm Mpc}$$

Cold dark matter component

 $256 h^{-1} Mpc$

N-body code: Gadget-Hybrid Chen, Mosbech, Upadhye & Y³W, in prep Post-processing/graphics: Pierobon

Increasing neutrino momentum

Neutrino component ($\sum m_{
u} = 0.5 \,\mathrm{eV}$)

A neutrino and a cold DM particle encounter 2 gravitational potential wells of different physical sizes in an expanding universe:

Free-streaming induces gravitational potential decay on length scales $\lambda \ll \lambda_{FS}$.

The presence of neutrino dark matter induces a step-like feature in the spectrum of gravitational potential wells.

A real matter power spectrum calculated from linear perturbation theory...

A real matter power spectrum calculated from linear perturbation theory...

Neutrino mass from cosmology...

Large-scale matter power spectrum measurement ca. 2018

Current cosmological limits on the neutrino mass sum typically fall in the range:

$$\sum m_{\nu} < O(0.1 - 0.5) \text{eV} (95\% \text{ CL})$$

Aghanim et al. [Planck] 2021

At face value a factor of 6 tighter than current lab bound from KATRIN, $\sum m_{\nu} < 3 \text{ eV}$.

Aker et al. [KATRIN] 2019

What to expect in the future?

		1σ sensitivity to $\sum m_{ m v}$	1σ sensitivity to $N_{ m eff}$
ESA Euclid	2024	0.011 - 0.02 eV	0.05
LSST	2024	0.015 eV	0.05

 $\begin{array}{l} \text{Minimum} \sum m_{\nu} = 0.06 \text{ eV} \\ \text{From neutrino oscillations} \\ \text{(assuming normal mass ordering)} \end{array}$

Detection of the absolute neutrino mass may be possible! A real matter power spectrum calculated from linear perturbation theory...

What to expect in the future?

CMB experiments

John Carlstrom

What to expect in the future?

CMB experiments

John Carlstrom

Wavenumber, k [h Mpc^{-1}]

What do these probes really probe?

They may look different, but ultimately the information contained is

- Growth of fluctuations under gravity
 - Kinematic properties and interactions of the various types of stuff in the universe; good for neutrino physics

Formation of the CvB...

Interaction rate: $\Gamma_{\text{weak}} \sim G_F^2 T^5$

Expansion rate: $H \sim M_{\rm pl}^{-2} T^2$

The CvB is formed when neutrinos decouple from the cosmic plasma.

Above $T \sim 1$ MeV, even weakly-interacting neutrinos can be produced, scatter off e^+e^- and other neutrinos, and attain thermodynamic equilibrium

Below $T \sim 1$ MeV, expansion dilutes plasma, and reduces interaction rate: the universe becomes transparent to neutrinos.

Neutrino free-streaming & the CMB...

Standard neutrinos free-stream.

- Free-streaming in a spatially inhomogeneous background induces shear stress (or momentum anisotropy).
- Conversely, interactions transfer momentum and, if sufficiently efficient, can wipe to out shear.

Scattering transfers momentum and wipes out shear

Neutrino free-streaming & the metric...

Scale factor

Neutrino shear stress (or lack thereof) leaves distinct imprints on the spacetime metric perturbations.

Conformal Newtonian gauge

 $ds^{2} = a^{2}(\tau)[-(1+2\psi)d\tau^{2} + (1-2\phi)dx^{i}dx_{i}]$

Shear stress

where $k^2(\phi - \psi) = 12\pi G a^2 (\bar{\rho} + \bar{P}) \sigma$ In *A*CDM, mainly from ultra-relativistic neutrinos and photons.

- Changes to $(\phi \psi)$ affect the evolution of CMB perturbations and are observable in the CMB TT power spectrum.
- Good probe of neutrino interactions around CMB formation times ($t \sim 400$ kyr) when the CvB still constitutes a substantial fraction of the relativistic energy density.

Neutrino free-streaming & the CMB...

That CMB prefers neutrino shear stress to no shear stress is well known.

 The tricky part is, how do you translate this preference to constraints on the fundamental parameters of a non-standard neutrino interaction

 \rightarrow What is the isotropisation timescale given a fundamental process?

Isotropisation timescale...

Given an interaction Lagrangian, the isotropisation timescale is calculable.

• Write down the **Boltzmann equation**:

$$P^{\mu}\frac{\partial f_{i}}{\partial x^{\mu}} - \Gamma^{\nu}_{\rho\sigma}P^{\rho}P^{\sigma}\frac{\partial f_{i}}{\partial P^{\nu}} = \frac{1}{2} \left(\prod_{j}^{N} \int g_{j}\frac{\mathrm{d}^{3}\mathbf{n}_{j}}{(2\pi)^{3}2E_{j}(\mathbf{n}_{j})}\right) \left(\prod_{k}^{M} \int g_{k}\frac{\mathrm{d}^{3}\mathbf{n}_{k}}{(2\pi)^{3}2E_{k}(\mathbf{n}_{k})}\right)$$
$$\times (2\pi)^{4} \delta_{D}^{(4)} \left(p + \sum_{j}^{N} n_{j} - \sum_{k}^{M} n_{k}'\right) |\mathcal{M}_{i+j_{1}+\dots+j_{N}\leftrightarrow k_{1}+\dots+k_{M}}|^{2}$$
$$\times [f_{k_{1}}\cdots f_{k_{N}}(1\pm f_{i})(1\pm f_{j_{1}})\cdots(1\pm f_{j_{N}}) - f_{i}f_{j_{1}}\cdots f_{j_{N}}(1\pm f_{k_{1}})\cdots(1\pm f_{k_{M}})]$$

- Decompose in a Legendre series
- The damping rate of the quadrupole ($\ell = 2$) moment is the isotropisation rate.

Tedious stuff, but this is really the only correct way to calculate these things, else you can get it very wrong... However, the result can usually be understood in simple terms. \rightarrow **Next slide**

Isotropisation from ν self-interaction...

Consider a 2-to-2 scattering event $v_i + v_i \rightarrow v_f + v_f$.

• The probability of v_f emitted at any angle θ is the same for all $\theta \in [0, \pi]$.

Cyr-Racine & Sigurdson 2014; Oldengott, Rampf & Y³W 2015; Lancaster, Cyr-Racine, Knox & Pan 2017; Oldengott, Tram, Rampf & Y³W 2017; Kreisch, Cyr-Racine & Dore 2019; Forastieri et al. 2019; etc. \rightarrow Particles in two head-on ν_i beams need only scatter once to transfer their momenta equally in all directions.

ν self-interaction and the H_0 tension...

Kreisch, Cyr-Racine & Dore 2019

Recent claim that self-interaction **alleviates the Hubble tension**.

- Local/late time: Cepheid-calibrated SNIa (SH0ES) and strong-lensing time delays (H0liCOW); $H_0 = (73.5 \pm 1.4) \text{ km/s/Mpc}$
- **Global/early time**: Statistical inference from CMB anisotropies (Planck), weak lensing, BAO; $H_0 = (67.4 \pm 0.5) \text{ km/s/Mpc}$

Isotropisation from relativistic (inverse) decay...

How long does it take $\nu_H \rightarrow \nu_l + \phi$ and its inverse process to wipe out momentum anisotropies? (Hint: it's not the rest-frame lifetime of ν_H .)

• In relativistic decay, the decay products are **beamed**.

Barenboim, Chen, Hannestad, Oldengott, Tram & Y³W 2021 Chen, Oldengott, Pierobon & Y³W 2022

Isotropisation from relativistic (inverse) decay...

How long does it take $v_H \rightarrow v_l + \phi$ and its inverse process to wipe out momentum anisotropies? (Hint: it's not the rest-frame lifetime of v_H .)

- In relativistic decay, the decay products are **beamed**.
- Inverse decay also only happens when the daughter particles meet **strict momentum/angular requirements**.

Barenboim, Chen, Hannestad, Oldengott, Tram & Y³W 2021 Chen, Oldengott, Pierobon & Y³W 2022

 \rightarrow Lower bound on $\tau_{\rm rest}$ as a function of $m_{\nu H}$ and $m_{\nu l}$.

CMB lower bounds on the neutrino lifetime...

Mass-spectrum consistent constraints on invisible neutrino decay $v_H \rightarrow v_l + \phi$.

Chen, Oldengott, Pierobon & Y³W 2022

^{*} IceCube constraints & forecasts from Song et al. 2021

CMB lower bounds on the neutrino lifetime...

Mass-spectrum consistent constraints on invisible neutrino decay $v_H \rightarrow v_l + \phi$.

Chen, Oldengott, Pierobon & Y³W 2022

• For $v_2 \rightarrow v_1 + \phi$, neutrino telescopes and CMB probe the same parameter space.

Why I like this so much...

Previous CMB constraints on the neutrino lifetime were based on an (heuristic) isotropisation rate that turns out to be too large.

→ Resulting lower limit is too strong:

$$\tau_{\rm rest} \gtrsim 10^9 \left(\frac{m_{\nu}}{0.05 \text{ eV}}\right)^3 \text{s}$$

e.g., Hannestad & Raffelt 2005 Basboll, Bjaelde, Hannestad & Raffelt 2009 Escudero & Fairbairn 2019

• Compare this with our revised limits: Chen, Oldengott, Pierobon & Y³W 2022

 $\nu_2 \rightarrow \nu_1 + \phi$ $\tau_{\text{rest}} \gtrsim (400 - 500) \text{s}$

There's now some hope that other experiments can probe this process too.

2. What can neutrino physics do for cosmology?

What can neutrino physics do for cosmology?

Parameter estimation from cosmological observations is based on statistical inference.

- Observations don't actually measure the dark matter density or the dark energy equation of state, and much less anything about inflation.
- Inference always assumes a model:
 - The less the model uncertainty, the more precise and accurate the parameter estimates.
- Neutrinos are unique in that they are the only cosmologically significant component that has a
 precise prediction within the Standard Model and whose properties can be independently
 measured in a laboratory.
 - Eliminating uncertainty in the neutrino sector will help us pin down other cosmological parameter inaccessible in the laboratory.

A direct neutrino mass measurement or even a confirmation of the inverted mass ordering (minimum $\sum m_{\nu} =$ 0.11 eV) by oscillation experiments would help to shrink these ellipses.

Establishing the existence (or not) of light sterile neutrino states through oscillation experiments would shrink the uncertainty in $N_{\rm eff}$ from the neutrino sector.

More accurate estimates of parameters inaccessible in the lab.

What can neutrino physics do for cosmology?

Ultimate prize = Direct detection of the CvB itself

• Best idea uses the β -decay end-point spectrum \rightarrow Goes hand-in-hand with direct neutrino mass detection. Weinberg 1962

What can neutrino physics do for cosmology?

Ultimate prize = Direct detection of the CvB itself

- Best idea uses the β -decay end-point spectrum \rightarrow Goes hand-in-hand with direct neutrino mass detection.
- Ptolemy Experiment

The PTOLEMY prototype at the Princeton Plasma Physics Laboratory

Summary...

- The existence of a cosmic neutrino background is a fundamental prediction of SM+FLRW cosmology.
 - Precision cosmological observations have allowed us to infer the properties of this background, from which to determine neutrino properties.
 - e.g., masses, effective number of neutrinos, non-standard interactions, lifetime.
- Conversely, better determination of neutrino properties in laboratory experiments will allow us to eliminate some model uncertainty in the cosmological parameter inference exercise.
 - More precise and accurate constraints on the dark matter density, dark energy properties, inflationary physics, and other cosmological physics inaccessible in the laboratory.