Diffuse Astrophysical (Tau) Neutrinos

Doug Cowen Penn State

Introduction

- Diffuse ν^{astro} : excess at high E_{ν}
- Give insights into acceleration and propagation of high-*E* cosmic rays

- Possible sample slices: Contained, Upgoing, Track-like, Cascade-like, Tau-like
- Possible sources: AGNs, choked GRBs, TDEs, Starburst galaxies...

Detectors

Diffuse High- $E \nu$: Previous Results

- Flux consistent with single power law (SPL): $\Phi_{\nu} \propto \phi_0 E_{\nu}^{-\gamma}$
 - Also consistent with (softer) SPL-with-cutoff, log-parabola, piece-wise.
 - *In*consistent with pure ν^{atm} at >5 σ (>3 σ , >1.8 σ) by IceCube (GVD, ANTARES)
- Comparable energy content in γ -rays, ν 's and cosmic-rays.
 - Suggests common origin(s).

 $N_{\rm evt}(E_{\mu,\,{
m proxy}}>200\,{
m TeV})\sim35$

Diffuse High- $E \nu$: Previous Results

- Summary of ANTARES & IceCube measurements of $\phi_0,\,\gamma$
 - All broadly consistent with one another

New Results: GVD

- Based on cascade-like events
 - Consistent with other msmts.

$\nu_{\tau}^{\text{astro}}$: A New (Multi-)Messenger?

- Detection of $\nu_{\tau}^{\text{astro}}$ is very challenging. Why bother?
 - Can help pin down flavor ratio ν_e : ν_μ : ν_τ at sources
 - More insight into acceleration environment
 - \bullet Improves access to cosmic baseline u oscillations
 - Strong deviations from 1:1:1 at detector→new physics?

Importance of Flavor ID for ν^{astro}

At Earth, ν_e : ν_μ : ν_τ could tell us about the source...

...while strong deviations from 1:1:1 could mean new physics.

Example: Effect of quantum gravity.

For more examples, see Refs. 22-59 in IceCube, PRD 104, 022002 (2021).

Importance of Flavor ID for ν^{astro}

Status quo:

Measured flavor composition of IceCube HESE events. \star is best fit point, consistent with presence of all 3 flavors, but ν_{τ} flux only weakly constrained. To shrink the contour, need better P.I.D., certainly more than just "track" vs. "cascade."

$\nu_{\tau}^{\text{astro}}$: A New (Multi-)Messenger?

- Detection of $\nu_{\tau}^{\text{astro}}$ is very challenging. Why bother?
 - Can help pin down flavor ratio ν_e : ν_μ : ν_τ at sources
 - More insight into acceleration environment
 - \bullet Improves access to cosmic baseline ν oscillations
 - Strong deviations from 1:1:1 at detector→new physics?
- Path forward: Improve particle ID
 - From $(\nu_{e,\tau}^{\text{CC}}, \nu_{e,\mu,\tau}^{\text{NC}})$ vs. ν_{μ}^{CC}
 - "cascade" vs. "track"
 - To $(\nu_e^{\text{CC}}, \nu_{e,\mu,\tau}^{\text{NC}})$ vs. ν_{μ}^{CC} vs. ν_{τ}^{CC}
 - "single cascade" vs. "track" vs. "double cascade"

More flux at lower energies! Look for subtler signature(s) in one or more modules.

$\nu_{\tau}^{\text{astro}}$: Past Results

- Previous IceCube analyses:
 - Exclusive v01
 - Seek distinct double pulse (DP) waveforms in 1–2 modules
 - Two candidate $u_{ au}^{\mathrm{astro}}$
 - •~Inclusive

• Use likelihood reconstruction to classify 60 "HESE" events (with $E_{dep} > 60 \text{ TeV}$) as either track, single cascade, or double cascade

• Saw 17 tracks, 41 single cascades, 2 double cascades

• Summary of results:

- One event (nicknamed "Double Double") appeared in all analyses
- Background levels were $\mathcal{O}(1)$ event
- Best exclusion of null hypothesis, $\Phi(\nu_{\tau}^{\rm astro}) = 0$, was 2.8σ

$\nu_{\tau}^{\text{astro}}$: Past Results

- With standard ν oscillations, expect $\gg 2~\nu_{\tau}^{\rm astro}$ in the data
- Challenge: Grow $N_{\nu_{\tau}}$ but keep $N_{\rm bkgd}$ low
 - Exclusive analysis: Look for double pulse waveforms, correlations across modules & strings,...
 - • $L_{\tau} \sim 10-50$ m to distinguish two showers in individual module light-arrival waveforms
 - Identify DPs in one or more modules
 - Lower E_{ν} threshold increases event count: $\phi_{\nu}^{\text{astro.}} \propto E_{\nu}^{-2.x}$
 - Previous IceCube analyses
 - Look for 1–2 modules with waveform(s) having clean DP signature(s)
 - Candidate ν_{τ} seen, but need higher S/N

$\nu_{\tau}^{\text{astro}}$: New Approach

- With standard ν oscillations, expect $\gg 2 \nu_{\tau}^{\rm astro}$ in the data
- Challenge: Grow $N_{\nu_{\tau}}$ but keep $N_{\rm bkgd}$ low
 - Exclusive analysis: Look for double pulse waveforms, correlations across modules & strings,...
 - • $L_{\tau} \sim 10-50$ m to distinguish two showers in individual module light-arrival waveforms
 - Identify DPs in one or more modules
 - Lower E_{ν} threshold increases event count: $\phi_{\nu}^{\text{astro.}} \propto E_{\nu}^{-2}$
 - Current analysis
 - Look for DP signatures across 180 modules on 3 strings using neural networks
 - High S/N achieved...

$\nu_{\tau}^{\text{astro}}$: Convolutional Neural Networks

- Trained 3 independent CNNs • C_1 : DP vs. SP (ν_{τ}^{CC} vs. ν_{e}^{CC} , ν_{x}^{NC}) • C_2 : DP vs track (ν_{τ}^{CC} vs. μ_{\downarrow}) • C_3 : DP vs Track (ν_{τ}^{CC} vs. ν_{μ}^{CC})
- $C_1 \ge 0.99$, $C_2 \ge 0.98$, $C_3 \ge 0.85$ • Gives S/N ~ 14.
- Backgrounds
 - Dominant: $\nu_{\rm astro.}$ and $\nu_{\rm atm.}$
 - Sub-dominant: μ_{\downarrow}
- 3 separate CNNs worked better than 1 all-purpose CNN

$\nu_{\tau}^{\text{astro}}$: Predicted Energy Spectrum

- After final cuts, peaks at ~200 TeV
 - Lower $E_{\nu_{\tau}}$ threshold translates to higher $N_{\nu_{\tau}}$
 - Peak signal efficiency at several PeV, but flux there is v. low

$\nu_{\tau}^{\text{astro}}$: Signal & Backgrounds

- Expected 4–8 ν_{τ} on a bkgd. of ~0.5 with 9.7 years of data
 - •(S,B) levels depend on assumed astrophys. flux
 - Flavor ratio at Earth assumed to be 1:1:1
- What about the backgrounds?

• ν^{astro}

- IceCube has four flux measurements
- Use one with least-significant exclusion of null hypothesis

• $\nu^{\rm atm}$

- Conventional flux (Honda et al.; IceCube msmts.)
- Possible prompt flux (Bhattacharya et al.; IceCube exclusion)

• Other:

 \bullet Charm, cosmic ray muons, on-shell W, Earth-crossing $\nu_e, \nu_\mu \rightarrow \nu_\tau$

$\nu_{\tau}^{\text{astro}}$: Charm Background

- Backgrounds/Systematics in more detail: Charm
 - Charm: $\nu_e^{\text{astro}} \rightarrow eW$; $W \rightarrow cs$
 - • $\lambda_{\text{charm}} \simeq \mathcal{O}(\text{m}), E_{\text{dep.}} \simeq 10^{12-14} \text{ eV}$
 - Two separated cascades: e + second shower if have large $(\lambda_{charm}, E_{dep.})$
 - Full charm MC: ~20% increase in ν_e^{astro} bkgd.
 - Small correction to account for MC's older PDFs
 - Added to estimated background after unblinding
 - (Future improvement: Charm event topology may be sufficiently different from ν_{τ} that new CNN could reject.)

$\nu_{\tau}^{\text{astro}}$: Other Backgrounds/Systematics

- Backgrounds/Systematics, cont'd:
 - μ_{\downarrow} , μ_{DIS} ($\mu + X \rightarrow \nu_{\mu} + X'$): considerably smaller than ν^{astro}
 - Other physics processes determined to be sub-dominant:
 - On-shell *W* production ($\nu_e \rightarrow eW$; $W \rightarrow \tau \nu_{\tau}$; $\tau \rightarrow (e, h)$)*
 - High-energy Earth-crossing $\nu_e, \nu_\mu \rightarrow {\nu_\tau}^{**}$
 - Detector-related systematics all found to be small. Checked uncertainties in:
 - bulk ice scattering & absorption
 - hole ice scattering & absorption
 - DOM efficiencies

$\nu_{\tau}^{\text{astro}}$: Results

- Saw 7 candidate $\nu_{\tau}^{\rm astro}$ events
 - $\bullet \sim 0.5$ events estimated total background
 - 4 of 7 candidates not selected by previous analyses
 - 3 of 7 candidates previously selected
 - 1 of which was identified as a u_{τ} candidate
 - $\bullet \, \Phi(\nu_\tau^{\rm astro})$ consistent with measured $\Phi(\nu^{\rm astro})$ from published analyses
 - • $(\phi_0, \gamma) = [(2.23, 2.5), (1.36, 2.37), (2.12, 2.87), (2.04, 2.62)]$ (GlobalFit, Diffuse, HESE and Inelasticity, respectively)
- Exclusion of $\Phi(\nu_{\tau}^{\text{astro}}) = 0$ will be reported soon.
 - Pre-unblinding, predicted ~50% chance of ~5 σ result.

$\nu_{\tau}^{\text{astro}}$ Candidate Event Pics

Here's "Double Double," an old event & prior ν_{τ} candidate:

Gratifying to find this event again.

$\nu_{\tau}^{\text{astro}}$ Candidate Event Pics

Here's "Scarlet Macaw," a new event:

Clear ν_{τ} signature. Detected in 2019 (too recent for previous analyses to have seen).

Doug Cowen/Penn State/dfc13@psu.edu

$\nu_{\tau}^{\text{astro}}$ Candidate Event Pics

And here's "Estragon," an old event revealed as a ν_{τ} candidate:

The ν_{τ} signature is spread out over multiple modules and strings.

Doug Cowen/Penn State/dfc13@psu.edu

$\nu_{\tau}^{\text{astro}}$: Post-Unblinding Checks

- Explicit reconstruction of $(x, y, z, E, \theta, \phi)$ not part of the analysis
 - Do not (yet) have a reco. tuned for such $\nu_{ au}$
 - Would have added considerable delay and complexity
 - Would have increased susceptibility to systematic uncertainties of, e.g., ice properties
- Here we checked candidate ν_{τ} w/existing reco.
 - Reco. was tuned for *single-pulse* events (e.g., ν_e)

$\nu_{\tau}^{\text{astro}}$: Post-Unblinding Checks

- Apply singlepulse reco. to
 - simulated u_{τ}
 - candidate ν_{τ}
- Reasonably good agreement...
 - ...but take actual numbers with a *big* grain of salt

Fitted ν_{τ} Fluxes

With just 7 candidate $\nu_{\tau}^{\rm astro}$, we fix γ and fit for ϕ_0 :

Excellent agreement with previous four IceCube measurements.

Diffuse ν_{τ} consistent with other flavors.

What's Next for $\nu_{\tau}^{\text{astro}}$?

- Used just 3 (of 86) strings for CNNs. Using more strings may:
 - Improve bkgd rejection \rightarrow relax cuts \rightarrow more signal

• Improve current $\nu_{\tau}^{\rm astro}$ flux measurement

- Will update "triangle plot" with u_{τ} information
 - Search for new physics (e.g., quantum gravity)
 - ID likely astrophysical-source acceleration scenarios • exclude some?
- Apply a dedicated reco. for ν_{τ} direction, $E_{\nu_{\tau}}$,...
 - Use high-astrophysical-purity ν_{τ} to look for point sources
 - Can run neural networks in real time; generate alerts
 - \bullet Study parameters of the ν_{τ} themselves
 - • $L_{ au}$, energy asymmetry, ...

Summary

- Diffuse ν_x^{astro} , first detected nearly a decade ago,
 - birthed high- E_{ν} astronomy
 - is consistent with single power law spectrum
- We can expect tighter constraints on (ϕ, γ) with improved techniques, more data and more detectors (e.g., ARCA)
- Together, diffuse & point source detections can
 - unveil astrophysical source environments
 - reveal new physics
- • ν_{τ} can provide powerful constraints
 - astrophysical source characterization
 - cosmic baseline neutrino oscillations
- $\bullet\, {\rm New}\, \nu_{\tau}$ analysis successfully increased statistics
 - use to better constrain triangle plot, search for new physics
 - further analysis improvements in the works

IceCube Collaboration

Spring 2022 Collaboration Meeting, Brussels, Belgium