-HERGÉ - et HERGÉE

DESSINATEUR

Searching for New Physics With Astrophysical Neutrinos (part 2)

Carlos Argüelles (they/them)*

CR-N-MME 2022 Louvain, Belgium Dec. 02, 2022

*Disclaimer:This talk is not on behalf of the IceCube Collaboration. Opinions/ideas/mistakes are mine.

Why High-Energy Neutrinos?

 $\sigma \sim G_F^2 s$

Extreme long baselines

Observing neutrinos from uncharted territories

Landscape of New Physics That We can Explore

IVEI (RI) (TAS)

A new frontier in the search for dark matter

Stops

STOP

- Using the flavor of neutrinos to find new physics
- New physics with new sources
- Anomalies and new physics at PeV-EeV

START

A new frontier in the search for dark matter

Sto

Using the flavor of neutrinos to find new physics

New physics with new sources

Anomalies and new physics at PeV-EeV

Dark matter annihilation

WIMP Miracle: The final frontier

To rule out the WIMP miracle in a "model independent way" one needs to constraint all SM annihilation channels.

For good limits, we need good predictions!

https://github.com/lceCubeOpenSource/charon

IceCube results with updated calculations to appear soon!

Q. Liu & J. Lazar *et al* 2007.15010

Bauer, Rodd & Webber et al 2007.15001

Background agnostic constraints on Dark matter making neutrinos

Flux of neutrinos from dark matter cannot overshoot measurements of the integrated neutrino flux.

Background agnostic constraints on Dark matter making neutrinos

Associated gamma-ray flux should also not overshoot constraints

And many more measurements ...

CA, D. Delgado, A. Friedlander, A. Kheirandish, I. Safa, A.C. Vincent, H. White arXiv:2210.01303

14

CA, D. Delgado, A. Friedlander, A. Kheirandish, I. Safa, A.C. Vincent, H. White arXiv:2210.01303

And many more measurements ...

CA, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, A.C. Vincent *Rev. Mod. Phys.* 93, 35007 (2021); See also Beacom et al. *PRL* 99: 231301, 2007.

Dark matter neutrino incoherent scattering

New Trail With High-Energy Neutrinos

DM-v interaction will result in scattering of neutrinos from extragalactic sources, leading to *anisotropy* of diffuse neutrino flux.

CA, A. Kheirandish & A. Vincent Phys. Rev. Lett. 119, 201801

HESE Neutrino Skymap

HESE: high-energy starting events IceCube Collaboration, arXiv:2205.12950

Events are compatible with an isotropic distribution: found no signal!

Also include effects in energy and direction

20

New constraints on

neutrino-dark matter interactions

Color scale is the maximum allowed coupling.

Cosmological bounds using Large Scale Structure from Escudero et al 2016

IVEL RI TAS -----χ

Second Generation Analyses Using Medium-Energy Starting Events

Larger sample sizes data sets yet to be used for these searches. Only IceCube's High-Energy Starting Events used so far. A new frontier in the search for dark matter
Using the flavor of neutrinos to find new physics

Stops

- New physics with new sources
- Anomalies and new physics at PeV-EeV

Unitarity

After oscillations where will the different sources end up?

See also Bustamante et al. PRL 115, 161302 (2015); Rasmussen et al. 1707.07684; Palomares-Ruiz 1411.2998; Palladino et al 1502.02923; Bustamante et al 1610.02096; Brdar et al. 1611.04598; Farzan & Palomares-Ruiz 1810.00892; CA et al. 1909.05341; Learned & Pakvasa hep-ph/9405296 ..

Non-unitarity

Non-unitarity

CA, Farrag, Katori, Khandelwal, Mandalia, Salvado arXiv:1909.05341

Other New Physics Effects on the Flavor Triangle

Learned & Pakvasa arXiv:hep-ph/9405296, Mena et al arXiv:1404.0017, CA et al arXiv:1506.02043, Bustamante et al arXiv:1506.02645, Brdar et al arXiv:1611.04598, Gonzalez-Garcia et al arXiv:1605.08055, Rasmussen et al arXiv:1707.07684, Etc

High-Energy Starting Event Flavor Measurement

Search for Lorentz Violation via Flavor Morphing

As neutrinos travel from their far away source they can interact with a Lorentz violating field.

Effects expected at the Planck Scale.

Space-time effects J. Ellis et al arXiv:1807.051550 K. Wang et al. arXiv:2009.05201 Zhang & Ma arXiv:1406.4568

VERI

tetropol and

Trajectories in the flavor triangle in the presence of Lorentz Violation (LV)

IceCube collaboration arXiv:2111.04654

Results on high-dimensional LV operators

IceCube collaboration arXiv:2111.04654

Projected Upgrade Flavor Measurement

N. Song, S. Li, CA, M. Bustamante, A. Vincent (arXiv:2012.12893)

Stops

- A new frontier in the search for dark matter
 Using the flavor of neutrinos to find new physics
- New physics with new sources
- Anomalies and new physics at PeV-EeV

Neutrino Time of Flight

CvB or DM θ primary ν Scattered ν Farth γ D Transient Source

$$v(E) = c \left[1 - s_n \frac{n+1}{2} \left(\frac{E}{E_{\text{LV},n}} \right)^n \right]$$

Time-of-flight constraints rely on

assumption of flare emission

window. Handle with care.

$$(\Delta v_{\nu\gamma}/c)_{TXS} \sim 10^{-11}$$

 $(\Delta v_{\nu\gamma}/c)_{SN1987A} \sim 3 \cdot 10^{-9}$

Space-time effects J. Ellis et al arXiv:1807.051550 K. Wang et al. arXiv:2009.05201 Zhang & Ma arXiv:1406.4568

LV,n/J

Dark Matter-neutrino interactions Murase & Shoemaker arXiv:1903.08607

Opacity to Individual Sources Kelly et al arXiv:1808.02889

Opacity constraints rely on assumptions on the intrinsic source luminocity. Handle with care.

dark matter-neutrino couplings CA et al. arXiv:1703.00451 Kelly et al arXiv:1808.02889 Choi et al. arXiv:1903.03302

neutrino-neutrino couplings Kelly et al arXiv:1808.02889 CA et al. arXiv:2009.05201 Carpio et al. arXiv:2104.15136

Neutrino Oscillations At Cosmic Scales

$$M_{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$

If B-L is a good symmetry that's spontaneously broken. Gauging B-L and breaking it spontaneously, we would get:

.....

 $(10^{-22} - 10^{-12}) \,\mathrm{eV}^2$

$$P_{\alpha\beta} = \frac{1}{2} \sum_{j=1}^{3} |U_{\beta j}|^2 |U_{\alpha j}|^2 \left[1 + \cos\left(\frac{\delta m_j^2 L_{\text{eff}}}{2E_{\nu}}\right) \right]$$

Probing Pseudo-Dirac Neutrinos with Astrophysical Sources at IceCube 2212.00737 Kiara Carloni,^{1,*} Ivan Martínez-Soler,^{1,†} Carlos A. Argüelles,^{1,‡} K. S. Babu,^{2,§} and P. S. Bhupal Dev^{3,¶}

See also Rink & Sen arXiv:2211.16520

Neutrino Oscillations At Cosmic Scales

Probing Pseudo-Dirac Neutrinos with Astrophysical Sources at IceCube 2212.00737 Kiara Carloni,^{1,*} Ivan Martínez-Soler,^{1,†} Carlos A. Argüelles,^{1,‡} K. S. Babu,^{2,§} and P. S. Bhupal Dev^{3,¶}

See also Rink & Sen arXiv:2211.16520

- A new frontier in the search for dark matter
- Using the flavor of neutrinos to find new physics
- New physics with new sources
- Anomalies and new physics at PeV-EeV

Unusual things

Fox et al arXiv:1809.09615

ANITA Collaboration arXiv:1803.05088

event, flight	3985267, ANITA-I	15717147, ANITA-III
date, time	2006-12-28,00:33:20UTC	2014-12-20,08:33:22.5UTC
Lat., Lon. ⁽¹⁾	-82.6559, 17.2842	-81.39856, 129.01626
Altitude	2.56 km	2.75 km
Ice depth	3.53 km	3.22 km
El., Az.	$-27.4\pm0.3^\circ, 159.62\pm0.7^\circ$	$-35.0\pm0.3^\circ, 61.41\pm0.7^\circ$
RA, $Dec^{(2)}$	282.14064, +20.33043	50.78203, +38.65498
$E_{shower}^{(3)}$	$0.6\pm0.4~{ m EeV}$	$0.56^{+0.3}_{-0.2}~{ m EeV}$

See also ANITA Coll. arXiv:2112.07069 for ANITA-IV results. Four additional interesting events observed.

40

Unusual things

Explaining the ANITA Anomaly with Inelastic Boosted Dark Matter

A Sterile Neutrino Origin for the Upward Directed Cosmic Ray Showers Detected by ANITA

John F. Cherry¹ and Ian M. Shoemaker¹

¹Department of Physics, University of South Dakota, Vermillion, SD 57069, USA* (Dated: 8-23-2018)

Looking

at the

Axionic

Dark Sector with ANITA

Munneke,⁴ J. Siegert⁷

Alexander Kusenko,^{2,3} Peter Kuipers

and Martin

Schroeder,⁶

Dustin M.

Andrew Romero-Wolf,

Shoemaker,

Ian M.

Tau Regeneration

Safa ... CA... arXiv:1909.10487

Intimate connection between PeV and ZeV energies

Get code here: https://github.com/icecube/TauRunner Put neutrinos here

Ruling out ANITA Neutrino Interpretation

Constraints on EeV Fluxes From PeV Measurements

PeV Tau Neutrinos to Unveil Ultra-High-Energy Sources

Carlos A. Argüelles,^{1,*} Francis Halzen,^{2,†} Ali Kheirandish,^{3,‡} and Ibrahim Safa^{1,2,§}

arXiv:2203.13827

Take home message

We live in interesting times! Nu-probes are available and old puzzles remain!

Astrophysical neutrinos provide new ways to search for dark matter.

The flavor of astrophysical neutrinos is a powerful probe of new physics.

Observation of sources open the possibility to study oscillation physics at new, uncharted scales

May your chosen trail lead you to new physics!

Bonus slides

Carpio et al. arXiv:2104.15136

Next Generation Dark Matter Searches

CA, A. Diaz, A. Kheirandish, A. Olivares-Del-Campo, I. Safa, A.C. Vincent *Rev. Mod. Phys.* 93, 35007 (2021); See also Beacom et al. *PRL* 99: 231301, 2007. 50

Sources of Astrophysical Neutrinos

(arXiv:1007:0006)

ANITA-IV

Event	$E_{\nu,\gamma=-1}$ (EeV)	$E_{\nu,\gamma=-2}$ (EeV)	$E_{ u,\gamma=-3}$ (EeV)	
4098827	$49.8^{+80.3}_{-37.7}$	$12.5^{+29.9}_{-7.4}$	$5.2^{+6.0}_{-2.5}$	
19848917	$31.9^{+76.0}_{-24.5}$	$5.2^{+11.0}_{-2.9}$	$2.6^{+3.1}_{-1.1}$	
50549772	$45.4^{+83.4}_{-34.4}$	$8.8^{+19.5}_{-4.9}$	$4.3^{+4.8}_{-2.1}$	
72164985	$60.3^{+88.9}_{-38.2}$	$15.1\substack{+27.3 \\ -7.6}$	$8.9^{+10.5}_{-4.5}$	

