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A quick review of PBHs

PBH formation: a simple but fine-tuned process

Quantum
fluctuations

When a local density fluctuation
exceeds a threshold value, it collapses

Inflation gravitationally and forms a PBH
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A quick review of PBHs

PBH formation at the QCD transition

From known thermal history:

® Change in the number of relativistic degrees
of freedom

fpBH

® Equation of state reduction, particularly at the
QCD transition

® 1S
® Boosted PBH formation, resulting in a bumpy

mass function

Jedamazik, astro-ph/9605152
Cardal & Fuller, astro-ph/9801103
Jedamzik & Niemeyer, astro-ph/9901293
Byrnes, Hindmarsh, Young, Hawkins, 1801.06138
Carr, S.C., Garcia-Bellido, Kuhnel, 1906.08217
De Luca, Franciolini, Riotto et al., 2009.08268
Jedamzik, 2006.11172, 2007.03565
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A quick review of PBHs

Limits vs clues: a question of point of view
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A quick review of PBHs

Limits vs clues: a question of point of view
Dark Matter [Chapline 75, Carr+Hawking 75] M[M,)]

HSC: short microlensing event [Niikura+17] 100 10-17 10~ 1073 10! 107 1013 101°

OGLE: microlensing in galactic center [Mros+17]

Quasar micrrolensing in non-aligned galaxies [Hawkins],
(+microlensing in M31 and SMC/LMC)

E ~2
OGLE+Gaia: BHs in the low mass gap, towards the galactlcg 10
center) [Wyrzykowski+19]
Critical radius of ultra-faint dwarf galaxies [SC+17]
Core-cusp problem [SC+17, Boldrini+19]
LIGO/Virgo (solar-mass and 20-100 solar mass)

GW background from pulsar timing arrays [De Luca+19]

Subsolar triggers in LIGO-02 (Phukon+21) 10-6 , , . _
1013 IOZU 1013 10.5U 10.53 104U 1043 IODU

X-ray / infrared correlations (Kashlinsky 16) M [grams]

Intermediate-mass and supermassive black holes (one per @ Problem microlensing limits ?
halo and BH-halo mass relation) [Carr+19] 7 @ Problem with CMB limits (Serpico+22) ?
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A quick review of PBHs

Merger rates

Early binaries

1.6 x 106 cajan t(2)] Y
Rl = Gpcd yr fsup<m17 My, 2) PB/H (myq) f(my) ?
~32/37 1 —34/37
y ( mq + mz) My My |
M (Mg + my)*

2018-2020: Raidal et al., Hutsi et al.: fsup = 0.0024 if fpeH = 1:



A quick review of PBHs

Merger rates

Early binaries Late Binaries
1.6 x 10 1(z)] M (my + m.,) 10/
early __ 53/37 N7 late _ UL "y —1 —3
R = GpByr Ssup(Ma, Mo, 2) fppn f(mq) f(my) o R#*(my, my) = Ryt f(mq) f(msy) (1m0 )57 yr— Gpe™°
—32/37 ~—34/37
X ( m m2> KR A Standard halo mass function:
M (my + mgy)?

Rclust =1-10

2018-2020: Raidal et al., Hutsi et al.: fsup = 0.0024 if foan = 1:  0iSSON clustering [SC,Garcia-Bellido 20]:
Rclust — 100'700



A quick review of PBHs

Expected distribution GW detections

1. 10 100 -
| 1.5

® Expected normalized distribution of BBH
merger detections

® Preliminary results: Albert Escriva, Eleni
10 Bagui, SC, arXiv release planned next week

® More accurate simulations/calculations of PBH
mass function

® LIGO/Virgo O3 volume sensitivity

05 ® PBHs can explain BH binaries, except around
10 solar masses => astrophysical BHs ?

my [Mg]

® Need of population MCMC analysis to explore
the entire parameter space

1. 10 100



A boosted GW background

[E. Bagui, SC, 2021]

from PBHs with broad mass distributions

Gravitational-wave background from late PBH binaries in clusters:

PTA’s LISA Ground-based
: \'\\ ()(.r;llvlll.ﬁ
10~ 0.001 10
f (Hz)

LISA best — EPTA
LISA worst NANOGrav
Einstein Telescope IPTA
alLIGO/aVirgo (0O3) PPTA

- aLLIGO/aVirgo (02)

Design HLV
Design A+
SKA

ng = 0.965
Nng = 0.97
ns = 0.975

Log—normal mass distribution (upgy = 2.5 Mo, opaua = 0.1)

Well above monochromatic/lognormal models due to IMBH + solar mass binaries
Could explain a detection by NANOGrav ? Alternative: from 2nd order perturbations



A boosted GW background

from PBHs with broad mass distributions

Gravitational-wave background from early PBH binaries:

[E. Bagui, SC, 2021]

Ground-based

~

stellar BHs + neutron stars

PTAs LISA Ground-based
' ' | """ I ' ' ' 10_75 ' L AL
: \.\\(),(";1‘11\ 12.5 | ~ I
: <~
| & T\ tWKdesion
| S0\ T
i : l
‘ | Einstein Telescope
. 10719
1077 0.001 10 510
f (Hz)

50 100 500
f Hz)

Well above stellar BH predictions due to solar-mass + planetary-mass binaries

At the limit of being detected by LIGO/Virgo !




Popcorn vs continuous background

How to distinguish primordial and stellar black holes?

Duty cycle: average number of events overlapping at a given time. This quantity, in the observer frame,
Is defined as the ratio of the typical duration of an event, to the average time interval between two
successive events

dRO z' )

AT dz’

4

Duration of a Coalescence rate per
GW signal unit of redshift




Popcorn vs continuous background

How to distinguish primordial and stellar black holes?

Based on the magnitude of the duty cycle, three different regimes can be defined:

e A >> 1, where the overlap of the signals generates a continuous, Gaussian, background.

e A << 1, where long periods of silence separate two signals, resulting in a shot-noise background.

e A = 1, where the signals may overlap, but their statistics is no longer Gaussian and the amplitude at a
given time at a detector is not predictable, turning into a popcorn-noise background.



Popcorn vs continuous background

How to distinguish primordial and stellar black holes?

z 5
A(Z) oo fO dZ, 25671'8/3(G?Vfc(1+2’))5/3
2
gy Z cdz’ C
=1 (5 #5) (a) (i) ™% = (fmae) 2

fmax o Max[fmin,dew Min[fISC()) fmax,det]]

(m1—|—m2)10/7 —1 —3
Tmerg(m17m2) X (m1mz)3/7 yI GpC

R2(f) = ASL. f-4/3 [& % [ [ dlnmy d1nmeg Tmerg (M1, mae) M2/

Zmax Such that A(zmax) = 1



Popcorn vs continuous background

Preliminary!

How to distinguish primordial and stellar black holes?

Late binaries
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The popcorn/continuous ratio increases with frequency !
Origin: binaries with low mass ratios and subsolar PBHs



Popcorn vs continuous background

How to distinguish primordial and stellar black holes?

GW background for late binaries and different models (Braglia et al, 2022)
with detector-dependence of duty cvcle (threshold SNR=8)
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Figure 7. |Left] Q2w normalized to the same amplitude. [Right] Detector-independent (solid) and dependent (dashed) duty-cycle
corresponding to the backgrounds shown in the left panel.

Detector dependent effects for early binaries ? Work in progress....
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The frequency dependence of the relative contribution of popcorn and
continuous backgrounds is a smoking-gun of the existence of subsolar PBHSs.

Need of calculations of the

Need to develop methods to extract the duty cycle as a function of frequency
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loglo(mz/M o)

log,o(m/Mo)

Duty cycle as a function of the PBH masses

log,q(my/Mop)

logg(m/Mo)

10g10(m2/M o)

f = 1000 Hz
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