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Searching for a new physics process

when searching for a signal one needs to understand the background

signal??

How can we model our background?
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Modelling the background

What about parametric models?

● Which functional form?
● How many parameters?

There is no guarantee the true background shape 
is part of the family of curves parameterized by 

the chosen function
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Modelling the background

arXiv:2111.06712 

● MC simulation is a commonly used technique
○ not always possible to model the 

background with sufficient accuracy → 
significant theoretical uncertainties 

ATLAS ttH(bb)

https://arxiv.org/abs/2111.06712
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arXiv:2201.11428

● MC simulation is a commonly used technique
○ not always possible to model the 

background with sufficient accuracy → 
significant theoretical uncertainties 

arXiv:2111.06712 

ATLAS ttH(bb) ATLAS VH(cc)

https://arxiv.org/abs/2201.11428
https://arxiv.org/abs/2111.06712


14
                            

     Júlia Silva                       Non-Parametric Data-Driven Background Modelling using Conditional Probabilities

Modelling the background

● MC simulation is a commonly used technique
○ not always possible to model the 

background with sufficient accuracy → 
significant theoretical uncertainties 

○ Often computationally costly to 
produce large samples → significant 
statistical uncertainties 

arXiv:2201.11428arXiv:2111.06712 

ATLAS ttH(bb) ATLAS VH(cc)

https://arxiv.org/abs/2201.11428
https://arxiv.org/abs/2111.06712
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Modelling the background

These uncertainties become more and more 
relevant as larger datasets become available

arXiv:2201.11428

● MC simulation is a commonly used technique
○ not always possible to model the 

background with sufficient accuracy → 
significant theoretical uncertainties 

○ Often computationally costly to 
produce large samples → significant 
statistical uncertainties 

arXiv:2111.06712 

ATLAS ttH(bb) ATLAS VH(cc)

https://arxiv.org/abs/2201.11428
https://arxiv.org/abs/2111.06712
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Searching for H→γγ

arXiv:1207.7214 arXiv:1207.7235

● Backgrounds arising from di-jet, jet+photon and di-photon processes
● Both experiments use parametric models 

https://arxiv.org/abs/1207.7214
https://arxiv.org/abs/1207.7235
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● ATLAS performs “spurious-signal” calculations
○ Test for bias in signal extraction arising from choice 

of functional form
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Spurious Signal

● ATLAS performs “spurious-signal” calculations
○ Test for bias in signal extraction arising from choice 

of functional form

○ Fit background-only Monte Carlo samples with S+B 
model for different background models:

■ No background in sample, so take signal yield 
(NSP) from fit as estimate for bias for specific 
model being tested

■ Ultimately pick model with lowest NSP
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Spurious Signal

● ATLAS performs “spurious-signal” calculations
○ Test for bias in signal extraction arising from choice 

of functional form

○ Fit background-only Monte Carlo samples with S+B 
model for different background models:

■ No background in sample, so take signal yield 
(NSP) from fit as estimate for bias for specific 
model being tested

■ Ultimately pick model with lowest NSP
■ NSP taken as systematic uncertainty

ATLAS-CONF-2018-028
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Discrete profiling method

● CMS uses the discrete profiling of ensemble of parametric forms [arXiv:1408.6865]
○ Choice of functional form treated as a discrete nuisance parameter 

https://arxiv.org/abs/1408.6865
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● CMS uses the discrete profiling of ensemble of parametric forms [arXiv:1408.6865]
○ Choice of functional form treated as a discrete nuisance parameter 
○ Minimum envelope of individual likelihood scans gives overall likelihood profile

https://arxiv.org/abs/1408.6865
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Discrete profiling method

● CMS uses the discrete profiling of ensemble of parametric forms [arXiv:1408.6865]
○ Choice of functional form treated as a discrete nuisance parameter 
○ Minimum envelope of individual likelihood scans gives overall likelihood profile
○ Correction to penalise models with more parameters

https://arxiv.org/abs/1408.6865
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Beyond parametric methods

● Some conceptual and practical complications:
○ Spurious signal calculations

■ Use samples that were considered not reliable to model the background 
■ Need high statistics samples, which are not always available

○ Discrete profiling method
■ Dealing with common systematic effects across categories

● All possible combinations of each function in each category must be fitted
● Approximations have to be taken

● Today will present a novel non-parametric data-driven background modelling technique
○ 2 different implementations through :

■ ancestral sampling (exemplified with H→φγ case study)
■ generative adversarial networks (exemplified with H→Za case study)

arXiv:2112.00650
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Non-parametric data-driven background modelling



1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
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1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
2. Obtain conditional PDF of relevant variables (x1, x2,…, xn)
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2. Obtain conditional PDF of relevant variables (x1, x2,…, xn)
3. Generate sample of pseudo-candidates

Non-parametric data-driven background modelling
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2. Obtain conditional PDF of relevant variables (x1, x2,…, xn)
3. Generate sample of pseudo-candidates
4. Apply Signal Region requirements to pseudo-candidates sample  

Non-parametric data-driven background modelling
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1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
2. Obtain conditional PDF of relevant variables (x1, x2,…, xn)
3. Generate sample of pseudo-candidates
4. Apply Signal Region requirements to pseudo-candidates sample  - obtain PDF of discriminant variable for statistical analysis

Non-parametric data-driven background modelling
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1. Obtain sample of data events enriched in background by relaxing event selection requirements (Generation Region)
2. Obtain conditional PDF of relevant variables (x1, x2,…, xn)
3. Generate sample of pseudo-candidates
4. Apply Signal Region requirements to pseudo-candidates sample  - obtain PDF of discriminant variable for statistical analysis

○ Intermediate Validation Regions to check method

Non-parametric data-driven background modelling



Ancestral Sampling
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➔ H→φ(K+K-)γ  suggested as probe of Higgs coupling to strange quark (arXiv:1406.1722)

32
                            

     Júlia Silva                       Non-Parametric Data-Driven Background Modelling using Conditional Probabilities

Case Study: H→Φγ



➔ H→φ(K+K-)γ  suggested as probe of Higgs coupling to strange quark (arXiv:1406.1722)
◆ Distinct experimental signature: pair of collimated high-pT isolated tracks 

recoiling against isolated photon
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Case Study: H→Φγ

Higgsγ

pT(γ) > 35 GeV

pT(leadtrk) > 20 GeV

pT(trk) > 15 GeV

Track-based 
Isolation

ΔΦ(Μ
,γ)>π/2

1.012 ≤ mΦ ≤ 1.028 GeV



➔ H→φ(K+K-)γ  suggested as probe of Higgs coupling to strange quark (arXiv:1406.1722)
◆ Distinct experimental signature: pair of collimated high-pT isolated tracks 

recoiling against isolated photon
◆ Main background : photon + jet and dijet 

● difficult to model accurately using MC - ideal use case for method
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➔ H→φ(K+K-)γ  suggested as probe of Higgs coupling to strange quark (arXiv:1406.1722)
◆ Distinct experimental signature: pair of collimated high-pT isolated tracks 

recoiling against isolated photon
◆ Main background : photon + jet and dijet 

● difficult to model accurately using MC - ideal use case for method
● photon + jet MC sample used to exemplify model application
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Case Study: H→Φγ

Higgsγ

pT(γ) > 35 GeV

pT(leadtrk) > 20 GeV

pT(trk) > 15 GeV

Track-based 
Isolation

ΔΦ(Μ
,γ)>π/2

1.012 ≤ mΦ ≤ 1.028 GeV



1. Relax pT(M) and Iso(M) requirements 

Region pT(M) cut Iso(M) cut

GR x x

VR1 ✓ x

VR2 x ✓

SR ✓ ✓

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection
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Building the model for H→Φγ



2. Build PDFs of relevant variables following most important correlations 
◆ 1D, 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection
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2. Build PDFs of relevant variables following most important correlations 
◆ 1D, 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

Which variables do we need in H→φγ case?

38

Building the model for H→Φγ
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2. Build PDFs of relevant variables following most important correlations 
◆ 1D, 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

Which variables do we need in H→φγ case?

PDF of m(φγ)

φ and γ 4-momentum vectors to ultimately obtain m(φγ) 
+ Iso(φ)

pT(Φ), pT(γ), ΔΦ(φ,γ), Δη(φ,γ), Iso(Φ)

39

Building the model for H→Φγ

                            
     Júlia Silva                       Non-Parametric Data-Driven Background Modelling using Conditional Probabilities 39



6

2. Build PDFs of kinematic and isolation variables following most important correlations 
◆ 1D, 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection
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Building the model for H→Φγ

40



2. Build PDFs of kinematic and isolation variables following most important correlations 
◆ 1D, 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

41641
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Building the model for H→Φγ
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2. Build PDFs of kinematic and isolation variables following most important correlations 
◆ 1D, 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

4242642
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Building the model for H→Φγ

42



2. Build PDFs of kinematic and isolation variables following most important correlations 
◆ 2D and 3D histograms to be sampled from in generation step

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

43

Building the model for H→Φγ

4343643
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3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

φ = (pT, η, Φ, m)

γ = (pT, η, Φ, m)
 

Iso(φ)

444444644
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Building the model for H→Φγ

44



Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

φ = (pT, η, Φ, m)

γ = (pT, η, Φ, m)
 

Iso(φ)

45

Building the model for H→Φγ
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3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

φ = (pT, η, Φ, m)

γ = (pT, η, Φ, m)
 

Iso(φ)
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Building the model for H→Φγ

46

3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

φ = (pT, η, Φ, m)

γ = (pT, η, Φ, m)
 

Iso(φ)

47

Building the model for H→Φγ
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3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

φ = (pT, η, Φ, m)
+

γ = (pT, η, Φ, m=0)
 

Iso(φ)

Higgs 
pseudo
candidates
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Building the model for H→Φγ
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3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable
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Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

49649
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Building the model for H→Φγ
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3. Sample from PDFs and construct pseudo-candidates
◆ each pseudo-candidate is defined by the φ and γ 4-momentum vectors, and an 

associated Φ isolation variable

γ+jet MC Model



Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection
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Building the model for H→Φγ
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4. Apply pT(M) and Iso(M) 
requirements to sample of 
pseudo-candidates
◆ obtain PDF of m(φγ) for 

statistical analysis in Signal 
and Validation Regions



➔ Systematic uncertainties are provided through variations of the nominal PDFs
◆ selected to capture different modes of potential deformations of the 

background shape

Implementation in Statistical Analysis
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➔ Systematic uncertainties are provided through variations of the nominal PDFs
◆ selected to capture different modes of potential deformations of the 

background shape
➔ Binned maximum likelihood fit to Higgs invariant mass

◆ each variation controlled by a nuisance parameter -  directly constrained by 
data in fit

Implementation in Statistical Analysis
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➔ Robust under signal contamination:
◆ Features of resonant contributions are diluted by process of factorising the background PDF
◆ Means that resonant backgrounds need to be modelled separately 

injection of signal 
at 10.4% of 
background

increase of 
background by 

2%

Signal contamination test
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H/Z→Φγ Analysis
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➔ Model used in several other exclusive Higgs analyses already! [Phys. Rev. 
Lett. 114 (2015) 121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, 
Phys. Lett. B 786 (2018) 134]

Model in Validation Regions

Validation with Φ sideband

arXiv:1712.02758

arXiv:1712.02758

https://arxiv.org/abs/1712.02758
https://arxiv.org/abs/1712.02758
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Sampling from GR
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➔ Events in SR are not independent from events in GR:
◆ Adds information on fluctuations of each ensemble
◆ Effect scales with the ratio of the number of events in SR over GR

➔ Leads to overestimation of signal 
strength statistical uncertainty for 
analyses in which low NSR/NGR 
canʼt be achieved:
◆ This effect can be removed 

by building the model 
through sampling with 
replacement from GR

◆ Statistical uncertainty can 
be corrected through toy 
MC studies 



Conditional Generative 
Adversarial Networks
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Generative Adversarial Networks

➔ Challenges for ancestral sampling: 
◆ application in multivariate analyses
◆ signal region blinding

➔ Generalisation of method: use GANs trained on data to produce background model
◆ Generator - learns generative model from data sample
◆ Discriminator - simultaneously trained to discriminate the generator output from data
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Conditional Generative Adversarial Networks

➔ Possible signal contamination in training data:
◆ Condition GAN (cGAN) on a blinding variable, allowing SR to be blinded during training - cGAN 

interpolates prediction into SR
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Case Study: H→Za

➔ Light pseudo-scalars produced in Higgs decays feature in BSM theories, 
including the two-Higgs-doublet model and the 2HDM with additional scalar 
singlet
◆

➔ Search for H→Z(ll)+a, with a→hadrons
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Case Study: H→Za

arXiv:2004.01678

➔ Light pseudo-scalars produced in Higgs decays feature in BSM theories 
two-Higgs-doublet model and the 2HDM with additional scalar singlet
◆

➔ Search for H→Z(ll)+a, with a→hadrons
◆ Main background: Z + jets 
◆ background discrimination relies on MVA techniques, using jet 

substructure variables

https://arxiv.org/abs/2004.01678
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Case Study: H→Za

arXiv:2004.01678

➔ Light pseudo-scalars produced in Higgs decays feature in BSM theories 
two-Higgs-doublet model and the 2HDM with additional scalar singlet
◆

➔ Search for H→Z(ll)+a, with a→hadrons
◆ Main background: Z + jets 
◆ background discrimination relies on MVA techniques, using jet 

substructure variables
◆ background estimation through modified ABDC method using mllj and 

MLP discriminant:
●   MC used to derive correction for correlation between variables

https://arxiv.org/abs/2004.01678
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➔ Light pseudo-scalars produced in Higgs decays feature in BSM theories 
two-Higgs-doublet model and the 2HDM with additional scalar singlet
◆

➔ Search for H→Z(ll)+a, with a→hadrons
◆ Main background: Z + jets 
◆ background discrimination relies on MVA techniques, using jet 

substructure variables
◆ background estimation through modified ABDC method using mllj and 

MLP discriminant:
●   MC used to derive correction for correlation between variables

➔ ideal case study for implementation of background modelling using cGANs
◆ background systematics arising by use of MC simulation (arXiv:2004.01678)
◆ use of MVA techniques makes it impractical to use ancestral sampling
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Case Study: H→Za

arXiv:2004.01678

Use of GANs solves statistical limitations of background sample
Training on data avoids modelling limitations of MC

https://arxiv.org/abs/2004.01678
https://arxiv.org/abs/2004.01678
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Case Study: H→Za

arXiv:2004.01678

Use of GANs solves statistical limitations of background sample
Training on data avoids modelling limitations of MC

https://arxiv.org/abs/2004.01678
https://arxiv.org/abs/2004.01678
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Case Study: H→Za

➔ Light pseudo-scalars produced in Higgs decays feature in BSM theories 
two-Higgs-doublet model and the 2HDM with additional scalar singlet
◆

➔ Search for H→Z(ll)+a, with a→hadrons
◆ Main background: Z + jets 
◆ background discrimination relies on MVA techniques, using jet 

substructure variables
◆ background estimation through modified ABDC method using mllj and 

MLP discriminant:
●   MC used to derive correction for correlation between variables

➔ ideal case study for implementation of background modelling using cGANs
◆ background systematics arising by use of MC simulation (arXiv:2004.01678)
◆ use of MVA techniques makes it impractical to use ancestral sampling
◆

➔ Z + jets MC sample used to exemplify model application

arXiv:2004.01678

https://arxiv.org/abs/2004.01678
https://arxiv.org/abs/2004.01678


Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection

Use mµµj as blinding variable

123 GeV ≤ mµµj≤135 GeV blinded 

1. Remove MLP-based selection
◆ & blind signal region to avoid signal contamination

Building the model for H→Za
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Generator and discriminator:
● 5 layers x 256 hidden nodes with leaky 

ReLU activation function
● binary cross entropy loss function and 

L2 regularisation

2. cGans trained using blinded data
◆ learn generative model of the conditional probability distribution of the 

data, given value of blinding variable
◆ Use ensemble of cGANs and take average:

●  100 cGANs trained, 5 best based on χ2 metric kept for analysis

Building the model for H→Za

Relax 
Selection

Obtain 
Conditional 

PDFs

Generate 
pseudo

candidates

Apply 
Selection
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mµµj  sidebands

Building the model for H→Za

Relax 
Selection

Obtain 
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3. Generate sample of pseudo-candidates:
◆ input inclusive distribution of the 

conditioning variable into cGAN 
◆ cGAN interpolates the conditional 

generative model into signal region
◆ obtain prediction of MLP input 

variables



3. Generate sample of pseudo-candidates:
◆ input inclusive distribution of the 

conditioning variable into cGAN 
◆ cGAN interpolates the conditional 

generative model into signal region
◆ obtain prediction of MLP input 

variables
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4. Apply MLP selection to pseudo-candidates sample
◆ obtain PDF of mµµj in SR for statistical 

analysis



➔ Systematic uncertainties are provided through shape variations:
◆ Differences between ensemble and individual cGANs
◆ Principal component analysis performed to orthogonalise differences
◆ 2 biggest differences considered in statistical analysis

Implementation in Statistical Analysis
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➔ Systematic uncertainties are provided through shape variations:
◆ Differences between ensemble and individual cGANs
◆ Principal component analysis performed to orthogonalise differences
◆ 2 biggest differences considered in statistical analysis

➔ Binned maximum likelihood fit to Higgs invariant mass
◆ each variation controlled by a nuisance parameter -  directly constrained by data in 

fit

Implementation in Statistical Analysis
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➔ A novel non-parametric, data-driven background modelling technique was presented
◆ Addresses typical shortcomings of often employed background modelling techniques
◆ Dataset from a relaxed event selection to create a model based on conditional probabilities
◆ Two distinct ways of building the conditional PDF:

arXiv:2112.00650 

             Ancestral sampling

● Sample from histograms of relevant variables in data, built 
with respect to most important correlations 

● Already used in multiple analysis! [Phys. Rev. Lett. 114 (2015) 
121801, Phys. Rev. Lett. 117, 111802 (2016), JHEP 07 (2018) 127, Phys. Lett. 
B 786 (2018) 134]

         Conditional Generative Adversarial Networks

● Generalisation of ancestral sampling
● Use GANs trained on data to produce background model
● Condition GAN (cGAN) on a blinding variable, allowing SR to 

be blinded during training

Summary
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https://arxiv.org/abs/2112.00650


BACK-UP
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H/Z→Φγ Analysis
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Ensemble Tests
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m = 125 GeV

m = 150 GeV

Sampling from GR Sampling with replacement



7

Ensemble Tests
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● Due to the 
computational cost, 
number of training 
steps lowered, and 
training stopped 
before saturation


