J.P. Yañez

v's in the mm era December 2022

j.p.yanez@ualberta.ca

Modeling the atmospheric neutrino flux

Arthur B. McDonald

Atmospheric neutrinos in short

Atmospheric neutrinos in short

NTs need to know atmospheric ν 's

Isolate astrophysical v

IceCube sterile neutrino search

PRL125, 141801 (2020)

Study physics that modulates atm- v

Computing an atm-v flux (until recently)

- A few groups with analytical or simulation based code (not open)
- Combine information about physics phenomena over 6-7 decades in energy

Errors

Fedynitch et al., PRD, 2012. Choose different models and estimate band by bracketing

Honda et al. 2006 & Evans et al. 2016:

Uncertainty from eyeballing the description of muon data, and proportional rescaling to neutrino fluxes.

A data-driven, calibrated atm.- ν flux

The Global Spline Fit (GSF)

Dembinski, Fedynitch, Gaisser, ICRC 2017 & H. Dembinski 2019

Data Driven Hadronic interaction model (DDM)

A. Fedynitch, M. Huber PRD 106 (2022)

Calibration of DDM+GSF with muon spectrometer data J. P. Yañez, A. Fedynitch, ICRC'21 (to appear soon)

The Global Spline Fit (of CR fluxes)

Pros:

- Parameterizes data
- AND uncertainty
- AND covariance matrix

Cons:

- Many parameters
- ~5 * 20 🙂
- Not all equally important for v fluxes

Dimensionality reduction to 6 parameters

New: Parameterizing errors to be accessible via principal component analysis (PCA)

Principal components of CR nucleon fluxes

- Component 1 is a "global" spectral index correction
- Other features possible at ~100 TeV

A data-driven, calibrated atm.- ν flux

The Global Spline Fit (GSF)

Dembinski, Fedynitch, Gaisser, ICRC 2017 & H. Dembinski 2019

Data Driven Hadronic interaction model (DDM)

A. Fedynitch, M. Huber PRD 106 (2022)

Calibration of DDM+GSF with muon spectrometer data J. P. Yañez, A. Fedynitch, ICRC'21 (to appear soon)

Data-Driven Hadronic Interaction Model

New paper out: AF & M. Huber, PRD 106, 083018 (2022), arXiv:2205.14766

Fits to proton-carbon data and uncertainties

M. Huber

14

Energy inter- and extrapolation

Atm.-flux-relevant phase space $\rightarrow Z_{Nh}(E_N) = \int_0^1 dx_{Lab} x_{Lab}^{\gamma(E_N)-1} \frac{dN_{N \to h}}{dx_{Lab}} (E_N)$ Spectrum-weighted moment:

Muon neutrino energy (GeV)

A data-driven, calibrated atm.- ν flux

The Global Spline Fit (GSF)

Dembinski, Fedynitch, Gaisser, ICRC 2017 & H. Dembinski 2019

Data Driven Hadronic interaction model (DDM)

A. Fedynitch, M. Huber PRD 106 (2022)

Calibration of DDM+GSF with muon spectrometer data

J. P. Yañez, A. Fedynitch, ICRC'21 (to appear soon)

Muons and neutrinos

Muon data as calibration

- Muons can be used to calibrate a neutrino flux calculation
- Demonstrated by the HKKM group using muon spectrometer data

Phys.Rev.D75:043006,2007

Typical experiment

- Particle tracker in a magnetic field
 - Energy from bending radius
 - Charge from bending direction
 - Incoming direction from alignment
- Quantities reported
 - Flux at experiment location (or sea level)
 - Ratio of μ^+/μ^-
 - Reported vs *E* and for various angles

New: expand the experimental data sets

J. P. Yanez & AF, ICRC 2019	, to appear very soon
-----------------------------	-----------------------

Experiment	${\rm Energy}~({\rm GeV})$	Measurements	Unit	Systematics	Location	Altitude	Zenith range
BESS-TeV [21] CMS [22] L3+C [23]	0.6-400 5-1000 20-3000	$ \Phi_{\mu} \\ R_{\mu^+/\mu^-} \\ \Phi_{\mu}R_{\mu^+/\mu^-} \\ =$	$p_{\mu} \ p_{\mu} \ p_{\mu}$	C Q C	36.2°N, 140.1°W 46.31°N, 6.071°E 46.25°N, 6.02°E	30 m 420 m 450 m	$ \begin{array}{c} 0-25.8^{\circ} \\ p\cos\theta_z \\ 0-58^{\circ} \end{array} $
DEIS [24] MINOS [25] OPERA [26]	5-10000 1000-7000 891-7079	$\Phi_{\mu} = R_{\mu^{+}/\mu^{-}} = R_{\mu^{+}/\mu^{-}} = R_{\mu^{+}/\mu^{-}}$	p_{μ} p_{μ} E_{μ} E_{μ}	Q C Q	32.11°N, 34.80°E 47.82°N, 92.24°W 42.42°N, 13.51°E	5 m 5 m 5 m	$78.1-90^{\circ}$ unfolded $E\cos\theta^*$

Experiments disclosing systematic uncertainties. Most provide corrrection functions for the data.

 p_{μ} (GeV)

Resulting muon fluxes and cross-calibrated data

J. P. Yanez & A. Fedynitch, ICRC 2021, appears soon

Neutrino fluxes

Muon neutrinos

hatched area: uncertainty from Barr et al. PRD74, 094009 (2006) & AF, Huber PRD (2022)

Neutrino ratios

hatched area: uncertainty from Barr et al. PRD74, 094009 (2006) & AF, Huber PRD (2022)

Flavor ratio

Total uncertainty from DDM + GSF + muon fit

J. P. Yanez & A. Fedynitch, ICRC 2021, appears soon

Features

- Constrained by data
 - New measurements can be included, update calculation
- Using open source tool: MCEq
 - Implementation and physics assumptions are transparent
- Gives access to the full covariance matrix
 - Users can compute how uncertainties modify the flux

What about the prompt component?

Spoiler: We still don't know

ъ±

 ν_{μ}

 μ^{\pm}

The problem of prompt

- Expected to dominate atm. v flux above 100 TeV – 1 PeV but <u>not yet</u> <u>observed</u>
- Predictions have issues
 - Large uncertainties from pQCD
 - pQCD might be incomplete (intrinsic charm)
 - The fragmentation $(c \rightarrow D)$ function is a choice
- No hadronic data available to directly constrain the models

Constraints from muons

- Prompt muons have more production channels than $\boldsymbol{\nu}$
- No spectrometer data at PeV energies where + prompt dominates
- How about deep underground experiments? $_{\Box_{a}}$

Fraction of flux coming from each meson

A. Fedynitch, F. Riehn, R. Engel, T.K. Gaisser, T. Stanev PRD 100 2019

Constraints from ν

- The v_e channel is dominant at 10's TeV
- The v_{μ} channel is degenerate with $\Phi_{v \text{ astro}}$
- Self-veto rejects prompt, breaks degeneracy

Fraction of flux coming from each meson

32

Conclusions

- Data-driven atm- ν flux available from few GeV to PeV (DDM+GSF)
 - Calculated with MCEq, can be reproduced independently
- The muon calibration adjusts flux and reduces errors
 - Mainly constrain pion yields
 - Error < 10% for $E_{
 m v}$ < 1 TeV , going to 30% at PeV
 - Users will get full access to calibrated flux and corresponding errors
 - Future: will include data from underground experiments, higher energy
- Prompt existing data could be enough to measure it
 - Tight constraints on conventional component achieved
 - Underground muon data sets could help
 - Exploit neutrino measurements with self-veto + cascades + tracks

Dimensionality reduction to 6 parameters

The Global Spline Fit – nucleon fluxes (MCEq input)

- Most contribution from proton and helium flux
- Correlations between H and He affect
 - CR neutron fraction
 - Muon charge ratio
 - Neutrino/Antineutrino ratio
- → Need to model two correlated components
- \rightarrow technically ~80 parameters

GSF-PCA

Principal components of CR nucleon fluxes

- Figure shows zenith-averaged muon neutrinos
- Component 1 is a "global" spectral index correction
- Sum of components can reproduce 90% allowed shapes from the 1sigma range of GSF
- How accurate is the GSF error?
- → Data motivated nuissance parameters
- → CR nucleon flux represented by weighted sum of 6 weakly base vectors
- → GSF can be dynamically updated if new data comes in
- → Optimal CR nucleon flux model for neutrino flux calculations

Hadron production phase space relevant for NTs

Surveying the muon fluxes literature

- We looked at most data from muon spectrometers above some 5 GeV
 - Muon fluxes and muon charge ratio (μ^+/μ^-)

Requirements for use

- Detailed description of detector and operating conditions
- Corrections applied to the data (e.g. extrapolation from underground to sea level)
- Muon fluxes: Systematic uncertainties explained in detail

Experiments, we believe are not compatible or statistically not significant with each other include: AMS, MARS, MUTRON,

Example of DDM parameter impact

Projectile proton E: le_: 31 GeV NA61 he_: 158 GeV NA49 vhe1_: 20 TeV extrp. vhe3_: 2 PeV extrp.

42

Choice of parameters and extrapolation from "DDM energies"

Projectile proton E: le_: 31 GeV NA61 he_: 158 GeV NA49

vhe1_: 20 TeV extrp. vhe3_: 2 PeV extrp.

The problem of prompt

- Expected to dominate atm. v flux above 100 TeV – 1 PeV but <u>not yet</u> <u>observed</u>
- Predictions have issues
 - Large uncertainties from pQCD
 - pQCD might be incomplete (intrinsic charm)
 - The fragmentation $(c \rightarrow D)$ function is a choice
- No hadronic data available to directly constrain the models

Above 100 TeV: territory of the (undiscovered) prompt muons and neutrinos

Prompt muons more production channels than prompt neutrinos:

- Rare decays of unflavored mesons e.g., $\eta \rightarrow \mu^+ \mu^-$
- EM pair production $\gamma \rightarrow \mu^+ \mu^-$

- Large uncertainties from pQCD
- pQCD might be incomplete (intrinsic charm)
- The fragmentation ($c \rightarrow D$) function is a choice

Figure 4. Energies of surface and cosmic ray (CR) nucleons contributing to the muon rate underground, shown for the SIBYLL-2.3D hadronic interaction model and the GSF primary flux model. The coloured bands show the energy ranges that result in 68% and 95% of the underground muon rate respectively. At depths larger than 12 km.w.e. the rate becomes dominated by neutrino-induced muons through charged-current interactions as indicated by the grey band.

Figure 5. Fraction of parent mesons contributing to the vertical-equivalent underground intensity of muons, calculated with SIBYLL-2.3D and GSF primary flux. Since deep underground muons sample TeV surface energies, the kaon contribution is at its maximum of ~ 20%. The charm model in SIBYLL-2.3D yields a ~ 10% prompt muon component below depths where neutrino-induced muons contribute (grey band).

Underground muons

Muon data as calibration

 Muons at all energies mainly come from pion component

 μ^{+} + μ^{-} and ν_{μ} + $\overline{\nu}_{\mu}$ flux from pions and kaons