

Scattering amplitudes for QCD, gravity and massive particles

arXiv:1802.06730 [hep-ph], 2111.06847 [hep-th]

Alexander Ochirov ETH Zürich

CP3 Seminar Centre for Cosmology, Particle Physics and Phenomenology Université Catholique de Louvain, Jun 22, 2022

Invitation

Parke-Taylor formula:

Parke, Taylor (1986)

$$A(1^{-}, 2^{+}, 3^{-}, 4^{+}, \dots, n^{+}) = \frac{i\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\dots\langle n1\rangle}$$

$\operatorname{Reminder}^*$

QCD Feynman rules, color-stripped:

^{*}Disclaimer: all momenta outgoing

Invitation

Parke-Taylor formula:

Parke, Taylor (1986)

$$A(1^{-}, 2^{+}, 3^{-}, 4^{+}, \dots, n^{+}) = \frac{i\langle 13\rangle^{4}}{\langle 12\rangle\langle 23\rangle\dots\langle n1\rangle}$$

Simplification w.r.t. Feynman rules due to

- ▶ gauge invariance
- massless spinor-helicity variables

This talk:

- ▶ possible for **massive** quarks, higher-spin particles, etc!
- concentrate on 2 tree-level methods in 4d
 (loop methods also available and dimreg-compatible)

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng; Forde; Badger; Frellesvig, Peraro, Zhang; Abreu, Febres Cordero, Ita, Page, etc.

Results with 2 quarks

AO (2018)

$$\begin{array}{l} \overset{4^{+}}{\overset{3^{+}}{\overset{0}$$

KK relations: $A(1,\beta,2,\alpha) = (-1)^{|\beta|} \sum_{\sigma \in \alpha \sqcup \beta^T} A(1,2,\sigma)$ Kleis

Kleiss, Kuijf (1988)

Outline

- 1. Massive spinor helicity
- 2. 4-pt Compton amplitude
- 3. n-pt amplitudes via BCFW
- 4. Massive higher spins & BHs
- 5. Summary & outlook

Massive spinor helicity

Start at 4 pts, textbook way manageable

 $A(\underline{1}^a, 3^-, 4^+, \overline{2}^b) \ni 2$ color-ordered diagrams:

$$\overset{3^{-}}{\overset{4^{+}}{\longrightarrow}} = \frac{i}{2s_{34}} \left\{ (\varepsilon_{3}^{-} \cdot \varepsilon_{4}^{+}) (\bar{u}_{1}^{a} (\not\!\!\!\!p_{3}^{-} \not\!\!\!p_{4}) v_{2}^{b}) + 2(p_{4} \cdot \varepsilon_{3}^{-}) (\bar{u}_{1}^{a} \not\!\!\! \varepsilon_{4}^{+} v_{2}^{b}) \right. \\ \left. - 2(p_{3} \cdot \varepsilon_{4}^{+}) (\bar{u}_{1}^{a} \not\!\!\! \varepsilon_{3}^{-} v_{2}^{b}) \right\}$$

All done?

Why spinor helicity?

Consider color-ordered QCD amplitude $A(\underline{1}^a, 3^-, 4^+, \dots, n^+, \overline{2}^b)$

Feynman rules give function of

- ▶ momenta p_i^{μ}
- ▶ polarization vectors $\varepsilon^{\mu}_{\pm}(p_i)$
- external spinors $\bar{u}^a(p_1), v^b(p_2)$

Why spinor helicity?

Consider color-ordered QCD amplitude $A(\underline{1}^a, 3^-, 4^+, \dots, n^+, \overline{2}^b)$

Feynman rules give function of

- \blacktriangleright momenta p_i^{μ}
- polarization vectors $\varepsilon^{\mu}_{\pm}(p_i)$
- external spinors $\bar{u}^a(p_1), v^b(p_2)$

But all vector, spinor indices must be contracted

Remaining indices \Leftrightarrow physical quantum numbers:

- ▶ helicities \pm \Leftrightarrow spins $\{\pm 1/2\}_p$, $\{\pm 1\}_p$, etc.
- ▶ SU(2) labels $a, b \Leftrightarrow$ spins $\{\pm 1/2\}_q, \{\pm 1, 0\}_q$, etc.

Crucial on-shell notion — LITTLE GROUP

Little groups

• Quantum fields \leftarrow reps of SO(1,3)

- ▶ Quantum states \leftarrow reps of LITTLE GROUP
 - \blacktriangleright massless states \Leftarrow SO(2)

 \blacktriangleright massive states \Leftarrow SO(3)

Little groups

▶ Quantum fields ⇐ reps of SO(1,3) ⊂ SL(2, C)
▶ Quantum states ⇐ reps of LITTLE GROUP's dbl cover
▶ massless states ⇐ SO(2) ⊂ U(1)
▶ massive states ⇐ SO(3) ⊂ SU(2)

Minor complication: spinorial reps use groups' double covers

U(1) and SU(2) arise naturally in spinor helicity

Spinor map

Basis for spinor helicity

 \blacktriangleright Minkowski space isomorphism: *

$$\begin{split} \mathbf{M}^{2\times2,\mathbb{C}}_{\mathrm{Hermitian}} &\leftrightarrow \mathbb{R}^{1,3} \\ p_{\alpha\dot{\beta}} = p_{\mu}\sigma^{\mu}_{\alpha\dot{\beta}} = \begin{pmatrix} p^0 - p^3 & -p^1 + ip^2 \\ -p^1 - ip^2 & p^0 + p^3 \end{pmatrix} \\ \det\{p_{\alpha\dot{\beta}}\} &= m^2 \end{split}$$

$${}^{*}\sigma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \epsilon^{\alpha\beta} = -\epsilon_{\alpha\beta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Spinor map

Basis for spinor helicity

 \blacktriangleright Minkowski space isomorphism: *

$$\begin{split} \mathbf{M}_{\mathrm{Hermitian}}^{2\times2,\mathbb{C}} &\leftrightarrow \mathbb{R}^{1,3} \\ p_{\alpha\dot{\beta}} = p_{\mu}\sigma_{\alpha\dot{\beta}}^{\mu} = \begin{pmatrix} p^0 - p^3 & -p^1 + ip^2 \\ -p^1 - ip^2 & p^0 + p^3 \end{pmatrix} \\ \det\{p_{\alpha\dot{\beta}}\} &= m^2 \end{split}$$

Lorentz group homomorphism:

$$\begin{split} & \mathrm{SL}(2,\mathbb{C}) \quad \to \quad \mathrm{SO}(1,3) \\ & p_{\alpha\dot{\delta}} \to S_{\alpha}^{\ \beta} p_{\beta\dot{\gamma}} \left(S_{\delta}^{\ \gamma} \right)^* \quad \Rightarrow \quad p^{\mu} \to L^{\mu}_{\ \nu} p^{\nu}, \quad L^{\mu}_{\ \nu} = \frac{1}{2} \operatorname{tr} \left(\bar{\sigma}^{\mu} S \sigma_{\nu} S^{\dagger} \right) \end{split}$$

$${}^{*}\sigma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \epsilon^{\alpha\beta} = -\epsilon_{\alpha\beta} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Massless vs massive spinor helicity

Arkani-Hamed, Huang, Huang (2017)

MASSLESS	MASSIVE
$\det\{p_{\alpha\dot\beta}\}=0$	$\det\{p_{\alpha\dot\beta}\}=m^2$
$p_{\alpha\dot\beta}=\lambda_{p\alpha}\tilde\lambda_{p\dot\beta}\equiv p\rangle_\alpha[p _{\dot\beta}$	$p_{\alpha\dot{\beta}} = \lambda_{p\alpha}^{\ a} \epsilon_{ab} \tilde{\lambda}_{p\dot{\beta}}^{\ b} \equiv p^a\rangle_{\alpha} [p_a _{\dot{\beta}}$
$p^{\mu} = rac{1}{2} \langle p \sigma^{\mu} p]$	$\det\{\lambda_{p\alpha}^{a}\} = \det\{\lambda_{p\alpha}^{a}\} = m$ $p^{\mu} = \frac{1}{2}\langle p^{a} \sigma^{\mu} p_{a}]$
$p_{\alpha\dot\beta}\tilde\lambda_p^{\dot\beta}=0$	$p_{\alpha\dot\beta}\tilde\lambda_p^{a\dot\beta}=m\lambda_{p\alpha}^{\ \ a}$
$ \begin{array}{l} \langle p q \rangle = - \langle q p \rangle \; \Rightarrow \; \langle p p \rangle = 0 \\ [p q] = - [q p] \; \Rightarrow \; [p p] = 0 \\ \langle p q \rangle [q p] = 2 p \cdot q \end{array} $	$ \begin{array}{l} \langle p^a q^b \rangle = -\langle q^b p^a \rangle \text{e.g.} \langle p^a p^b \rangle = -m\epsilon^{ab} \\ [p^a q^b] = -[q^b p^a] \text{e.g.} [p^a p^b] = m\epsilon^{ab} \\ \langle p^a q^b \rangle [q_b p_a] = 2p \cdot q \end{array} $

Wavefunctions from helicity spinors

$$\begin{split} \varepsilon_{p+}^{\mu} &= \frac{1}{\sqrt{2}} \frac{\langle q | \sigma^{\mu} | p]}{\langle q \, p \rangle} \\ \varepsilon_{p-}^{\mu} &= \frac{1}{\sqrt{2}} \frac{\langle p | \sigma^{\mu} | q]}{[p \, q]} \end{split} \Rightarrow \qquad \begin{cases} \varepsilon_{p}^{\pm} \cdot p = \varepsilon_{p}^{\pm} \cdot q = 0 \\ \varepsilon_{p+}^{\mu} \varepsilon_{p-}^{\nu} + \varepsilon_{p-}^{\mu} \varepsilon_{p+}^{\nu} = -\eta^{\mu\nu} + \frac{p^{\mu} q^{\nu} + q^{\mu} p^{\nu}}{p \cdot q} \\ \varepsilon_{p}^{h_{1}} \cdot \varepsilon_{p}^{h_{2}} = -\delta^{h_{1}(-h_{2})} \end{cases} \end{split}$$

Wavefunctions from helicity spinors

$$\begin{split} \varepsilon_{p+}^{\mu} &= \frac{1}{\sqrt{2}} \frac{\langle q | \sigma^{\mu} | p]}{\langle q p \rangle} \\ \varepsilon_{p-}^{\mu} &= \frac{1}{\sqrt{2}} \frac{\langle p | \sigma^{\mu} | q]}{[p \, q]} \end{split} \Rightarrow \qquad \begin{cases} \varepsilon_{p}^{\pm} \cdot p = \varepsilon_{p}^{\pm} \cdot q = 0 \\ \varepsilon_{p+}^{\mu} \varepsilon_{p-}^{\nu} + \varepsilon_{p-}^{\mu} \varepsilon_{p+}^{\nu} = -\eta^{\mu\nu} + \frac{p^{\mu} q^{\nu} + q^{\mu} p^{\nu}}{p \cdot q} \\ \varepsilon_{p}^{h_{1}} \cdot \varepsilon_{p}^{h_{2}} = -\delta^{h_{1}(-h_{2})} \end{split}$$

$$\begin{split} u_p^a &= \begin{pmatrix} |p^a\rangle \\ |p^a] \end{pmatrix} \qquad \bar{u}_p^a = \begin{pmatrix} -\langle p^a| \\ [p^a] \end{pmatrix} \qquad \Rightarrow \quad \begin{cases} (\not\!p - m)u_p^a = \bar{u}_p^a(\not\!p - m) = 0\\ \bar{u}_p^a u_p^b = 2m\epsilon^{ab} \\ \bar{u}_p^a \gamma^\mu u_p^b = 2p^\mu \epsilon^{ab} \\ u_p^a \bar{u}_{pa} = u_p^a \epsilon_{ab} \bar{u}_p^b = \not\!p + m \end{cases} \\ v_p^a &= \begin{pmatrix} -|p^a\rangle \\ |p^a] \end{pmatrix} \qquad \bar{v}_p^a = \begin{pmatrix} \langle p^a| \\ [p^a| \end{pmatrix} \qquad \Rightarrow \quad \begin{cases} (\not\!p + m)v_p^a = \bar{v}_p^a(\not\!p + m) = 0\\ \bar{v}_p^a v_p^b = 2m\epsilon^{ab} \\ \bar{v}_p^a \gamma^\mu v_p^b = -2p^\mu \epsilon^{ab} \\ v_p^a \bar{v}_{pa} = v_p^a \epsilon_{ab} \bar{v}_p^b = -\not\!p + m \end{cases} \end{split}$$

Little group transformations

Consider Lorentz transformation $p^\mu \to L^\mu_{~\nu} p^\nu$

MASSLESS:

$$\begin{split} |p\rangle \to S|p\rangle &= e^{i\phi/2}|Lp\rangle & \langle p| \to \langle p|S^{-1} = e^{i\phi/2}\langle Lp| \\ |p] \to S^{\dagger - 1}|p] &= e^{-i\phi/2}|Lp| & [p| \to [p|S^{\dagger} = e^{-i\phi/2}[Lp] \end{split}$$

 $\Rightarrow \varepsilon_p^{\pm} \to L \varepsilon_p^{\pm} \sim e^{\mp i \phi} \varepsilon_{Lp}^{\pm}$ $e^{ih\phi} \in \mathrm{U}(1) \text{ encode } 2d \text{ rotations in frame where } p = (E, 0, 0, E)$

Little group transformations

Consider Lorentz transformation $p^\mu \to L^\mu_{~\nu} p^\nu$

MASSLESS:

$$\begin{split} |p\rangle \to S|p\rangle &= e^{i\phi/2} |Lp\rangle & \langle p| \to \langle p|S^{-1} = e^{i\phi/2} \langle Lp| \\ |p] \to S^{\dagger - 1}|p] &= e^{-i\phi/2} |Lp| & [p| \to [p|S^{\dagger} = e^{-i\phi/2} [Lp] \end{split}$$

 $\Rightarrow \varepsilon_p^{\pm} \to L \varepsilon_p^{\pm} \sim e^{\mp i \phi} \varepsilon_{Lp}^{\pm}$ $e^{ih\phi} \in \mathrm{U}(1) \text{ encode } 2d \text{ rotations in frame where } p = (E, 0, 0, E)$

MASSIVE:

$$\begin{split} |p^{a}\rangle &\to S|p^{a}\rangle = \omega^{a}_{\ b}|Lp^{b}\rangle & |p^{a}\rangle \to |p^{a}\rangle S^{-1} = \omega^{a}_{\ b}|Lp^{a}\rangle \\ |p^{a}] &\to S^{\dagger - 1}|p^{a}] = \omega^{a}_{\ b}[Lp^{b}| & [p^{a}] \to [p^{a}|S^{\dagger} = \omega^{a}_{\ b}[Lp^{b}] \end{split}$$

 $\omega \in \mathrm{SU}(2)$ encode 3d rotations in rest frame where p = (m,0,0,0)

4-pt Compton amplitude

$$\begin{array}{c} \overset{3^{-}}{\overset{4^{+}}{\overset{4^{+}}{\overset{2^{-}}{\overset{2^{-}}{\overset{2^{-}}{\overset{4^{+}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}{\overset{2^{-}}{\overset{2^{-}}{\overset{2^{-}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}}{\overset{2^{-}}}{\overset{2^{-}}}{\overset{2^{-}}{\overset{2^{-}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

▶ plug in external wavefunctions:

$$3^{-} 4^{+} = \frac{-i}{(s_{13} - m^{2})[3q_{3}]\langle 4q_{4}\rangle} \Big\{ \langle 1^{a}3\rangle [q_{3}|p_{13}|q_{4}\rangle [42^{b}] + [1^{a}q_{3}]\langle 3|p_{13}|4]\langle q_{4}2^{b}\rangle \\ 1^{a} 2^{b} - m\langle 1^{a}3\rangle [q_{3}4]\langle q_{4}2^{b}\rangle - m[1^{a}q_{3}]\langle 3q_{4}\rangle [42^{b}] \Big\} \\ 3^{-} 4^{+} = \frac{-i}{s_{34}[3q_{3}]\langle 4q_{4}\rangle} \Big\{ -\frac{1}{2}\langle 3q_{4}\rangle [4q_{3}] \big(\langle 1^{a}|p_{3} - p_{4}|2^{b}] + [1^{a}|p_{3} - p_{4}|2^{b}\rangle \big) \\ - \langle 3|4|q_{3}] \big(\langle 1^{a}q_{4}\rangle [42^{b}] + [1^{a}4]\langle q_{4}2^{b}\rangle \big) \\ 1^{a} 2^{b} + \langle q_{4}|3|4] \big(\langle 1^{a}3\rangle [q_{3}2^{b}] + [1^{a}q_{3}]\langle 32^{b}\rangle \big) \Big\}$$

$$\overset{3^{-}}{\overset{4^{+}}{\overset{4^{+}}{\overset{2^{b}}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}{\overset{2^{b}}}{\overset{2^{b}$$

▶ plug in external wavefunctions with $q_3 = p_4$, $q_4 = p_3$:

$$\overset{3^{-}}{\overset{4^{+}}{\overset{4^{+}}{\overset{2^{b}}}{\overset{2^{b}}{\overset{2^{b}}}{\overset{2^{b}}}{\overset{2^{b}}}{\overset{2^{b}}}{\overset{2^{b}}}{\overset{2$$

spinor helicity helps no matter method

3-pt amplitudes

Modern methods require on-shell 3-pt input only

$$\begin{aligned} \mathcal{A}(1^{a}_{i},2^{b}_{\bar{j}},3^{+}_{c}) &= -\frac{iT^{c}_{i\bar{j}}}{\langle 3q \rangle} \big(\langle 1^{a}q \rangle [2^{b}3] + [1^{a}3] \langle 2^{b}q \rangle \big) = -iT^{c}_{i\bar{j}} \frac{\langle 1^{a}2^{b} \rangle [3|1|q \rangle}{m \langle 3q \rangle} \\ \mathcal{A}(1^{a}_{i},2^{b}_{\bar{j}},3^{-}_{c}) &= \frac{iT^{c}_{i\bar{j}}}{[3q]} \big(\langle 1^{a}3 \rangle [2^{b}q] + [1^{a}q] \langle 2^{b}3 \rangle \big) = iT^{c}_{i\bar{j}} \frac{[1^{a}2^{b}] \langle 3|1|q]}{m [3q]} \end{aligned}$$

3-pt amplitudes

Modern methods require on-shell 3-pt input only

$$\begin{aligned} \mathcal{A}(1^{a}_{i}, 2^{b}_{\bar{j}}, 3^{+}_{c}) &= -\frac{iT^{c}_{i\bar{j}}}{\langle 3\,q \rangle} \big(\langle 1^{a}q \rangle [2^{b}3] + [1^{a}3] \langle 2^{b}q \rangle \big) = -iT^{c}_{i\bar{j}} \frac{\langle 1^{a}2^{b} \rangle [3|1|q\rangle}{m\langle 3\,q \rangle} \\ \mathcal{A}(1^{a}_{i}, 2^{b}_{\bar{j}}, 3^{-}_{c}) &= \frac{iT^{c}_{i\bar{j}}}{[3\,q]} \big(\langle 1^{a}3 \rangle [2^{b}q] + [1^{a}q] \langle 2^{b}3 \rangle \big) = iT^{c}_{i\bar{j}} \frac{[1^{a}2^{b}] \langle 3|1|q]}{m[3\,q]} \end{aligned}$$

NB! Independent of ref. momentum q

$$p_2^2 - m^2 = \langle 3|1|3] = 0 \qquad \Rightarrow \qquad \exists x_3 \in \mathbb{C} : |1|3] = -mx_3|3\rangle$$
$$\Rightarrow \qquad x_3 = \frac{[3|1|q\rangle}{m\langle 3q\rangle} \quad \text{indep. of } q$$

BCFW calculation of $A(\underline{1}^a, 3^-\!\!, 4^+\!\!, \overline{2}^b)$

BCFW shift:
$$\begin{cases} |3] \rightarrow |\hat{3}] = |3] - z|4] \\ |4\rangle \rightarrow |\hat{4}\rangle = |4\rangle + z|3\rangle \end{cases} \xrightarrow{\Rightarrow} \mathcal{A} \rightarrow \mathcal{A}(z) \\ \xrightarrow{\text{Britto, Cachazo, Feng, Witten (2005)}} \end{cases}$$

Residue thm:
$$0 = \oint \frac{\mathrm{d}z}{2\pi i} \frac{\mathcal{A}(z)}{z} = \mathcal{A}(0) + \sum_{\text{poles of } \mathcal{A}(z)} \frac{1}{z_{\mathrm{p}}} \operatorname{Res}_{z=z_{\mathrm{p}}} \mathcal{A}(z)$$

BCFW calculation of $A(\underline{1}^a, 3^-, 4^+, \overline{2}^b)$

BCFW shift:
$$\begin{cases} |3] \rightarrow |\hat{3}] = |3] - z|4] \\ |4\rangle \rightarrow |\hat{4}\rangle = |4\rangle + z|3\rangle \end{cases} \xrightarrow{\Rightarrow} \mathcal{A} \rightarrow \mathcal{A}(z)$$
Britto, Cachazo, Feng, Witten (2005)

Residue thm:
$$0 = \oint \frac{\mathrm{d}z}{2\pi i} \frac{\mathcal{A}(z)}{z} = \mathcal{A}(0) + \sum_{\text{poles of } \mathcal{A}(z)} \frac{1}{z_{\mathrm{p}}} \operatorname{Res}_{z=z_{\mathrm{p}}} \mathcal{A}(z)$$

$$= \underset{z=z_{13}}{\operatorname{Res}} A(\underline{1}^{a}, \hat{3}^{-}, \hat{4}^{+}, \overline{2}^{b}) = A(\underline{1}^{a}, \hat{3}^{-}, -\hat{P}^{c}) \frac{i}{s_{13} - m^{2}} A(\hat{P}_{c}, \hat{4}^{+}, \overline{2}^{b})$$

$$= \frac{-i}{(s_{13} - m^2)[34]\langle 43\rangle} \left(\langle 1^a 3 \rangle [4\hat{P}^c] - [1^a 4] \langle 3\hat{P}^c \rangle \right) \left(\langle \hat{P}_c 3 \rangle [2^b 4] + [\hat{P}_c 4] \langle 2^b 3 \rangle \right) \\ = \frac{i\langle 3|1|4]}{(s_{13} - m^2)s_{34}} \left(\langle 1^a 3 \rangle [2^b 4] + [1^a 4] \langle 2^b 3 \rangle \right)$$

n-pt amplitudes via BCFW

BCFW recursion for $A(\underline{1}^a, 3^+, \ldots, n^+, \overline{2}^b)$

BCFW recursion for $A(\underline{1}^a, 3^-, 4^+, \ldots, n^+, \overline{2}^b)$

Four-quark amplitudes

Lazopoulos, AO, Shi (2021)

 $\mathcal{A}(\underline{1}, \overline{2}, \underline{3}, \overline{4}, 5, \dots, n) = \mathcal{A}(\underline{1}, \overline{2}, \underline{3}, \overline{4}, 5, \dots, n) - \mathcal{A}(\underline{1}, \overline{2}, \underline{3}, \overline{4}, 5, \dots, n)$ identical flavors from distinct flavors

$$\begin{array}{c} 3^{c}, k & & & \\ 3^{c}, k & & \\ 2^{b}, \overline{j} & & \\ 1^{a}, i \end{array} = -\frac{iT^{a}_{i\overline{j}}T^{a}_{k\overline{l}}}{s_{12}} \left(\langle 1^{a}4^{d} \rangle [2^{b}3^{c}] + [1^{a}4^{d}] \langle 2^{b}3^{c} \rangle + \langle 1^{a}3^{c} \rangle [2^{b}4^{d}] + [1^{a}3^{c}] \langle 2^{b}4^{d} \rangle \right)$$

Color ordering from adjoint rep.: $T^a_{i\bar{j}} \to \tilde{f}^{ia\bar{j}}$

Adding gluons to four-quark amplitudes

$$\begin{split} \overline{2}^{b} & \xrightarrow{3^{c}}_{1^{a}} \overline{4}^{d} = i \left\{ \frac{[1^{a}5] \langle 2^{b}3^{c} \rangle [4^{d}5] + [1^{a}5] \langle 2^{b}4^{d} \rangle [3^{c}5]}{(s_{15} - m_{1}^{2})s_{34}} + \frac{[1^{a}5] \langle 2^{b}3^{c} \rangle [4^{d}5] + \langle 1^{a}3^{c} \rangle [2^{b}5] [4^{d}5] + \langle 1^{a}3^{c} \rangle [2^{b}5] [4^{d}5] + \langle 1^{a}3^{c} \rangle [2^{b}5] [4^{d}5] + (1^{a}3^{c} \rangle [2^{b}5] [4^{d}5] + (1^{a}3^{c} \rangle [2^{b}4^{d} \rangle [3^{c}5] + \frac{\langle 1^{a}4^{d} \rangle [2^{b}5] [3^{c}5] + [1^{a}5] \langle 2^{b}3^{c} \rangle [4^{d}5] + \langle 1^{a}3^{c} \rangle [2^{b}5] [4^{d}5] + [1^{a}5] \langle 2^{b}4^{d} \rangle [3^{c}5] + \frac{s_{12}[5|1|4|5| - (s_{15} - m_{1}^{2})[5|3|4|5]}{(s_{12}s_{34}(s_{15} - m_{1}^{2})(5|3|4|5]} (\langle 1^{a}4^{d} \rangle [2^{b}3^{c}] + [1^{a}4^{d}] \langle 2^{b}3^{c} \rangle + \langle 1^{a}3^{c} \rangle [2^{b}4^{d}] + [1^{a}3^{c}] \langle 2^{b}4^{d} \rangle) \right\} \\ \overline{2}^{b} & \xrightarrow{3^{c}}_{1^{a}}} \overline{4}^{d} = i \left\{ \frac{\langle 1^{a}4^{d} \rangle [2^{b}5] [3^{c}5] + [1^{a}5] \langle 2^{b}4^{d} \rangle [3^{c}5]}{s_{12}(s_{35} - m_{3}^{2})} - \frac{\langle 1^{a}3^{c} \rangle [2^{b}5] [4^{d}5] + [1^{a}5] \langle 2^{b}3^{c} \rangle [4^{d}5]}{s_{12}(s_{45} - m_{3}^{2})} - \frac{(5|3|4|5]}{s_{12}(s_{45} - m_{3}^{2})} (\langle 1^{a}4^{d} \rangle [2^{b}3^{c}] + [1^{a}4^{d}] \langle 2^{b}3^{c} \rangle + \langle 1^{a}3^{c} \rangle [2^{b}4^{d}] + [1^{a}3^{c}] \langle 2^{b}4^{d} \rangle) \right\} \end{split}$$

Recall: fixed quarks 1 and 2 together by KK relations Moreover, quark 3 maybe be locked in using (gen.) BCJ relations

Bern, Carrasco, Johansson (2008); Johansson, AO (2015)

Four-quark amplitudes with plus-helicity gluons

Four-quark amplitudes with plus-helicity gluons Lazopoulos, AO, Shi (2021)

- $\uparrow\,$ gluon insertions between like-flavored quarks $~~\checkmark$
- $\downarrow\,$ gluon insertions between distinctly flavored quarks $\,\,\,$

Four-quark amplitudes with plus-helicity gluons

Lazopoulos, AO, Shi (2021)

$$\begin{split} & 6^{+} & \dots \\ & 5^{+} & 0 \\ & 3^{c} & 2^{b} \\ & 3^{c} & 3^{c} \\ & + & 3^{c} & 3^{c} & 3^{c} \\ & \frac{1}{2^{c} [D_{12}(2]A_{1}^{c}](2]A_{2}^$$

Formulae against off-shell recursion

Lazopoulos, AO, Shi (2021)

Massive higher spins & BHs

QCD (hel. ± 1 , spin 1/2) vs GR (hel. ± 2 , spin s)

$$\begin{array}{|c|c|c|} QCD & GR \\ \hline A(1^{a},2^{b},3^{+}) = -ig\frac{\langle 1^{a}2^{b} \rangle}{m}x & \mathcal{M}_{3}^{(s,+)} = -\frac{\kappa}{2}\frac{\langle 12 \rangle^{\odot 2s}}{m^{2s-2}}x^{2} \\ A(1^{a},3^{-},4^{+},2^{b}) = \frac{ig^{2}\langle 3|1|4](\langle 1^{a}3 \rangle [2^{b}4] + [1^{a}4]\langle 2^{b}3 \rangle)}{(s_{13}-m^{2})s_{34}} & \mathcal{M}(1^{\{a\}},3^{-},4^{+},2^{\{b\}}) \end{array}$$

3-pt helicity factor
$$x = -\frac{\sqrt{2}}{m}(p_1 \cdot \varepsilon^+) = \left[\frac{\sqrt{2}}{m}(p_1 \cdot \varepsilon^-)\right]^{-1}$$

$$\mathcal{M}(1^{\{a\}}, 3^{-}, 4^{+}, 2^{\{b\}}) = \left(\frac{\kappa}{2}\right)^{2} \frac{i\langle 3|1|4]^{4}}{(s_{13} - m^{2})(s_{14} - m^{2})s_{34}} \left(\frac{\langle 13\rangle[24] + [14]\langle 23\rangle}{\langle 3|1|4]}\right)^{\odot 2s}$$

Together with cl. limit applicable to scattering of black holes!

Summary

SU(2) covariance ⇔ arbitrary spin projections
 Elegant form for two-quark amplitudes with

 all gluons of same helicity (e.g. all plus)
 one gluon of different helicity (e.g. one minus)

 New analytic results for four-quark amplitudes

 Lazopoulos, AO, Shi (2021)

 Applicable to any massive particles with spin, black holes

Guevara, AO, Vines (2018,2019) Aoude, AO (2021)

Thank you!

Backup slides

Solution to BCJ relations

Bern, Carrasco, Johansson (2008) Johansson, AO (2015)

BCJ relations:

$$A(\underline{1}, \overline{2}, \alpha, 3, \beta) = \sum_{\sigma \in S(\alpha) \sqcup \beta} A(\underline{1}, \overline{2}, 3, \sigma) \prod_{i=1}^{|\alpha|} \frac{\mathcal{F}(q, \sigma, 1|i)}{s_{2,\alpha_1, \dots, \alpha_i} - m_2^2}$$

Kleiss-Kuijf basis of (n-2)! primitives $\{A(\underline{1}, \overline{2}, \sigma)\}$ \Rightarrow BCJ basis of (n-3)! primitives $\{A(\underline{1}, \overline{2}, 3, \sigma)\}$

Solution to BCJ relations for QCD

Johansson, AO (2015)

General BCJ relations:

$$A(\underline{1}, \overline{2}, \alpha, \underline{q}, \beta) = \sum_{\sigma \in S(\alpha) \sqcup \beta} A(\underline{1}, \overline{2}, \underline{q}, \sigma) \prod_{i=1}^{|\alpha|} \frac{\mathcal{F}(q, \sigma, 1|i)}{s_{2,\alpha_1, \dots, \alpha_i} - m_2^2},$$

where α is purely gluonic

Melia basis of (n-2)!/k! primitives

 $\left\{A(\underline{1},\overline{2},\sigma) \mid \sigma \in \operatorname{Dyck}_{k-1} \times \{\operatorname{gluon insertions}\}_{n-2k}\right\}$

 \Rightarrow new BCJ basis of (n-3)!(2k-2)/k! primitives

 $\left\{A(\underline{1},\overline{2},\underline{q},\sigma) \ \Big| \ \{\underline{q},\sigma\} \in \operatorname{Dyck}_{k-1} \times \{\text{gluon insertions in } \sigma\}_{n-2k}\right\}$

Helicity basis

Arkani-Hamed, Huang, Huang (2017)

Take $p^{\mu} = (E, P \cos \varphi \sin \theta, P \sin \varphi \sin \theta, P \cos \theta)$

$$\begin{aligned} |p^{a}\rangle &= \lambda_{p\alpha}^{\ a} = \begin{pmatrix} \sqrt{E-P}\cos\frac{\theta}{2} & -\sqrt{E+P}e^{-i\varphi}\sin\frac{\theta}{2} \\ \sqrt{E-P}e^{i\varphi}\sin\frac{\theta}{2} & \sqrt{E+P}\cos\frac{\theta}{2} \end{pmatrix} \\ [p^{a}] &= \tilde{\lambda}_{p\dot{\alpha}}^{\ a} = \begin{pmatrix} -\sqrt{E+P}e^{i\varphi}\sin\frac{\theta}{2} & -\sqrt{E-P}\cos\frac{\theta}{2} \\ \sqrt{E+P}\cos\frac{\theta}{2} & -\sqrt{E-P}e^{-i\varphi}\sin\frac{\theta}{2} \end{pmatrix} \end{aligned}$$

Then

$$s^{\mu}(u_{p}^{a}) = \frac{1}{2m} \bar{u}_{pa} \gamma^{\mu} \gamma^{5} u_{p}^{a} = (-1)^{a-1} s_{p}^{\mu}$$
$$s_{p}^{\mu} = \frac{1}{m} (P, E \cos \varphi \sin \theta, E \sin \varphi \sin \theta, E \cos \theta)$$

Comparison with earlier results Older reference-momentum-dep. spinors:

$$\begin{split} \bar{u}_p^{a=1} &= \begin{pmatrix} -\langle p^1 | \equiv \frac{m\langle q|}{\langle q p^b \rangle} \\ [p^1] \equiv [p^b] \end{pmatrix} = \bar{u}_p^-(q) \qquad v_p^{a=1} = \begin{pmatrix} -|p^1\rangle \equiv -\frac{m|q\rangle}{\langle p^b q \rangle} \\ [p^1] \equiv [p^b] \end{pmatrix} = v_p^-(q) \\ \bar{u}_p^{a=2} &= \begin{pmatrix} -\langle p^2 | \equiv -\langle p^b | \\ [p^2] \equiv -\frac{m[q]}{[q p^b]} \end{pmatrix} = -\bar{u}_p^+(q) \qquad v_p^{a=2} = \begin{pmatrix} -|p^2\rangle \equiv -|p^b\rangle \\ [p^2] \equiv \frac{m|q|}{[p^b q]} \end{pmatrix} = -v_p^+(q) \end{split}$$

Kleiss, Stirling (1986), Dittmaier (1998), Schwinn, Weinzierl (2005)

 \Rightarrow Analytically retrieve older non-SU(2)-covariant formulae

$$\begin{split} &A(\underline{1}^1, \underline{3}^-, 4^+, \dots, n^+, \overline{2}^1) = 0 \\ &A(\underline{1}^1, \underline{3}^-, 4^+, \dots, n^+, \overline{2}^2) = \frac{-i\langle 2^\flat 3 \rangle}{\langle 1^\flat 3 \rangle \langle 34 \rangle \dots \langle n-1|n \rangle} \sum_{k=4}^n \frac{\langle 3|\not p_1 \not p_{3...k}|3 \rangle^2}{s_{3...k} \langle 3|\not p_1 \not p_{3...k}|k \rangle} \\ &\times \left\{ \delta_{k=n} + \delta_{k\neq n} \frac{m^2 \langle k|k+1 \rangle \langle 3| \not p_{3...k} \prod_{j=k+1}^{n-1} \{ \langle s_{13...j} - m^2 \rangle - \not p_j \not p_{13...j} \} |n]}{\langle s_{13...k} - m^2 \rangle \dots \langle s_{13...(n-1)} - m^2 \rangle \langle 3| \not p_1 \not p_{3...k}|k \rangle} \right\} \\ &A(\underline{1}^2, \underline{3}^-, 4^+, \dots, n^+, \overline{2}^1) = \frac{i\langle 1^\flat 3 \rangle}{\langle 2^\flat 3 \rangle \langle 34 \rangle \dots \langle n-1|n \rangle} \sum_{k=4}^n \frac{\langle 3| \not p_1 \not p_{3...k}|3 \rangle^2}{s_{3...k} \langle 3| \not p_1 \not p_{3...k}|k \rangle} \\ &\times \left\{ \delta_{k=n} + \delta_{k\neq n} \frac{m^2 \langle k|k+1 \rangle \langle 3| \not p_{3...k} \prod_{j=k+1}^{n-1} \{ \langle s_{13...j} - m^2 \rangle - \not p_j \not p_{13...j} \} |n]}{(s_{13...k} - m^2) \dots \langle s_{13...(n-1)} - m^2 \rangle \langle 3| \not p_1 \not p_{3...k}|k + 1 \rangle} \right\} \\ &A(\underline{1}^2, \underline{3}^-, 4^+, \dots, n^+, \overline{2}^2) = \frac{i\langle 1^\flat 2^\flat}{m\langle 34 \rangle \dots \langle n-1|n \rangle} \sum_{k=4}^n \frac{\langle 3| \not p_1 \not p_{3...k}|3 \rangle^2}{s_{3...k} \langle 3| \not p_1 \not p_{3...k}|k \rangle} \left[1 + \frac{s_{3...k} \langle 32^\flat}{\langle 3| \not p_{3...k} \not p_1 \rangle |2^\flat \rangle} \right] \\ &\times \left\{ \delta_{k=n} + \delta_{k\neq n} \frac{m^2 \langle k|k+1 \rangle \langle 3| \not p_{3...k} \prod_{j=k+1}^n \{ \langle s_{13...j} - m^2 \rangle - \not p_j \not p_{13...j} \} |n]}{(s_{13...k} - m^2) \dots \langle s_{13...(n-1)} - m^2 \rangle \langle 3| \not p_1 \not p_{3...k}|k \rangle} \right\right\} \end{aligned}$$

38 / 32