CP violation in the Higgs sector

UCL Seminar October 3rd 2022

Clara Ramón Álvarez

Universidad de Oviedo

clara.ramon.alvarez@cern.ch

Introduction

Matter antimatter asymmetry

Observation: in the universe there is much more matter than antimatter

One of Sakharov conditions for Baryogeneis:

"Violation of Charge Conjugation Parity (CP) symmetry in the nonstationary expansion of the hot universe"

CP-symmetry means that a process should occur in the same manner for a particle and its antiparticle (C-symmetry) when its spatial coordinates are inverted (P-symmetry).

CP violation in the SM

In the Standard Model (SM) CP violation is allowed

. . . .

It originates form the CKM mixing matrix:

quarks

anti-

quarks

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
$$\begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CP violation in the SM

In the Standard Model (SM) CP violation is allowed

In the decay of neutral K-mesons:

• Strong eigenstates:

$$|\mathsf{K}^0
angle = |d\overline{s}
angle \ \& \ |\overline{\mathsf{K}}^0
angle = |s\overline{d}
angle$$

- Decay via weak interaction
- Physical states are superposition of K^0 & $\overline{\mathsf{K}}{}^0,$ but these are not CP eigenstates

$$\begin{split} |\mathsf{K}_1\rangle &= \frac{1}{\sqrt{2}} \left(|\mathsf{K}^0\rangle - |\overline{\mathsf{K}}^0\rangle \right), \qquad CP \, |\mathsf{K}_1\rangle = + \, |\mathsf{K}_1\rangle \qquad "\mathsf{CP even}" \qquad CP \, |\pi\pi\rangle = + \, |\pi\pi\rangle \qquad \mathsf{CP even}'' \\ |\mathsf{K}_2\rangle &= \frac{1}{\sqrt{2}} \left(|\mathsf{K}^0\rangle + |\overline{\mathsf{K}}^0\rangle \right), \qquad CP \, |\mathsf{K}_2\rangle = - \, |\mathsf{K}_2\rangle \qquad "\mathsf{CP odd}" \qquad CP \, |\pi\pi\pi\rangle = - \, |\pi\pi\pi\rangle \qquad \mathsf{CP odd}'' \quad \mathsf{CP odd}'' \quad \mathsf{CP odd}'' \quad \mathsf{CP odd}'' = - \, |\pi\pi\pi\rangle = - \, |\pi\pi\pi\rangle \qquad \mathsf{CP odd}'' \quad \mathsf{CP odd}'' = - \, |\pi\pi\pi\rangle = - \, |\pi\pi\rangle = - \, |\pi\pi\pi\rangle = - \, |\pi\pi\rangle = - \, |\pi\psi\rangle = - \, |\pi\psi\rangle = -$$

For the decay to pions and assuming CP invariance one can find:

CP even:
$$K_1 \rightarrow \pi \pi$$
, $K_1 \not\rightarrow \pi \pi \pi$ CP odd: $K_2 \rightarrow \pi \pi \pi$, $K_2 \not\rightarrow \pi \pi$

CP violation in the SM

In the Standard Model (SM) CP violation is allowed

In the decay of neutral K-mesons:

CP even: $K_1 \rightarrow \pi\pi$, $K_1 \not\rightarrow \pi\pi\pi$ This should lead to veryCP odd: $K_2 \rightarrow \pi\pi\pi$, $K_2 \not\rightarrow \pi\pi$ different lifetimes

Observation of a long lived and a short lived particle (K_L and K_s) which

$$\begin{split} |\mathsf{K}_{S}\rangle &= |\mathsf{K}_{1}\rangle = \frac{1}{\sqrt{2}}\left(|\mathsf{K}^{0}\rangle - |\overline{\mathsf{K}}^{0}\rangle\right) \\ |\mathsf{K}_{L}\rangle &= |\mathsf{K}_{2}\rangle = \frac{1}{\sqrt{2}}\left(|\mathsf{K}^{0}\rangle + |\overline{\mathsf{K}}^{0}\rangle\right) \\ \tau_{S} &= 0.9 \cdot 10^{-10} s, \quad \tau_{L} = 0.5 \cdot 10^{-7} s \end{split}$$

Looking for CP violation

So far not enough to explain the asymmetry observed in the universe: Need to search for new CP violation sources. **There are several ways:**

- Quark sector
 - Hadron decays, interference and mixing...
 - Belle II, LHCb
- Neutrino sector
 - CP symmetry can be violated in neutrino oscillation
 - Experiments: T2K, Dune...
- Higgs sector:
 - CMS and ATLAS

CP violation in the Higgs sector

Higgs coupling

• Coupling of the Higgs boson can be read from the Lagrangian:

 $\mathcal{L}_{SM} = D_{\mu}H^{\dagger}D_{\mu}H + \mu^{2}H^{\dagger}H - \frac{\lambda}{2}\left(H^{\dagger}H\right)^{2} - \left(y_{ij}H\bar{\psi}_{i}\psi_{j} + \text{h.c.}\right)$

- Bosons: gauge coupling
- Fermions: Yukawa coupling

In the SM Higgs boson is even under CP inversion

Higgs production and deacy modes

- Depending on the production modes and decays selected we can study different couplings
- Experimentally very different signatures and challenges

Run I

JHEP 08, 045 (2016) \<mark>Kv</u>_v</mark> ATLAS and CMS LHC Run 1: Discovery of a Higgs Boson • LHC Run 1 d ⊲j≞ 10⁻¹ Measure all its properties and interactions \rightarrow • enormous task Interaction with bosons well measured in Run 1 10⁻² • ATLAS+CMS Interactions with fermions established in Run 1 • ----- SM Higgs boson 10⁻³ [Μ, ε] fit 68% CL 95% CL 10-4 10^{2} 10⁻¹ 10 Particle mass [GeV]

Run II

- Run 2 has been very productive measuring the interaction of the H to fermions:
 - Observation of Higgs couplings to all thirdgeneration charged fermions
 - Evidence of H coupling to μ
 - Significant improvements in Hcc coupling search
 - Ongoing search for $H \rightarrow ee$
- Time to check the CP properties of the Higgs Boson!
 - Measurements still dominated by stats

CP estructure of Higgs coupling

Depending on the decay mode and production mode we can study the coupling to bosons or fermions:

Hgg ggH production.

HVV

- VH production
- VBF
- $H \rightarrow ZZ \rightarrow 4I$

CP-odd contributions enter at high order operators, Amplitude expansion up to (q^2/Λ_1^2)

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

Hff

• Good handle: ttH, tH and $H \rightarrow \tau \tau$

$$L_Y = \frac{m_f}{v} H(\kappa_f \tilde{f} f + \tilde{\kappa}_f \tilde{f} i\gamma_5 f)$$

,

• ggH is purely loop induced process, Bottom quarks \rightarrow indirect constrain on Htt

Run II results on Higgs CP violation

How to design a CP analysis?

Need to decided which coupling to study: Hff, HVV, Hgg

Target production mode or decay mode Make assumptions: What happens to other couplings and branching ratios?

Need to isolate your signal – many times this is very challenging: Machine learning can help

Look for an observable sensitive to coupling modifications:

- Kinematic information usually sensitive
- In many cases too much information to be handle only with 1 observable: Machine learning (again) can help

In this talk...

HVV/Hgg coupling:

- Anomalous H couplings $(H \rightarrow \tau \tau)$
- Anomalous H couplings $(H \rightarrow 4l)$

Hff coupling:

- $H\tau\tau$ coupling
- Htt coupling (ttH, $H \rightarrow \gamma \gamma$)
- Htt coupling (ttH, $H \rightarrow 4l$)
- Htt coupling (ttH, $H \rightarrow$ multileptons)

<u>JHEP 06 (2022) 012</u> Phys. Rev. Lett. 125, 061801

CMS-HIG-PAS-20-007

Accpeted PRD

Phys. Rev. D 104 (2021) 052004

Phys. Rev. D 104 (2021) 052004

Anomalous couplings to VV (H $\rightarrow \tau \tau$) I

Strategy:

- Constrain anomalous **HVV**, **Hgg** and Hff (including CP effects)
- $H \rightarrow \tau \tau$
- Constrain on effective cross section ratios:

HVV

• Assuming custodial and SU(2)xU(1) symmetries: $a_3^{WW} = \cos^2 \theta_W a_3^{ZZ}$

Hgg

$$f_{a3}^{ggH} = \frac{|a_3^{gg}|^2}{|a_2^{gg}|^2 + |a_3^{gg}|^2} \operatorname{sgn}\left(\frac{a_3^{gg}}{a_2^{gg}}\right)$$

Anomalous couplings to VV ($H \rightarrow \tau \tau$) II

Strategy:

- Constrain anomalous **HVV**, **Hgg** and Hff (including CP effects)
- $H \rightarrow \tau \tau$ •
- From the kinematic of the final state several observables can be defined ٠
 - correlation of H and two quark jets or leptons •

- $\Delta \phi_{ii}$: provides good • discrimination (Hgg)
- Many other kinematic ٠ observables -> we need to select and combine the most discriminating ones:
 - Matrix element likelihood • approach (MELA)

Φ, Φ_1 Φ VH $(q\overline{q}' \rightarrow V^* \rightarrow V\overline{H} \rightarrow qq'H)$ VBF (qq' \rightarrow qq'H)

Anomalous couplings to VV (H \rightarrow τ τ) II

Event categorization:

- Channels: $\tau_h \tau_h, \tau_e \tau_\mu, \tau_e \tau_h$ and $\tau_\mu \tau_h$
- 3 analysis categories:
 - ggH production: 0 jet
 - VBF: at least 2 jet & mjj > 300 GeV (most sensitive to CP)
 - Boosted: events that do not enter in the previous ones

Simulations:

- Anomalous VH & VBF production generated with JHUGEN
- Anomalous ggH (NLO QCD) using MADGRAPH5 aMC@NLO

Backgrounds:

- DY $\rightarrow \tau \tau$
- Jets identified as τ (W+Jets and QCD)

Main systematics:

- Tau identification
- Background modelling
- Jet energy resolution

Anomalous couplings to VV (H $\rightarrow \tau \tau$) II

HVV:

Neural Networks to separate signal and Bkg. Discriminant to separate signal processes (VBF vs ggH) Discriminant dedicated to CP

Maximum Likelihood fit is performed using the three discriminators

Anomalous couplings to VV (H \rightarrow τ τ) III

Hgg:

Neural Networks to separate signal and Bkg.

- Discriminant to separate signal processes (VBF vs ggH)
- Discriminant dedicated to CP

Maximum Likelihood fit is performed using the three discriminators

Anomalous couplings to VV ($H \rightarrow ZZ$) I

- Anomalous couplings studies in final states with 4ℓ
- $\bullet \quad H \! \rightarrow \! \textbf{ZZ} \rightarrow \textbf{4I}$

Strategy

- Production modes: ggF, VBF, VH, ttH, tH
- Parametrization as in previous analysis
- Full kinematic information is extracted using discriminants from matrix element calculations (using MELA)
 - Bkg vs signal
 - Signal production mode
 - CP

Several categories:

VBF: 1jet and 2jet VH: hadronic and leptonic ttH: hadronic and leptonic→Htt coupling Untagged

Phys. Rev. D 104 (2021) 052004

Simulations:

JHUGEN used to describe kinematic distributions in the VBF, VH, ttH, tH

Anomalous couplings to VV ($H \rightarrow ZZ$) II

Results

<u>Phys. Rev. D 104 (2021) 052004</u>

Perform multi-dimensional fit to extract parameters sensitive to CP

Best value compatible with SM

Anomalous couplings: combination

Results:

 $(a_i^{WW} = a_i^{ZZ}) \quad \mu_{ggH}, \mu_{qqH} \text{ profiled}$

Combining the two decay modes $H \rightarrow ZZ \rightarrow 4l$ and $H \rightarrow \tau \tau$ Constrains are improved

CMS 138 fb⁻¹ (13 TeV) CMS 10 _---∆ In L ∆ In L 20 Approach 2, TT + 41 $\tau\tau + 4$ 9 Observed 18 Observed 2 2 ······ Expected ····· Expected 16 Profiling f_{a3}^{ggH} Profiling f_{a3} 14 **Excludes pure CP-odd** 12 scenario 5 10 Hgg at 2.4 σ . 95% CL 8 6 95% CL 68% CL 68% CL $\times 10^{\circ}$ 02 04 06 -1 - 08 - 06 - 04 - 020 0.5 1.5 -1.5-0.50

l_{a3}

CMS-HIG-PAS-20-007

 f_{a3}^{ggH}

138 fb⁻¹ (13 TeV)

$\mathbf{H}\tau\tau$ I

- First measurement of the CP structure of the H- τ Yukawa coupling
- ggH, VBF and VH production modes
- Channels: $\tau_h \tau_h$, $\tau_e \tau_h$ and $\tau_\mu \tau_h$ (70% of decay modes)

Methodology

 $\alpha^{H\tau\tau}$: effective mixing angle $\tan(\alpha^{H\tau\tau}) = \frac{\kappa_{\tau}}{\kappa_{\tau}}$

 ϕ_{CP} : angle between the τ decay plane, **sensitive to** $\alpha^{H\tau\tau}$

$\mathbf{H}\tau\tau$ I

- First measurement of the CP structure of the H- τ Yukawa coupling
- ggH, VBF and VH production modes
- Channels: $\tau_h \tau_h$, $\tau_e \tau_h$ and $\tau_\mu \tau_h$ (70% of decay modes)

Methodology

 $\alpha^{H\tau\tau}$: effective mixing angle $\tan(\alpha^{H\tau\tau}) = \frac{\kappa_{\tau}}{\kappa}$

 ϕ_{CP} : angle between the τ decay plane, **sensitive to** $\alpha^{H\tau\tau}$

• Need to reconstruct the decay, several methods planes depending on the target decay:

$\mathbf{H}\tau\tau$ II

Analysis strategy

•

- Selection: τ pair of opposite charge
- Main Background:Z/W+Jet and $t\bar{t} \rightarrow$ genuine τ or misID as τ
- Signal vs. Background discrimination using multiclass MVA in each channel

0-360º

Hadronic tau energy scale

Bin number

JHEP 06 (2022) 012

$\mathbf{H}\tau\tau$ III

JHEP 06 (2022) 012

Results

Maximum Likelihood fit to all Signal ϕ_{CP} – MVA distributions and control regions:

 $L(\mathcal{L}, \vec{\mu}, \alpha^{H\tau\tau}, \vec{\theta})$ with $\vec{\mu} = (\mu_{ggH}, \mu_{qqH})$

Two dim limits parametrizing the L as a function of κ_{τ} and $\tilde{\kappa}_{\tau}$. Fixing other κ to the SM.

- $\alpha^{H\tau\tau} = (-1\pm 19)^{\circ}$ @68%CL. Dominated by statistical uncertainties.
- Pure CP odd $H\tau\tau$ coupling excluded with **3.0** σ (2.6 σ expected)

Htt: ttH $\rightarrow \gamma \gamma$ **I**

Events

10²

Phys. Rev. Lett. 125, 061801

29

Selection & Event Categorization

2 high pT γ +additional jets and leptons. Two categories:

- Hadronic: 0 Leptons $\& \ge 3$ Jet $\& \ge 1$ btag
- Leptonic: \geq 1 Lepton & \geq 1 Jet
- MVA (BDT-bkg) in each category to separate signal from bkg.

□ MVA to discriminate CP scenarios using:

- kinematic variables of jets, leptons and diphoton system (but not $m_{\gamma\gamma}$)
- the b-tagging scores of jets
- lepton multiplicity

Htt: ttH $\rightarrow \gamma \gamma$ **II**

Results

Phys. Rev. Lett. 125, 061801

12 categories: 2 (BDT-bkg) x 3 (D_{0-}) x 2 (final state)

Simultaneous ML fit performed using the $m_{\gamma\gamma}$ distribution in the 12 categories to measure f_{CP}^{Htt}

$$\begin{aligned} f_{CP}^{Htt} &= 0.00 \pm 0.33 \\ |f_{CP}^{Htt}| &< 0.67 @ \ 95\% \text{CL} \end{aligned} \qquad f_{CP} = \frac{|\tilde{\kappa}_t|^2}{|\tilde{\kappa}_t|^2 + |\kappa_t|^2} \end{aligned}$$

- Pure Pseudo Scalar model excluded at 3.2σ
- Cross section in good agreement with SM $\sigma_{t\bar{t}H}B_{\gamma\gamma} = 1.56^{+0.34}_{-0.32}$ fb

- CP constrain dominated by statistic uncertainty
- Full run 3 lumi will increase sensitivity

Htt: $ttH \rightarrow 4 \ell$

- Anomalous couplings studies in final states with 4ℓ
- Targets several channels, in this talk we focus on ttH:
- Selection:
 - a) ttH hadronic: \geq 4 jets, a b-tagged jet, and no additional leptons
 - b) ttH leptonic: At least 1 additional lepton
- BDT to discriminate signal form background
- **BDT** (**D**₀-^{**ttH**}) used to exploit the kinematic information and discriminate CP-even vs CP-odd scenarios. **CMS** 137 fb⁻¹(13 TeV)

Phys. Rev. D 104 (2021)

052004

Htt: ttH $\rightarrow \gamma \gamma$ **+4**

Combined with Phys. Rev. D 104 (2021) 052004: Anomalous couplings in final state with 41

- Production modes: ggF, VBF, VH, **ttH, tH** Very limited statistics
 - f_{cp} measured profiling: $\mu_{ttH}, \mu_{ttH}^{\gamma\gamma}$ μ_{VH}, μ_{ggH} and their CP properties

- Parametrization using: $\kappa_t \ \tilde{\kappa}_t$
 - Fixing $\kappa_b \tilde{\kappa}_b$ to SM
 - μ_{ggH} , f_{a3}^{ggH} , profiled
 - HVV anomalous couplings not allowed

excluded at 3.2σ

CP-odd Yukawa interaction

Htt: ttH→multileptons I

Selection

- 2lss +0 tau
- 2lss +1 tau \vdash H \rightarrow WW, $\tau\tau$
- 3I + 0 tau

Dedicated selection in each category using **# Jets** and **b-tag** to targe ttH decays

• Extend selection with forward jets to **include tH**

Main Backgrounds

- Non prompt leptons and misidentified taus
- ttZ, ttW

Simulation

 ttH and tH kinematic variations computed with MADGRAPH5 aMC@NLO

Main uncertainties

- Estimation of the misidentified leptons background
- Differences in signal modelling LO vs NLO

CMS-PAS-HIG-21-006

Htt: ttH→multileptons II

Dedicated multiclass **NN** in each category to discriminate **Signal and Background**

CMS-PAS-HIG-21-006

CP discrimination:

BDT used in each category exploiting kinematical differences

Inputs: momentum of leptons and jets, angular variables, mases, object multiplicities and a specific tagger targeting hadronic top quark decays.

Htt: ttH→multileptons III

CMS-PAS-HIG-21-006

eee

Htt: ttH \rightarrow multileptons IV

Results:

Perform a **maximum likelihood fit** using:

• the three signal regions

```
2lss + 0 \tau_h,2lss + 1 \tau_h and 3l + 0 \tau_h
```

Control regions

<u>CMS-PAS-HIG-21-006</u>

Htt: Combination

Combining ttH measurements:

- ZZ: <u>Phys. Rev. D 104, 052004</u>
- γ γ: <u>Phys. Rev. Lett. 125, 061801</u>
- multilepton (WW,*ττ*): CMS-PAS-HIG-21-006

37

Summary

- CP violation can be searched in the Higgs sector
- Study the coupling of the Higgs with high precision is necessary
- LHC data taken during Run 2 allow us to study CP violation in Higgs coupling to
 - Vector bosons
 - Fermions
- Machine learning techniques are used to improve the sensitivity and discriminating power
- Working on the way of improving the observables
- Improving object reconstruction would also help
- These measurements are **statistical dominated**, run 3 data will help
- Other (more general) approaches as SMEFT also used to check anomalous couplings
- Results with run 2 data still coming → **stay tuned!**

Back up

Hττ: CP I

- First measurement of the CP structure of the H- τ Yukawa coupling
- ggH dominant production mode
- Channels: $\tau_h \tau_h, \tau_e \tau_h$ and $\tau_\mu \tau_h$ (70% of decay modes)
- Leptons allow to investigate the CP nature of the Higgs due to the spin correlation with their decay products

Methodology

Using the parametrization:

$$\mathcal{L}_{Y} = -\frac{m_{\tau}H}{v}(\kappa_{\tau}\bar{\tau}\tau + \tilde{\kappa}_{\tau}\bar{\tau}i\gamma_{5}\tau)$$

 $\alpha^{H\tau\tau}$: effective mixing angle

$$\tan(\alpha^{\mathrm{H}\tau\tau}) = \frac{\widetilde{\kappa}_{\tau}}{\kappa_{\tau}}$$

 ϕ_{CP} : angle between the τ decay plane, sensitive to $\alpha^{H\tau\tau}$

• Several methods to reconstruct the decay planes depending on the target decay:

$$\tau_{\mu} \rightarrow \mu^{\pm} \nu \nu \qquad \tau_{e} \rightarrow e^{\pm} \nu \nu$$

$$\tau_{h} \rightarrow \pi^{\pm} \nu$$

$$\tau_{h} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$$

$$\tau_{h} \rightarrow a_{1}^{1pr} \nu \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \nu$$

$$\tau_{h} \rightarrow a_{1}^{3pr} \nu \rightarrow \pi^{\pm} \rho^{0} \nu \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\pm} \nu$$
Polarimetric method

<u>CMS-HIG-PAS-20-006</u> *

* Submitted to JHEP

Η*ττ***: CP II**

<u>CMS-HIG-PAS-20-006</u> *

* Submitted to JHEP

Analysis strategy

Invariant

masses,

kinematic

variables

and angular

- Baseline selection and bkg. estimation as in HIG-19-010
- Signal vs. Background discrimination using multiclass MVA in each channel.

Higgs

Genuine τ

Fake τ

• In order to extract CP information: For the signal (Higgs) category ϕ_{CP} distribution is used in windows of the MVA discriminant for each of the (13) decay modes.

MVA

Hττ: CP III

CMS-HIG-PAS-20-006 *

Results

* Submitted to JHEP

Maximum Likelihood fit to all Signal ϕ_{CP} – MVA distributions and control regions:

 $L(\mathcal{L}, \vec{\mu}, \alpha^{\mathrm{H}\tau\tau}, \vec{\theta})$ with $\vec{\mu} = (\mu_{\mathrm{ggH}}, \mu_{\mathrm{qqH}})$

Two dim limits parametrizing the L as a function of κ_{τ} and $\tilde{\kappa}_{\tau}$. Fixing other κ to the SM.

- $\alpha^{H\tau\tau} = (-1 \pm 19)^{\circ}$ @68%CL. Dominated by statistical uncertainties.
- Pure CP odd $H\tau\tau$ coupling excluded with **3.0** σ (2.6 σ expected)

CP model ttH-> ml

- POIs: κ_t and $\tilde{\kappa}_t$
- Other κ also defined as POIs (fixed to SM the fit) $\kappa_V, \kappa_b, \kappa_c, \kappa_\tau, \kappa_\mu, \kappa_\gamma, \kappa_g$
- Contribution from signal processes ttH and tH divided:

```
\begin{array}{l} \text{ttH CP even} \rightarrow \kappa_t \\ \text{ttH CP odd} \rightarrow \tilde{\kappa}_t \\ \text{tH SM} \rightarrow \kappa_t \text{ and } \kappa_V \\ \text{tH CP odd} \rightarrow \tilde{\kappa}_t^2 \\ \text{tH CP odd} \rightarrow \tilde{\kappa}_t^2 \\ \text{tH\_kv\_0\_kt\_1} \rightarrow \kappa_t \cdot (\kappa_t - \kappa_V) \\ \text{tH\_kv\_1\_kt\_0} \rightarrow \kappa_V \cdot (\kappa_V - \kappa_t) \end{array}
```

- For combination: tH process scaled with xsec only using the same parametrization as in HIG-19-013
- BR: fixed to SM in the fit

CP structure of Higgs coupling

In the SM Higgs boson is even under CP inversion. Measure the CP structure of the Higgs coupling to:

- Gauge bosons
- Fermions

Several strategies, using different:

Generic spin-0 HVV
scattering amplitude
$$\mathcal{A}(HVV) \sim \begin{bmatrix} a_1^{VV} + k_1^{VV}q_1^2 + k_2^{VV}q_2^2 \\ (\Lambda_1^{VV})^2 \end{bmatrix} m_{V1}^2 \epsilon_{V1}^* \epsilon_{V2}^* + \frac{a_2^{VV}}{a_2^{V}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + \frac{a_3^{VV}}{a_3^{V}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

 $a_1^{ZZ} = a_1^{WV}$
(custodial symmetry) $m_{V1}^{ZZ} \epsilon_{V1}^* \epsilon_{V2}^* + \frac{a_2^{VV}}{a_2^{V}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + \frac{a_3^{VV}}{a_3^{V}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$
Where $VV = ZZ$, WW , $Z\gamma$, $\gamma\gamma$ or gg 2) When $VV = \gamma\gamma\gamma$, gg 2 couplings from 3^{rd} and 4^{th} terms
 $\frac{3}{2}$ (QUMM)
 $g \in QUMM$ In total, 15 couplings
 A_1^{VV} (CP)
 A_1^{VV} (CP)
 A_1^{VV} (CP)
 B_3^{VV} (CP)In total, 15 couplings
 A_1^{VV} , $A_2^{VV} f_1^{VV}$
 A_1^{VV} (CP)
 A_1^{VV} (CP)
 A_1^{VV} (CP)
 A_1^{VV} (CP)
 A_1^{VV} (CP)In total, 15 couplings
 A_1^{VV} , $A_2^{VV} f_1^{VV}$
 A_1^{VV} (CP)
 A_1^{VV} (CP)