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Two Questions

Q1. Does the background have an interest compared to individual detections?
- intrinsic parameter distribution? (masses, spins etc…)
- redshift distribution? 
- sky distribution? 

Q2. Will we be able to get rid of the correlated noise (see Kamiel’s talk) and  
astrophysical foreground from CBCs?



What sources contribute to the background

Definition: A stochastic background of gravitational waves has resulted from
the superposition of a large number of independent unresolved sources.

- Sources that overlap and cannot be separated individually.

- Sources that are below the sensitivity of the detectors.



The case of a cosmological background  

Figure 1: Time series of the strain amplitude in GWs for a Gaussian stochastic background.

3 The spectral properties

Since the first studies on the gravitational-wave background were focusing on the primordial back-
ground, we historically characterize the GWB using the fractional energy density spectrum [AR99]:

⌦GW (f) =
f

⇢c

d⇢GW

df
(1)

where d⇢GW is the energy density in the frequency interval f to f + df , ⇢c = 3H2
0c

2

8⇡G is the critical
energy density required to close the Universe, and H0 is the Hubble constant. The energy density
parameter in GWs, that can be compared to other quantities used in cosmology such as the energy
density parameters of matter, dark energy, relativistic particle or curvature, is:

⌦GW =

Z
⌦GW(f)d ln f (2)

Going back to the cosmological stochastic background formed by the overlap of many weak sources
in the early Universe, it is assumed to be Gaussian because of the central limit theorem which says
that the sum of a large number of independent variables converges to a normal distribution, what-
ever distribution the variables follow individually. It is also stationary in the sense that the normal
distribution does not change with time. Figure 1 shows a time series of the GW strain amplitude of
a Gaussian and stationary stochastic background: the amplitude h(t) at any given time t follows a
normal distribution centered in zero and with the same variance. It is also assumed to be isotropic by
analogy with the Cosmic Microwave Background and unpolarized. Then it is completely characterized
by the energy density spectrum as defined in Eq. 2. However, when the background is non Gaussian,
non stationary or non isotropic, which can be the case for astrophysical backgrounds, other quantities
need to be introduced, as we will discuss later.

3

At this point, we introduce perhaps the most famous distribution in statistics: the Normal

Distribution. You may well have seen it depicted as a bell curve before, similar to the below
picture:

Distributions can be specified by key parameters. For the Normal distribution, the key
parameters are the mean ( ) and the standard deviation ( ) (or alternatively the variance, ).
In the above picture, we have that:

µ σ σ2
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The case of the CBC background

BNS=continuous/
non Gaussian

BBH=popcorn

LVC, 2018, PhysRevLett.120.091101

https://ui.adsabs.harvard.edu/link_gateway/2018PhRvL.120i1101A/doi:10.1103/PhysRevLett.120.091101




The case of the BNS background

Regimbau and Meacher, MDC Generation Package, 
LIGO-T1400401

LVC, 2018, PhysRevLett.120.091101

flim=10 Hz

flim=5 Hz

flim=1 Hz

https://ui.adsabs.harvard.edu/link_gateway/2018PhRvL.120i1101A/doi:10.1103/PhysRevLett.120.091101


The case of the BNS background

Regimbau, 2018, PhysRevD.86.122001LVC, 2018, PhysRevLett.120.091101
simulated with MDC_Generation package (Regimbau 2012)

https://ui.adsabs.harvard.edu/link_gateway/2012PhRvD..86l2001R/doi:10.1103/PhysRevD.86.122001
https://ui.adsabs.harvard.edu/link_gateway/2018PhRvL.120i1101A/doi:10.1103/PhysRevLett.120.091101


Q1: Does the background have an interest compared to 
individual detections?



Individual detections

http://cosmicexplorer.org/



With 2G detectors
Individual detections and background probe different redshifts. 



With 2G detectors
Individual detections and background probe different redshifts. 

Périgois et al., 2021, PhysRevD.103.043002

https://ui.adsabs.harvard.edu/link_gateway/2021PhRvD.103d3002P/doi:10.1103/PhysRevD.103.043002


With 2G detectors

• The sources that are detected now are the closest and the loudest sources

• The sample of individual detections is strongly biased toward small redshift and 
large masses

• The background contains informations about average values.



Astrophysical background

The integrated GW flux is the sum of all the individual contributions:

with the individual fluence:
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where p(q) is the probability distribution of the source parameters q, Q represents the
parameter space (for example the masses, the spins, the deformation of neutron stars),
dR
dz (q, z) is the observed rate in the redshift interval z� z+ dz, for sources with parameters q,
and FGW( f ) is the fluence at the observer frequency f from of a source with parameters q at
redshift z. The lower and upper limits of the integral zmin(q) and zmax(q) are the minimum
and the maximum redshifts at which a source with parameters q can be formed. They are
related to the parameters q through the minimal and maximal emission frequencies:

zmin( f ) = max(0,
fs;min(q)

f
� 1) (5)

and
zmax( f ) = min(zmax,

fs;max(q)
f

� 1) (6)

where fs;min(q) and fs;min(q) are the minimal and the maximal emission frequency of the
source. In the case of compact binary coalescences, they correspond to the initial at the
birth of the compact binary system and the final frequency.

Replacing the fluence by the following expression:

FGW(q, z, f ) =
1

4pr(z)2
dEGW

d fs
(q, fs) (7)

where r(z) is the proper distance, dEgw/d fs is the energy density emitted by a single source,
fs = f (1 + z) is frequency in the source frame, one obtains:

FGW( f ) =
Z

Q
p(q)dq

Z zmax(q)

zmin(q)
dz

dRz
dz

(q, z)
1

4pr(z)2
dEGW

d fs
(q, fs) (8)

The rate per interval of redshift is often calculated from the rate per comoving vol-
ume R(z):

dRz
dz

(z) =
R(z)
1 + z

dV
dz

(z) (9)

where the factor 1 + z in the denominator converts R(z) given in the source frame to the
observer frame, and where the comoving volume element is:

dV
dz

(z) = 4pr(z)2 c
H0E(z)

(10)

For a flat LCDM cosmology (neglecting the radiation term):

Ez(z) =
q

WM(1 + z)3 + WL (11)

captures the dependence of the comoving volume on redshift (see for e.g., [68]) where
WM is the energy density parameter of matter and WL the energy density parameter of
dark energy.

Combining the expressions above and after simplification we obtain the formula [46,48,52]:

WGW( f ) =
f

rcH0

Z

Q
p(q)dq

Z zmax(q)

zmin(q)
dz

R(q, z)
dEgw(q, fs)

d fs
(1 + z)Ez(z)

(12)

4. The Case of Compact Binary Mergers
The population of extra-galactic compact binaries formed by two black holes, two

neutron stars or a neutron star and a black hole is the most interesting example of a GW
background in the frequency band of terrestrial detectors for different reasons. First, we
have started to observe the closest and the loudest mergers of such systems with second
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generation detectors LIGO and Virgo, and we have already obtained constraints about
the rate and the distribution of masses or spins. Second, the waveform is well modelled
and thus the shape of the fractional energy density spectrum. And finally we expect this
background to dominate over all the other backgrounds and to be detected first. This
background is also present in the space detector LISA at lower frequencies.

Compact binaries emit gravitational waves when they inspiral around each others and
merge to produce a single neutron star or a black hole. In the frequency band of terrestrial
detectors, we observe the very last moment of the inspiral phase, close to the merger, when
the orbit has been circularized and we can assume there is no evolution of the redshift.
In this case, the rate R(z) corresponds to the merger rate and the spectral energy density
spectrum of a single source dEgw/d fs, is obtained from the relation for circular orbit [39]:

1
4pr2

dEgw

d fs
( fs) =

pc3

2G
f 2
s (H2

+( fs) + H2
⇥( fs)) (13)

where H+( fs) = A( fs)(1 + cos2 i)/2 and H⇥( fs) = A( fs) cos i are the Fourier amplitudes
of the two polarization states, i is the inclination angle, and r is the proper distance.
Following recent papers e.g., [45,46,48], we can consider the inspiral phase only for BNSs
and BHNSs and use the Newtonian waveforms up to the last stable orbit fISCO = c3

63/2GpM ,
M = m1 + m2 being the total mass (i.e., the sum of the component masses m1 and m2 of the
two compact objects), which gives:

A( fs) =

r
5
24

(GMc)5/6

p2/3c3/2
1
r

f�7/6
s (14)

where Mc = (m1m2)3/5/(m1 + m2)1/5 is the chirp mass. Replacing in Equation (13), we
obtain (N, C stands for Newtonian and circular):

dEN,C
gw

d fs
( fs) =

5(Gp)2/3M5/3
c Fi

12
f�1/3
s (15)

where Fi = (1 + cos2 i)2/4 + cos2 i.
For BBHs, we consider also the merger and ringdown and we use the phenomenologi-

cal waveform A( f ) of [69], which gives (P, C stands for phenomenological and circular):

dEP,C
gw

d fs
( fs) =

dEN,C
gw

d fs
( fs)g( fs) (16)

where

g( fs) =

8
<

:

(1 + Â3
i=2 ain

i)2 if fs < f1
fswm(1 + Â2

i=1 ein
i)2 if f1  fs < f2

f 1/3
s wrL2( fs, f2, s) if f2  fs < f3

, (17)

In this expression, f1, f2 and f3 are the frequencies at the end of the inspiral, merger and
ringdown phases, n = (pM f )1/3 and L( f , fring, s) is the Lorentz function centered at f2
and with width s, wm and wr are normalization constants ensuring the continuity between
the three phases.

The other various constants are defined as

e1 = 1.4547c � 1.8897,
e2 = �1.8153c + 1.6557,
a2 = �323/224 + 451h/168,
a3 = (27/8 � 11h/6)c,

(18)

Rate Spectral properties
of individual sources



With 2G detectors



With 2G detectors

most distant 
sources stop 
emitting



With 2G detectors

most distant 
sources stop 
emitting

only closest
sources



With 2G detectors
Peak related to the 
average redshifted
total mass



With 2G detectors

• The sources that are detected now are the closest and the loudest sources

• The sample of individual detections is strongly biased toward small redshift and 
large masses

• The background contains informations about average values.

• What is it with next generations ?



With 3G detectors
Individual detections and background probe different redshifts?

http://cosmicexplorer.org/



With 3G detectors
Individual detections and background probe different redshifts?



Q2. Will we be able to get rid of the astrophysical
foreground from CBCs with NG



What do we have in the background?
The total background is the sum of different contributions:

The total background from CBCs is formed by resoved and unresolved sources:

2

physical background from compact binary mergers from
the data. This work is an extension to [48], where the
authors have shown the level at which we can expect am-
plitude of background from unresolved, subthreshold sig-
nals from compact binary coalescences (CBC) using dif-
ferent detector networks. We extend the previous study
to also provide an estimate of errors we introduce while
subtracting the signals above threshold for the most op-
timistic network of detectors considered by [48]. The
idea of subtracting foreground signals to extract stochas-
tic backgrounds was already explored [51] in the context
of the the Big Bang Observer [52], including a noise pro-
jection method that could reduce errors due to imperfect
subtraction [53].

Data from gravitational-wave detectors are dominated
by environmental and instrumental backgrounds. Con-
sequently, it is not possible to identify even determin-
istic signals without sophisticated data processing such
as matched filtering [54]. Stochastic backgrounds can-
not be reliably detected in a single detector—they are
found by cross-correlating the data from a pair of detec-
tors. Indeed, the stochastic background present in one of
the detectors acts as a matched filter for the data in the
other detector [55–57]. Unfortunately, this means that
any common noise in a pair of detectors could masqua-
rade as stochastic background [58]. If detectors are geo-
graphically well separated then the risk of common noise
of terrestrial origin is greatly reduced. Additionally, cer-
tain backgrounds of terrestrial origin could be measured
and subtracted [59]. Even in the absence of any terres-
trial background, a pair of detectors would see the same
astrophysical background, which would show up as corre-
lated ‘noise’ although detectors might be geographically
well separated. As a result, the only possible way to
improve the sensitivity of a detector network to primor-
dial backgrounds is to subtract foreground astrophysical
signals.

The rest of the paper is organized as follows. In Sec. II,
we describe the basic method that we use to calculate the
gravitational-wave spectrum from the error introduced
by imperfect subtraction of CBC signals. In Sec. III, we
describe the framework used to estimate the deviations of
the estimated parameters of the CBC sources from their
true values. We discuss the simulation of a population
of binaries in Sec. IV, discuss the result of the imperfect
subtraction of such signals in Sec. V, and we discuss our
results in Sec. VI.

II. METHOD

The energy-density spectrum in gravitational waves is
described by the dimensionless quantity [57],

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where d⇢GW is the energy density in the frequency inter-
val f to f + df , ⇢c = 3H2

0
c
2
/8⇡G is the closure energy

density, and H0 is the Hubble constant equal to 67.8±0.9
km/c/Mpc [60].

The gravitational-wave energy spectrum density can
be written as a sum of contribution from the astrophysi-
cal and cosmological energy densities,

⌦GW = ⌦astro + ⌦cosmo. (2)

Taking the contribution of the compact binary coales-
cences out of the astrophysical background, and writing
it explicitly, we have,

⌦GW = ⌦astro, r + ⌦cosmo + ⌦cbc. (3)

Here ⌦astro, r is the remaining astrophysical background
after taking out the contribution from the CBC sources.

When estimating the parameters of a binary source,
by using Monte Carlo methods, or nested sampling, we
invariably end up with parameters that deviate from the
true values because of the noise in the detector. There-
fore when we subtract the recovered CBC signals from
the data, we introduce an additional background due to
the error in subtraction, ⌦error.

⌦GW = ⌦cbc, rec + ⌦error (4)

+ ⌦cbc, unres + ⌦cosmo + ⌦astro, r,

where ⌦cbc, rec is the background from the recovered CBC
sources that we can subtract from our data, ⌦error is the
background because of the error introduced from such a
subtraction, ⌦cbc, unres is the background from the un-
resolved CBC sources which are not detected as fore-
ground events. Let us assume that we have an experi-
ment where we have detected a list of CBC sources and
subtracted them from the data. Now we are left with the
gravitational-wave backgrounds, ⌦error, ⌦cbc, unres, on
top of the cosmological and astrophysical (from sources
other than the CBCs) backgrounds. We want to answer
the question of whether the cosmological or astrophysi-
cal backgrounds from sources other than CBCs can stand
above the residual background after removal of the CBC
sources. That is,

⌦error + ⌦cbc, unres

?

7 ⌦cosmo

?

7 ⌦astro, r. (5)

In order for us to be able to detect the gravitational-
wave background from cosmological sources or that from
di↵erent astrophysical sources, we would need ⌦residual =
⌦error + ⌦cbc, unres to lie below these.

The gravitational-wave energy density from a popula-
tion of compact binary sources is given by [48],

⌦cbc =
1

⇢cc
fF (f), (6)

where F (f) is the total flux, sum of individual contribu-
tions

F (f) = T
�1

⇡c
3

2G
f

2

NX

k=1

(h̃2

+,k(f) + h̃
2

⇥,k(f)), (7)

Wcbc= Wcbc,res + Wcbc,unres



Residual background 

Régimbau et al., 2017, PhysRevLett.118.151105; 2022 Symmetry

https://ui.adsabs.harvard.edu/link_gateway/2017PhRvL.118o1105R/doi:10.1103/PhysRevLett.118.151105


Subtracting the background from CBCs
The total background is the sum of different contributions:

The background from CBCs is formed by resoved and unresolved sources:

Errors on parameters estimation:

2

physical background from compact binary mergers from
the data. This work is an extension to [48], where the
authors have shown the level at which we can expect am-
plitude of background from unresolved, subthreshold sig-
nals from compact binary coalescences (CBC) using dif-
ferent detector networks. We extend the previous study
to also provide an estimate of errors we introduce while
subtracting the signals above threshold for the most op-
timistic network of detectors considered by [48]. The
idea of subtracting foreground signals to extract stochas-
tic backgrounds was already explored [51] in the context
of the the Big Bang Observer [52], including a noise pro-
jection method that could reduce errors due to imperfect
subtraction [53].

Data from gravitational-wave detectors are dominated
by environmental and instrumental backgrounds. Con-
sequently, it is not possible to identify even determin-
istic signals without sophisticated data processing such
as matched filtering [54]. Stochastic backgrounds can-
not be reliably detected in a single detector—they are
found by cross-correlating the data from a pair of detec-
tors. Indeed, the stochastic background present in one of
the detectors acts as a matched filter for the data in the
other detector [55–57]. Unfortunately, this means that
any common noise in a pair of detectors could masqua-
rade as stochastic background [58]. If detectors are geo-
graphically well separated then the risk of common noise
of terrestrial origin is greatly reduced. Additionally, cer-
tain backgrounds of terrestrial origin could be measured
and subtracted [59]. Even in the absence of any terres-
trial background, a pair of detectors would see the same
astrophysical background, which would show up as corre-
lated ‘noise’ although detectors might be geographically
well separated. As a result, the only possible way to
improve the sensitivity of a detector network to primor-
dial backgrounds is to subtract foreground astrophysical
signals.

The rest of the paper is organized as follows. In Sec. II,
we describe the basic method that we use to calculate the
gravitational-wave spectrum from the error introduced
by imperfect subtraction of CBC signals. In Sec. III, we
describe the framework used to estimate the deviations of
the estimated parameters of the CBC sources from their
true values. We discuss the simulation of a population
of binaries in Sec. IV, discuss the result of the imperfect
subtraction of such signals in Sec. V, and we discuss our
results in Sec. VI.

II. METHOD

The energy-density spectrum in gravitational waves is
described by the dimensionless quantity [57],

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where d⇢GW is the energy density in the frequency inter-
val f to f + df , ⇢c = 3H2

0
c
2
/8⇡G is the closure energy

density, and H0 is the Hubble constant equal to 67.8±0.9
km/c/Mpc [60].

The gravitational-wave energy spectrum density can
be written as a sum of contribution from the astrophysi-
cal and cosmological energy densities,

⌦GW = ⌦astro + ⌦cosmo. (2)

Taking the contribution of the compact binary coales-
cences out of the astrophysical background, and writing
it explicitly, we have,

⌦GW = ⌦astro, r + ⌦cosmo + ⌦cbc. (3)

Here ⌦astro, r is the remaining astrophysical background
after taking out the contribution from the CBC sources.

When estimating the parameters of a binary source,
by using Monte Carlo methods, or nested sampling, we
invariably end up with parameters that deviate from the
true values because of the noise in the detector. There-
fore when we subtract the recovered CBC signals from
the data, we introduce an additional background due to
the error in subtraction, ⌦error.

⌦GW = ⌦cbc, rec + ⌦error (4)

+ ⌦cbc, unres + ⌦cosmo + ⌦astro, r,

where ⌦cbc, rec is the background from the recovered CBC
sources that we can subtract from our data, ⌦error is the
background because of the error introduced from such a
subtraction, ⌦cbc, unres is the background from the un-
resolved CBC sources which are not detected as fore-
ground events. Let us assume that we have an experi-
ment where we have detected a list of CBC sources and
subtracted them from the data. Now we are left with the
gravitational-wave backgrounds, ⌦error, ⌦cbc, unres, on
top of the cosmological and astrophysical (from sources
other than the CBCs) backgrounds. We want to answer
the question of whether the cosmological or astrophysi-
cal backgrounds from sources other than CBCs can stand
above the residual background after removal of the CBC
sources. That is,

⌦error + ⌦cbc, unres

?

7 ⌦cosmo

?

7 ⌦astro, r. (5)

In order for us to be able to detect the gravitational-
wave background from cosmological sources or that from
di↵erent astrophysical sources, we would need ⌦residual =
⌦error + ⌦cbc, unres to lie below these.

The gravitational-wave energy density from a popula-
tion of compact binary sources is given by [48],

⌦cbc =
1

⇢cc
fF (f), (6)

where F (f) is the total flux, sum of individual contribu-
tions

F (f) = T
�1

⇡c
3

2G
f

2

NX

k=1

(h̃2

+,k(f) + h̃
2

⇥,k(f)), (7)

Wcbc= Wcbc,res + Wcbc,unres
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physical background from compact binary mergers from
the data. This work is an extension to [48], where the
authors have shown the level at which we can expect am-
plitude of background from unresolved, subthreshold sig-
nals from compact binary coalescences (CBC) using dif-
ferent detector networks. We extend the previous study
to also provide an estimate of errors we introduce while
subtracting the signals above threshold for the most op-
timistic network of detectors considered by [48]. The
idea of subtracting foreground signals to extract stochas-
tic backgrounds was already explored [51] in the context
of the the Big Bang Observer [52], including a noise pro-
jection method that could reduce errors due to imperfect
subtraction [53].

Data from gravitational-wave detectors are dominated
by environmental and instrumental backgrounds. Con-
sequently, it is not possible to identify even determin-
istic signals without sophisticated data processing such
as matched filtering [54]. Stochastic backgrounds can-
not be reliably detected in a single detector—they are
found by cross-correlating the data from a pair of detec-
tors. Indeed, the stochastic background present in one of
the detectors acts as a matched filter for the data in the
other detector [55–57]. Unfortunately, this means that
any common noise in a pair of detectors could masqua-
rade as stochastic background [58]. If detectors are geo-
graphically well separated then the risk of common noise
of terrestrial origin is greatly reduced. Additionally, cer-
tain backgrounds of terrestrial origin could be measured
and subtracted [59]. Even in the absence of any terres-
trial background, a pair of detectors would see the same
astrophysical background, which would show up as corre-
lated ‘noise’ although detectors might be geographically
well separated. As a result, the only possible way to
improve the sensitivity of a detector network to primor-
dial backgrounds is to subtract foreground astrophysical
signals.

The rest of the paper is organized as follows. In Sec. II,
we describe the basic method that we use to calculate the
gravitational-wave spectrum from the error introduced
by imperfect subtraction of CBC signals. In Sec. III, we
describe the framework used to estimate the deviations of
the estimated parameters of the CBC sources from their
true values. We discuss the simulation of a population
of binaries in Sec. IV, discuss the result of the imperfect
subtraction of such signals in Sec. V, and we discuss our
results in Sec. VI.

II. METHOD

The energy-density spectrum in gravitational waves is
described by the dimensionless quantity [57],

⌦GW(f) =
f

⇢c

d⇢GW

df
, (1)

where d⇢GW is the energy density in the frequency inter-
val f to f + df , ⇢c = 3H2

0
c
2
/8⇡G is the closure energy

density, and H0 is the Hubble constant equal to 67.8±0.9
km/c/Mpc [60].

The gravitational-wave energy spectrum density can
be written as a sum of contribution from the astrophysi-
cal and cosmological energy densities,

⌦GW = ⌦astro + ⌦cosmo. (2)

Taking the contribution of the compact binary coales-
cences out of the astrophysical background, and writing
it explicitly, we have,

⌦GW = ⌦astro, r + ⌦cosmo + ⌦cbc. (3)

Here ⌦astro, r is the remaining astrophysical background
after taking out the contribution from the CBC sources.

When estimating the parameters of a binary source,
by using Monte Carlo methods, or nested sampling, we
invariably end up with parameters that deviate from the
true values because of the noise in the detector. There-
fore when we subtract the recovered CBC signals from
the data, we introduce an additional background due to
the error in subtraction, ⌦error.

⌦GW = ⌦cbc, rec + ⌦error (4)

+ ⌦cbc, unres + ⌦cosmo + ⌦astro, r,

where ⌦cbc, rec is the background from the recovered CBC
sources that we can subtract from our data, ⌦error is the
background because of the error introduced from such a
subtraction, ⌦cbc, unres is the background from the un-
resolved CBC sources which are not detected as fore-
ground events. Let us assume that we have an experi-
ment where we have detected a list of CBC sources and
subtracted them from the data. Now we are left with the
gravitational-wave backgrounds, ⌦error, ⌦cbc, unres, on
top of the cosmological and astrophysical (from sources
other than the CBCs) backgrounds. We want to answer
the question of whether the cosmological or astrophysi-
cal backgrounds from sources other than CBCs can stand
above the residual background after removal of the CBC
sources. That is,

⌦error + ⌦cbc, unres

?

7 ⌦cosmo

?

7 ⌦astro, r. (5)

In order for us to be able to detect the gravitational-
wave background from cosmological sources or that from
di↵erent astrophysical sources, we would need ⌦residual =
⌦error + ⌦cbc, unres to lie below these.

The gravitational-wave energy density from a popula-
tion of compact binary sources is given by [48],

⌦cbc =
1

⇢cc
fF (f), (6)

where F (f) is the total flux, sum of individual contribu-
tions
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physical background from compact binary mergers from
the data. This work is an extension to [48], where the
authors have shown the level at which we can expect am-
plitude of background from unresolved, subthreshold sig-
nals from compact binary coalescences (CBC) using dif-
ferent detector networks. We extend the previous study
to also provide an estimate of errors we introduce while
subtracting the signals above threshold for the most op-
timistic network of detectors considered by [48]. The
idea of subtracting foreground signals to extract stochas-
tic backgrounds was already explored [51] in the context
of the the Big Bang Observer [52], including a noise pro-
jection method that could reduce errors due to imperfect
subtraction [53].

Data from gravitational-wave detectors are dominated
by environmental and instrumental backgrounds. Con-
sequently, it is not possible to identify even determin-
istic signals without sophisticated data processing such
as matched filtering [54]. Stochastic backgrounds can-
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In addition to non resolved sources the residual contains a contribution due to waveforms non perfectely removed:

The contribution from parameter estimation erros is:

3

where N is the number of sources in the Monte Carlo
sample, and T

�1 assures that flux has the correct di-
mension, T being the total time of the data sample.
h̃+,k(f) and h̃⇥,k(f) are the Fourier domain waveforms
for the two polarizations, and the index k runs over all
the sources. We calculate ⌦ error as,

⌦error =
1

⇢cc
fFerror(f), (8)

where,
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⇥,k (f) � h̃
recovered

⇥,k (f))2).

To get an estimate of ⌦error, we need to estimate the
quantities, h̃recovered

+,k (f) and h̃
recovered

⇥,k (f).

III. ESTIMATING THE DEVIATION FROM
TRUE VALUE OF THE MEASURED SOURCE

PARAMETERS

Ideally we want the full Bayesian posteriors to esti-
mate the deviation from the true value of parameters.
However, at present it is unfeasible to compute the
full posterior probability distribution functions of all
15 binary parameters for the hundreds of thousands of
sources that we simulate up to a redshit of 10 in the
following section. The Fisher matrix provides a com-
putationally inexpensive method to estimate the errors
in the case when the posteriors are Gaussian, which
is, unfortunately, not true in general. Nevertheless,
for the purpose of building a proof-of-principle concept
the Fisher matrix method is adequate and the only
practical approach to obtain the magnitude of errors in
the estimation of parameters. To this end, we follow the
framework described in [61] and calculate the errors in
estmating the parameters of the compact binary system
using the Fisher matrix method.

According to the post-Newtonian expansion formal-
ism [62], the gravitational-wave strain from a compact
binary coalescence in frequency domain is given by

h̃(f) = Af
�7/6

e
i (f)

, (10)

where A is the amplitude of the waveform, and  (f) is
the phase given by

 (f) = 2⇡ftc � �c �
⇡

4
+

3

128⌘⌫5

NX

k=0

↵k⌫
k
. (11)

Here tc is the time of coalescence, �c is the coales-
cence phase, ⌫ = (⇡Mf)1/3, M is the total mass (M =
m1+m2), ⌘ is the symmetric mass ratio (⌘ = m1m2/M

2)

of the system, and the ↵k terms are known as the post-
Newtonian (PN) coe�cients. In this work, we restrict
ourselves to 0-PN approximation (or the Newtonian ap-
proximation, k = 0), which will be justified below. For
the Fisher matrix study, we choose a set of independent
parameters ~✓ for describing the gravitational waveform,

~✓ = (f0tc,�c, lnM), (12)

where f0 is a reference frequency needed to keep the
parameters for the Fisher matrix dimensionless. M is
the dimensionless chirp mass, and is defined as M =
⌘
3/5

M/M�.
Writing the phase of the waveform in terms of these

parameters, we have,

 (f) = 2⇡
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, (13)

or equivalently,

 (f ; ~✓) = 2⇡
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c3
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(14)
In going from Eq. (13) to Eq. (14), we have truncated
the expansion at ↵0 term, plugged in the value ↵0 = 1,
and we have introduced the Newton’s constant G, the
speed of light c, and solar mass M�, explicitly to keep
all quantities in the Eq. (13) dimensionless, and defined
masses in solar mass units.
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are the partial derivatives of the waveform with respect
to ✓i, the parameters of the waveforms, and Sn(f) is
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The Fisher matrix is then calculated by performing the
integration in Eq. (15) numerically. For a network of
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where N is the number of sources in the Monte Carlo
sample, and T

�1 assures that flux has the correct di-
mension, T being the total time of the data sample.
h̃+,k(f) and h̃⇥,k(f) are the Fourier domain waveforms
for the two polarizations, and the index k runs over all
the sources. We calculate ⌦ error as,
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To get an estimate of ⌦error, we need to estimate the
quantities, h̃recovered

+,k (f) and h̃
recovered

⇥,k (f).

III. ESTIMATING THE DEVIATION FROM
TRUE VALUE OF THE MEASURED SOURCE

PARAMETERS

Ideally we want the full Bayesian posteriors to esti-
mate the deviation from the true value of parameters.
However, at present it is unfeasible to compute the
full posterior probability distribution functions of all
15 binary parameters for the hundreds of thousands of
sources that we simulate up to a redshit of 10 in the
following section. The Fisher matrix provides a com-
putationally inexpensive method to estimate the errors
in the case when the posteriors are Gaussian, which
is, unfortunately, not true in general. Nevertheless,
for the purpose of building a proof-of-principle concept
the Fisher matrix method is adequate and the only
practical approach to obtain the magnitude of errors in
the estimation of parameters. To this end, we follow the
framework described in [61] and calculate the errors in
estmating the parameters of the compact binary system
using the Fisher matrix method.

According to the post-Newtonian expansion formal-
ism [62], the gravitational-wave strain from a compact
binary coalescence in frequency domain is given by

h̃(f) = Af
�7/6

e
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, (10)

where A is the amplitude of the waveform, and  (f) is
the phase given by

 (f) = 2⇡ftc � �c �
⇡

4
+

3

128⌘⌫5

NX

k=0

↵k⌫
k
. (11)

Here tc is the time of coalescence, �c is the coales-
cence phase, ⌫ = (⇡Mf)1/3, M is the total mass (M =
m1+m2), ⌘ is the symmetric mass ratio (⌘ = m1m2/M

2)

of the system, and the ↵k terms are known as the post-
Newtonian (PN) coe�cients. In this work, we restrict
ourselves to 0-PN approximation (or the Newtonian ap-
proximation, k = 0), which will be justified below. For
the Fisher matrix study, we choose a set of independent
parameters ~✓ for describing the gravitational waveform,

~✓ = (f0tc,�c, lnM), (12)

where f0 is a reference frequency needed to keep the
parameters for the Fisher matrix dimensionless. M is
the dimensionless chirp mass, and is defined as M =
⌘
3/5

M/M�.
Writing the phase of the waveform in terms of these
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In going from Eq. (13) to Eq. (14), we have truncated
the expansion at ↵0 term, plugged in the value ↵0 = 1,
and we have introduced the Newton’s constant G, the
speed of light c, and solar mass M�, explicitly to keep
all quantities in the Eq. (13) dimensionless, and defined
masses in solar mass units.
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are the partial derivatives of the waveform with respect
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The Fisher matrix is then calculated by performing the
integration in Eq. (15) numerically. For a network of
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where N is the number of sources in the Monte Carlo
sample, and T

�1 assures that flux has the correct di-
mension, T being the total time of the data sample.
h̃+,k(f) and h̃⇥,k(f) are the Fourier domain waveforms
for the two polarizations, and the index k runs over all
the sources. We calculate ⌦ error as,
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To get an estimate of ⌦error, we need to estimate the
quantities, h̃recovered

+,k (f) and h̃
recovered

⇥,k (f).

III. ESTIMATING THE DEVIATION FROM
TRUE VALUE OF THE MEASURED SOURCE

PARAMETERS

Ideally we want the full Bayesian posteriors to esti-
mate the deviation from the true value of parameters.
However, at present it is unfeasible to compute the
full posterior probability distribution functions of all
15 binary parameters for the hundreds of thousands of
sources that we simulate up to a redshit of 10 in the
following section. The Fisher matrix provides a com-
putationally inexpensive method to estimate the errors
in the case when the posteriors are Gaussian, which
is, unfortunately, not true in general. Nevertheless,
for the purpose of building a proof-of-principle concept
the Fisher matrix method is adequate and the only
practical approach to obtain the magnitude of errors in
the estimation of parameters. To this end, we follow the
framework described in [61] and calculate the errors in
estmating the parameters of the compact binary system
using the Fisher matrix method.

According to the post-Newtonian expansion formal-
ism [62], the gravitational-wave strain from a compact
binary coalescence in frequency domain is given by

h̃(f) = Af
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i (f)
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where A is the amplitude of the waveform, and  (f) is
the phase given by
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Here tc is the time of coalescence, �c is the coales-
cence phase, ⌫ = (⇡Mf)1/3, M is the total mass (M =
m1+m2), ⌘ is the symmetric mass ratio (⌘ = m1m2/M

2)

of the system, and the ↵k terms are known as the post-
Newtonian (PN) coe�cients. In this work, we restrict
ourselves to 0-PN approximation (or the Newtonian ap-
proximation, k = 0), which will be justified below. For
the Fisher matrix study, we choose a set of independent
parameters ~✓ for describing the gravitational waveform,

~✓ = (f0tc,�c, lnM), (12)

where f0 is a reference frequency needed to keep the
parameters for the Fisher matrix dimensionless. M is
the dimensionless chirp mass, and is defined as M =
⌘
3/5

M/M�.
Writing the phase of the waveform in terms of these
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In going from Eq. (13) to Eq. (14), we have truncated
the expansion at ↵0 term, plugged in the value ↵0 = 1,
and we have introduced the Newton’s constant G, the
speed of light c, and solar mass M�, explicitly to keep
all quantities in the Eq. (13) dimensionless, and defined
masses in solar mass units.

The Fisher matrix elements are given by,
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are the partial derivatives of the waveform with respect
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The Fisher matrix is then calculated by performing the
integration in Eq. (15) numerically. For a network of
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FIG. 1: The confusion background created by the astrophysical population of merging binary black holes (top two
panels) and binary neutron stars (bottom four panels) is shown plotted (dot-dashed, orange lines) together with the

background from unresolved sources (dot-dot-dashed, red lines), the background that remains after imperfect
subtraction of resolved sources (dashed, red lines) and the sum of the latter two (solid, deep-red lines). The left

panels are for a network of three 3G detectors and the right panels are for a network of five 3G detectors. We deem a
source is resolved if the signal-to-noise it produces is � 12 for the top four panels, and � 8 for the bottom two panels.
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where N is the number of sources in the Monte Carlo
sample, and T

�1 assures that flux has the correct di-
mension, T being the total time of the data sample.
h̃+,k(f) and h̃⇥,k(f) are the Fourier domain waveforms
for the two polarizations, and the index k runs over all
the sources. We calculate ⌦ error as,
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To get an estimate of ⌦error, we need to estimate the
quantities, h̃recovered

+,k (f) and h̃
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⇥,k (f).

III. ESTIMATING THE DEVIATION FROM
TRUE VALUE OF THE MEASURED SOURCE

PARAMETERS

Ideally we want the full Bayesian posteriors to esti-
mate the deviation from the true value of parameters.
However, at present it is unfeasible to compute the
full posterior probability distribution functions of all
15 binary parameters for the hundreds of thousands of
sources that we simulate up to a redshit of 10 in the
following section. The Fisher matrix provides a com-
putationally inexpensive method to estimate the errors
in the case when the posteriors are Gaussian, which
is, unfortunately, not true in general. Nevertheless,
for the purpose of building a proof-of-principle concept
the Fisher matrix method is adequate and the only
practical approach to obtain the magnitude of errors in
the estimation of parameters. To this end, we follow the
framework described in [61] and calculate the errors in
estmating the parameters of the compact binary system
using the Fisher matrix method.

According to the post-Newtonian expansion formal-
ism [62], the gravitational-wave strain from a compact
binary coalescence in frequency domain is given by
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Here tc is the time of coalescence, �c is the coales-
cence phase, ⌫ = (⇡Mf)1/3, M is the total mass (M =
m1+m2), ⌘ is the symmetric mass ratio (⌘ = m1m2/M

2)

of the system, and the ↵k terms are known as the post-
Newtonian (PN) coe�cients. In this work, we restrict
ourselves to 0-PN approximation (or the Newtonian ap-
proximation, k = 0), which will be justified below. For
the Fisher matrix study, we choose a set of independent
parameters ~✓ for describing the gravitational waveform,

~✓ = (f0tc,�c, lnM), (12)

where f0 is a reference frequency needed to keep the
parameters for the Fisher matrix dimensionless. M is
the dimensionless chirp mass, and is defined as M =
⌘
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Writing the phase of the waveform in terms of these
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In going from Eq. (13) to Eq. (14), we have truncated
the expansion at ↵0 term, plugged in the value ↵0 = 1,
and we have introduced the Newton’s constant G, the
speed of light c, and solar mass M�, explicitly to keep
all quantities in the Eq. (13) dimensionless, and defined
masses in solar mass units.

The Fisher matrix elements are given by,
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are the partial derivatives of the waveform with respect
to ✓i, the parameters of the waveforms, and Sn(f) is
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The partial derivatives of the waveform can be calculated
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The Fisher matrix is then calculated by performing the
integration in Eq. (15) numerically. For a network of
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FIG. 1: The confusion background created by the astrophysical population of merging binary black holes (top two
panels) and binary neutron stars (bottom four panels) is shown plotted (dot-dashed, orange lines) together with the

background from unresolved sources (dot-dot-dashed, red lines), the background that remains after imperfect
subtraction of resolved sources (dashed, red lines) and the sum of the latter two (solid, deep-red lines). The left

panels are for a network of three 3G detectors and the right panels are for a network of five 3G detectors. We deem a
source is resolved if the signal-to-noise it produces is � 12 for the top four panels, and � 8 for the bottom two panels.
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The situation get worse with 9 parameters
3

FIG. 1. Unresolved background �unres (dotted lines) and error contributions to the background �err (solid lines) computed
using both our 9-parameter recovery (“9 pars”) and the 3-parameter recovery (including only Mz, tc, and „c) considered in
previous work [44] (“3 pars”). All backgrounds are computed at the frequency-independent optimal SNRthr for the 9-parameter
case: 10 (for BBHs) and 20 (for BNSs) in the left panel; 12 (for BBHs) and 42 (for BNSs) in the right panel. The shaded
band around the 9-parameter �err shows astrophysical uncertainties on the rates. The worsening in �err due to including 9
parameters instead of 3 is quite dramatic and it is larger than astrophysical uncertainties, especially for BBHs.

a larger set of 9 parameters for the calculation of the
information matrix for each CBC event:
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where Mz = M(1 + z) is the detector-frame chirp mass
and ÷ is the symmetric mass ratio. To get a rough
estimate of the e�ect of waveform systematics, we re-
peat the calculation with two di�erent waveform models:
IMRPhenomD [62, 63] as a “fiducial” reference model, and
IMRPhenomC [64] for comparison. We compute the gravita-
tional waveforms, the SNRs and the information matrices
with the public package GWBENCH [58].

Increasing the value of SNRthr increases the number of
unresolved events (and thus �unres), but decreases �err,
as the remaining detected signals have higher SNR and
are better recovered. Hence, for each population one can
determine an optimal SNRthr that minimizes the CBC
background �unres +�err left after the removal of resolved
sources. We find that, to a very good approximation,
the background is minimized for the same SNRthr at
all frequencies: for our fiducial detector network, this
optimal SNRthr is about 10 (20) for BBHs (BNSs) when
we consider the IMRPhenomD model, and 12 (42) for BBHs
(BNSs) when we consider IMRPhenomC. From now on we
will show the estimated CBC SGWBs for these values
of SNRthr, i.e., the lowest CBC backgrounds achievable
with the fitting-subtraction procedure.

Figure 1 shows the estimated �unres and �err for BBHs
and BNSs computed at the optimal SNRthr with the two
waveform models. The di�erence between the residual
backgrounds �err computed using our full 9-parameter
recovery and those computed using the 3-parameter re-
covery of Ref. [44] is quite striking. The addition of
amplitude parameters proves to be crucial, and �err be-
comes larger by several orders of magnitude, for both
BBHs and BNSs. We find that the dominant contribu-
tion to �err arises from the coalescence phase „c, as the
error on this parameter becomes much larger once the
correlations with amplitude parameters (particularly the
polarization angle Â) are taken into account. Another
significant contribution arises from the luminosity dis-
tance DL, which is known to be poorly constrained for
a significant fraction of both populations, even with a
network of XG observatories [40–42].

The shaded bands in Fig. 1 show the impact of as-
trophysical uncertainties on the local merger rates (note
that this is a lower bound on astrophysical uncertain-
ties, because the redshift evolution of the rates is even
more poorly constrained). It is di�cult to formulate reli-
able predictions for the CBC SGWB, especially for BNSs,
where the background can vary by about two orders of
magnitude. However, the increase in �err due to the addi-
tion of the amplitude parameters is even larger than the
variability of the background due to the uncertain merger
rates. There is a clearly visible di�erence in the residual
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FIG. 1. Unresolved background �unres (dotted lines) and error contributions to the background �err (solid lines) computed
using both our 9-parameter recovery (“9 pars”) and the 3-parameter recovery (including only Mz, tc, and „c) considered in
previous work [44] (“3 pars”). All backgrounds are computed at the frequency-independent optimal SNRthr for the 9-parameter
case: 10 (for BBHs) and 20 (for BNSs) in the left panel; 12 (for BBHs) and 42 (for BNSs) in the right panel. The shaded
band around the 9-parameter �err shows astrophysical uncertainties on the rates. The worsening in �err due to including 9
parameters instead of 3 is quite dramatic and it is larger than astrophysical uncertainties, especially for BBHs.

a larger set of 9 parameters for the calculation of the
information matrix for each CBC event:

◊ =
;

ln
3

Mz

M§

4
, ÷, ln

3
DL

Mpc

4
, cos ÿ, cos ”, –, Â, „c, tc

<
,

(4)
where Mz = M(1 + z) is the detector-frame chirp mass
and ÷ is the symmetric mass ratio. To get a rough
estimate of the e�ect of waveform systematics, we re-
peat the calculation with two di�erent waveform models:
IMRPhenomD [62, 63] as a “fiducial” reference model, and
IMRPhenomC [64] for comparison. We compute the gravita-
tional waveforms, the SNRs and the information matrices
with the public package GWBENCH [58].

Increasing the value of SNRthr increases the number of
unresolved events (and thus �unres), but decreases �err,
as the remaining detected signals have higher SNR and
are better recovered. Hence, for each population one can
determine an optimal SNRthr that minimizes the CBC
background �unres +�err left after the removal of resolved
sources. We find that, to a very good approximation,
the background is minimized for the same SNRthr at
all frequencies: for our fiducial detector network, this
optimal SNRthr is about 10 (20) for BBHs (BNSs) when
we consider the IMRPhenomD model, and 12 (42) for BBHs
(BNSs) when we consider IMRPhenomC. From now on we
will show the estimated CBC SGWBs for these values
of SNRthr, i.e., the lowest CBC backgrounds achievable
with the fitting-subtraction procedure.

Figure 1 shows the estimated �unres and �err for BBHs
and BNSs computed at the optimal SNRthr with the two
waveform models. The di�erence between the residual
backgrounds �err computed using our full 9-parameter
recovery and those computed using the 3-parameter re-
covery of Ref. [44] is quite striking. The addition of
amplitude parameters proves to be crucial, and �err be-
comes larger by several orders of magnitude, for both
BBHs and BNSs. We find that the dominant contribu-
tion to �err arises from the coalescence phase „c, as the
error on this parameter becomes much larger once the
correlations with amplitude parameters (particularly the
polarization angle Â) are taken into account. Another
significant contribution arises from the luminosity dis-
tance DL, which is known to be poorly constrained for
a significant fraction of both populations, even with a
network of XG observatories [40–42].

The shaded bands in Fig. 1 show the impact of as-
trophysical uncertainties on the local merger rates (note
that this is a lower bound on astrophysical uncertain-
ties, because the redshift evolution of the rates is even
more poorly constrained). It is di�cult to formulate reli-
able predictions for the CBC SGWB, especially for BNSs,
where the background can vary by about two orders of
magnitude. However, the increase in �err due to the addi-
tion of the amplitude parameters is even larger than the
variability of the background due to the uncertain merger
rates. There is a clearly visible di�erence in the residual
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FIG. 2: Residual backgrounds after subtraction of the
resolved foreground are plotted in solid (and

dot-dashed) lines for a network of five 3G detectors
(three 3G detectors, respectively) for the BNS

cosmological population in green and BBH population
in deep blue. Also shown are the raw sensitivity curves
for a stochastic background after one year of integration
for a network of five 3G detectors (solid, cyan curves)
and three 3G detectors (dot-dashed, cyan curves) and
the expected background from sti↵ equation-of-state,

cosmic (super) strings, preheating and inflation.

ers are examples of primordial backgrounds that could
be potentially detected by 3G detectors. The strength
of the background in these examples depends on model
parameters and it could be lower or higher than what is
shown on the plot.

The figure also shows the sensitivity of a network of
three (and five) 3G detectors to stochastic backgrounds
assuming a one-year integration but in the absence of
confusion backgrounds from compact binaries or other as-
trophysical populations. It is immediately apparent that
the residual background, after (imperfect) subtraction of
the foreground sources, from binary neutron stars will
limit the strength of primordial backgrounds that could
be detected by 3G detectors. With a network of three

(and five) 3G detectors, the sensitivity will be limited to
⌦GW � 10�11 at 10 Hz (respectively, ⌦GW � 3 ⇥ 10�12

at 15 Hz). The binary black hole population, on the
other hand, can be fully resolved and the residual from
that population has negligible e↵ect on the raw sensitiv-
ity to stochastic backgrounds. The rate of binary neu-
tron stars could be larger or smaller than the median
rate of Rm(z = 0) = 920+2220

�790
Gpc�3yr�1 assumed in

this paper, which would correspondingly increase or de-
crease the confusion background of these sources. Fi-
nally, increasing the number of 3G detectors from three
to five improves the sensitivity to stochastic backgrounds
by about factor of 5. This is accounted by the ability of
the five-detector network to detect and subtract a greater
number of sources; the volume reach for a five-detector
network increases by a factor (5/3)3 ⇠ 4.6 relative to a
three-detector network.

Keeping in mind that the strengths of the primordial
backgrounds depend on the specific model parameters
that are not known, and the residual background could
vary based on the uncertainty in rate of compact binary
mergers and the their mass distribution, among other
things, the figure shows the most promising primordial
background sources that this subtraction scheme could
reveal: cosmic strings, background from fluids with sti↵
EOS, and axion inflation.
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FIG. 2. Minimal value of �unres + �err for BBHs and BNSs
combined (black lines+grey band). This quantity is a good
estimate of the total foreground for observing the SGWB
produced by other possible sources, as labeled. For our fidu-
cial 3-detector network, we show results for both IMRPhenomD
(solid) and IMRPhenomC (dashed). We also show IMRPhenomD
results for the optimistic 5-detector network (dotted). The as-
trophysical uncertainty band at 90% confidence level is shown
only in our fiducial case of IMRPhenomD and 3 detectors, for
clarity. Green dashed lines are the sensitivities of XG detec-
tors to SGWBs, assuming 1-year integration, in the absence of
foregrounds from CBCs and other sources. The SGWB from
standard inflation [25–27] (�GW ≥ 10≠15) is below the range
of the plot.

background �err predicted by the two waveform models,
which is larger for BNSs than for BBHs. This di�erence,
while small compared to current astrophysical uncertain-
ties, highlights the importance of waveform systematics
in data analysis and it will play a more prominent role in
SGWB forecasts in the coming years, as new detections
will steadily reduce the uncertainties in merger rates.
Background subtraction estimates. Figure 2 shows
the sum of the (minimized) �unres + �err contributions
from BBHs and BNSs for di�erent waveform models and
detector networks. The grey band shows the 90% con-
fidence level due to astrophysical uncertainties in our
fiducial case (IMRPhenomD and a 3-detector network). We
overplot the sensitivities of 3-detector and 5-detector net-
works to SGWBs, computed in the absence of foregrounds
from CBCs and other sources, assuming the data is inte-
grated for one year. We also show the energy densities
of SGWBs from other possible sources [44], including:
(i) axion inflation [28], (ii) post-inflation oscillations of a
fluid with an equation of state sti�er than radiation [65],
(iii) a network of cosmic strings [29–32], (iv) the most
optimistic prediction from cosmic supernovae throughout

the Universe [24], and (v) post-inflation preheating mod-
els aided by parametric resonance [66–69]. Note that the
energy densities of these sources are model-dependent,
and they could be larger or smaller depending on the
choice of model parameters.
Conclusions and future directions. The main conclu-
sion to be drawn from this work is that subtracting the
SGWB foreground from BBHs and BNSs is much harder
than previously estimated. For our fiducial case of a 3-
detector network and IMRPhenomD, the BBH background
subtraction only reduces it by a factor of 2–3. Crucially,
the remaining BBH background still overwhelms the BNS
background at frequencies below hundreds of Hz. Simi-
larly, the BNS background subtraction only reduces it by
a factor of . 2. As shown in Fig. 2, even in the optimistic
case of a 5-detector network the subtraction for the total
(BBH+BNS) background only improves by a factor of
< 2 compared to our fiducial 3-detector network. This
can make searches for other sources of astrophysical and
cosmological SGWBs very challenging.

Our rather pessimistic predictions for �err may be over-
come by using other techniques to remove the foreground
from resolved sources. The residuals due to imperfect
removal could be reduced by subtracting the component
tangent to the signal manifold at the point of best fit. This
approach has been first proposed by Ref. [36], although
more detailed investigations are needed to understand the
extent of this reduction on realistic astrophysical catalogs.
Other possibilities include using Bayesian techniques to
estimate the foreground and background signal parame-
ters simultaneously [37], or exploiting the design topology
of ET to construct a null stream [70] that will help in un-
derstanding the foreground of CBC events [71]. One could
also take advantage of the temporal and positional infor-
mation of each event for a more precise subtraction. We
hope that this study will motivate further work to assess
the impact of these (and other) data analysis strategies
on the detectability of SGWBs.
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• Projection methods (Cutler and Harms 2006; Sharma et al. 2020) 

• Bayesian method (Biscoveanu et al. 2020) 

• Notching in the time frequency plan (Zhong et al. 2022)

• For ET, use the null stream
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Astrophysical background

The integrated GW flux is the sum of all the individual contributions:

with the individual fluence:
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where p(q) is the probability distribution of the source parameters q, Q represents the
parameter space (for example the masses, the spins, the deformation of neutron stars),
dR
dz (q, z) is the observed rate in the redshift interval z� z+ dz, for sources with parameters q,
and FGW( f ) is the fluence at the observer frequency f from of a source with parameters q at
redshift z. The lower and upper limits of the integral zmin(q) and zmax(q) are the minimum
and the maximum redshifts at which a source with parameters q can be formed. They are
related to the parameters q through the minimal and maximal emission frequencies:

zmin( f ) = max(0,
fs;min(q)

f
� 1) (5)

and
zmax( f ) = min(zmax,

fs;max(q)
f

� 1) (6)

where fs;min(q) and fs;min(q) are the minimal and the maximal emission frequency of the
source. In the case of compact binary coalescences, they correspond to the initial at the
birth of the compact binary system and the final frequency.

Replacing the fluence by the following expression:

FGW(q, z, f ) =
1

4pr(z)2
dEGW

d fs
(q, fs) (7)

where r(z) is the proper distance, dEgw/d fs is the energy density emitted by a single source,
fs = f (1 + z) is frequency in the source frame, one obtains:

FGW( f ) =
Z

Q
p(q)dq

Z zmax(q)

zmin(q)
dz

dRz
dz

(q, z)
1

4pr(z)2
dEGW

d fs
(q, fs) (8)

The rate per interval of redshift is often calculated from the rate per comoving vol-
ume R(z):

dRz
dz

(z) =
R(z)
1 + z

dV
dz

(z) (9)

where the factor 1 + z in the denominator converts R(z) given in the source frame to the
observer frame, and where the comoving volume element is:

dV
dz

(z) = 4pr(z)2 c
H0E(z)

(10)

For a flat LCDM cosmology (neglecting the radiation term):

Ez(z) =
q

WM(1 + z)3 + WL (11)

captures the dependence of the comoving volume on redshift (see for e.g., [68]) where
WM is the energy density parameter of matter and WL the energy density parameter of
dark energy.

Combining the expressions above and after simplification we obtain the formula [46,48,52]:

WGW( f ) =
f

rcH0

Z

Q
p(q)dq

Z zmax(q)

zmin(q)
dz

R(q, z)
dEgw(q, fs)

d fs
(1 + z)Ez(z)

(12)

4. The Case of Compact Binary Mergers
The population of extra-galactic compact binaries formed by two black holes, two

neutron stars or a neutron star and a black hole is the most interesting example of a GW
background in the frequency band of terrestrial detectors for different reasons. First, we
have started to observe the closest and the loudest mergers of such systems with second
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generation detectors LIGO and Virgo, and we have already obtained constraints about
the rate and the distribution of masses or spins. Second, the waveform is well modelled
and thus the shape of the fractional energy density spectrum. And finally we expect this
background to dominate over all the other backgrounds and to be detected first. This
background is also present in the space detector LISA at lower frequencies.

Compact binaries emit gravitational waves when they inspiral around each others and
merge to produce a single neutron star or a black hole. In the frequency band of terrestrial
detectors, we observe the very last moment of the inspiral phase, close to the merger, when
the orbit has been circularized and we can assume there is no evolution of the redshift.
In this case, the rate R(z) corresponds to the merger rate and the spectral energy density
spectrum of a single source dEgw/d fs, is obtained from the relation for circular orbit [39]:

1
4pr2

dEgw

d fs
( fs) =

pc3

2G
f 2
s (H2

+( fs) + H2
⇥( fs)) (13)

where H+( fs) = A( fs)(1 + cos2 i)/2 and H⇥( fs) = A( fs) cos i are the Fourier amplitudes
of the two polarization states, i is the inclination angle, and r is the proper distance.
Following recent papers e.g., [45,46,48], we can consider the inspiral phase only for BNSs
and BHNSs and use the Newtonian waveforms up to the last stable orbit fISCO = c3

63/2GpM ,
M = m1 + m2 being the total mass (i.e., the sum of the component masses m1 and m2 of the
two compact objects), which gives:

A( fs) =

r
5
24

(GMc)5/6

p2/3c3/2
1
r

f�7/6
s (14)

where Mc = (m1m2)3/5/(m1 + m2)1/5 is the chirp mass. Replacing in Equation (13), we
obtain (N, C stands for Newtonian and circular):

dEN,C
gw

d fs
( fs) =

5(Gp)2/3M5/3
c Fi

12
f�1/3
s (15)

where Fi = (1 + cos2 i)2/4 + cos2 i.
For BBHs, we consider also the merger and ringdown and we use the phenomenologi-

cal waveform A( f ) of [69], which gives (P, C stands for phenomenological and circular):

dEP,C
gw

d fs
( fs) =

dEN,C
gw

d fs
( fs)g( fs) (16)

where

g( fs) =

8
<

:

(1 + Â3
i=2 ain

i)2 if fs < f1
fswm(1 + Â2

i=1 ein
i)2 if f1  fs < f2

f 1/3
s wrL2( fs, f2, s) if f2  fs < f3

, (17)

In this expression, f1, f2 and f3 are the frequencies at the end of the inspiral, merger and
ringdown phases, n = (pM f )1/3 and L( f , fring, s) is the Lorentz function centered at f2
and with width s, wm and wr are normalization constants ensuring the continuity between
the three phases.

The other various constants are defined as

e1 = 1.4547c � 1.8897,
e2 = �1.8153c + 1.6557,
a2 = �323/224 + 451h/168,
a3 = (27/8 � 11h/6)c,

(18)

Rate Spectral properties
of individual sources
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to the fast rotation. In the case when the internal magnetic field is purely poloidal and

matches to the dipolar field B in the exterior, is given by [37]:

"B = �
R

8
B

2 sin2
↵

4GI2zz

(15)

According to the numerical simulations of [37], the distortion parameter �, which

depends on both the equation of state (EOS) and the magnetic field geometry,

can range between 1 � 10 for a non-superconducting interior to 100 � 1000 for a

type I superconductor and even take values larger than 1000 � 10000 for a type II

superconductor with counter rotating electric currents. Assuming R = 10 km, Izz = 1045

g cm2, P0 = 1 ms, � = 100 and the average value given by the observation of SGR and

AXP B = 1015 G , we obtain "B ⇠ 2⇥10�4 and K ⇠ 3⇥1037 erg Hz�3. In this case, the

GW emission becomes negligible compared to the magnetic torque and eq. 13 simplifies

to
dEgw

d⌫
⇠ K⌫

3 (16)

Considering that magnetars represent about 10% of newborn NS, in agreement with the

estimates of [36] and population synthesis of [17], we obtain for the mass fraction of the

progenitors � = 0.1�NS where the mass fraction of neutron star progenitors is given by:

�NS =
Z 40M�

8M�
⇠(m)dm = 9⇥ 10�3M�1

� (17)

where ⇠(m) is the modified A Salpeter IMF from eq. 7 and where we have assumed that

NS progenitors have masses larger than 8 M� [28] and that stars with masses larger

than 40 M� give rise to black holes. Evolution of such massive stars being very fast, we

can replace the previous expressions in eq. 10, and obtain:

⌦gw(⌫o) ⇠ 4⇥ 10�21
⌫
4
o

Z zsup(⌫o)

0
dz

R⇤(z)(1 + z)2

E(z)
(18)

The energy density increases as ⌫
4
o at low frequencies and reaches a maximum of

⌦gw ⇠ 1⇥ 10�10 around 1100 Hz.

When the product �B is large enough (K >> ⇡
2
I⌫

�2), GW emission becomes

the most important process. In the saturation regime where the spindown is purely

gravitational, eq. 13 simplifies to:

dEgw

d⌫
⇠ ⇡

2
I⌫ (19)

and the energy density increases as ⌫
2
o at low frequencies and reaches a maximum of

⌦gw ⇠ 1.3 ⇥ 10�8 around 1600 Hz (Fig. 1). It has been suggested that the internal

magnetic field could be dominated by the toroidal component [39, 40]. In this case

"B = 1.6⇥ 10�4
< B

2
t,16 > (20)

where < B
2
t,16 > is the mean value of the internal toroidal component in unit of 1016 G,

and whether the rotational energy is dissipated due to dipole or GW emission depends

on the ratio B
2
t /B.
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Figure 1. energy density of the background produced by tri-axial rotating magnetars,
as a function of the observed frequency, for the canonical model with a poloidal internal
magnetic field and ms initial rotational period. The black continuous line corresponds
to a model with B = 1015 G and g = 100 (magnetic spindown regime), the grey
continuous line to the purely gravitational spindown regime and the black dashed line
to an intermediate case with B = 1016 G and g = 1000.

4.2. Double neutron star coalescence

The merger of two neutron stars, two black holes or a neutron star and a black hole

are among the most important sources of gravitational waves, due to the huge energy

released in the process. In particular, double neutron stars (DNSs) may radiate about

1053 erg in the last seconds of their inspiral trajectory. In a recent work, [15, 16]

used Monte Carlo simulations to calculate the contribution of DNSs to the stochastic

background, in the frequency band of ground based interferometers, which corresponds

to the last ⇠ 1000 s before the last stable orbit, when more than 96% of the gravitational

energy is released. At that time, the system has been circularized through GW emission

and the spectral energy density is given in the quadrupolar approximation by:

dEgw

d⌫
= Kb⌫

�1/3 with ⌫ 2 [10� ⌫LSO] (21)

where

Kb =
(G⇡)2/3

3

m1m2

(m1 +m2)1/3
(22)

For double neutron stars with masses m1 = m2 = 1.4 M�, one obtains Kb = 5.2⇥ 1050

erg Hz�2/3 and the gravitational frequency at the last stable orbit is assumed to be
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When the number of sources is large enough for the time interval between events to be

small compared to the duration of a single event (D >> 1), the waveforms overlap to

produce a continuous background. Due to the central limit theorem, such backgrounds

obey the Gaussian statistic and are completely determined by their spectral properties.

They could be detected by data analysis methods in the frequency domain such as the

cross correlation statistic presented in the next section [29]. On the other hand, when

the number of sources is small enough for the time interval between events to be long

compared to the duration of a single event (D << 1), the sources are resolved and

may be detected by data analysis techniques in the time domain (or the time frequency

domain) such as match filtering [30, 31]. An interesting intermediate case arises when

the time interval between events is of the same order of the duration of a single event.

These signals, which sound like crackling popcorn, are known as ”popcorn noise”. The

waveforms may overlap but the statistic is not Gaussian anymore so that the amplitude

on the detector at a given time is unpredictable. For such signals, data analysis strategies

remain to be investigated [32, 33], since the time dependence is important and data

analysis techniques in the frequency domain, such as the cross correlation statistic, are

not adapted.

4. Models of astrophysical stochastic backgrounds

In this section, we investigate two processes able to produce a continuous stochastic

backgrounds in the frequency band of terrestrial interferometers.

4.1. magnetars

Rotating neutron stars (NSs) with a triaxial shape may have a time varying quadrupole

moment and hence radiate GWs at twice the rotational frequency. The total spectral

gravitational energy emitted by a NS born with a rotational period P0, and which

decelerates through magnetic dipole torques and GW emission, is given by:

dEgw

d⌫
= K⌫

3(1 +
K

⇡2Izz
⌫
2)�1 with ⌫ 2 [0� 2/P0] (13)

where

K =
192⇡4

GI
3

5c2R6

"
2

B2 sin2
↵

(14)

In this expression R is the radius of the star, " = (Ixx � Iyy)/Izz the ellipticity, Iij the

principal moment of inertia , B the magnetic field and ↵ the angle between the rotation

and the dipole axis.

In the original scenario of [34, 35], super-strong crustal magnetic fields (B '
1014 � 1016 G) can be formed by dynamo action in proto neutron stars with very small

rotational periods, larger than the break up limit around 0.5�1 ms, but smaller than the

convective overturn at 3 ms. For these highly magnetized neutron stars, the distortion

induced by the magnetic torque, becomes significant, overwhelming the deformation due

Regimbau and Mandic, 2008
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to the fast rotation. In the case when the internal magnetic field is purely poloidal and

matches to the dipolar field B in the exterior, is given by [37]:

"B = �
R

8
B

2 sin2
↵

4GI2zz

(15)

According to the numerical simulations of [37], the distortion parameter �, which

depends on both the equation of state (EOS) and the magnetic field geometry,

can range between 1 � 10 for a non-superconducting interior to 100 � 1000 for a

type I superconductor and even take values larger than 1000 � 10000 for a type II

superconductor with counter rotating electric currents. Assuming R = 10 km, Izz = 1045

g cm2, P0 = 1 ms, � = 100 and the average value given by the observation of SGR and

AXP B = 1015 G , we obtain "B ⇠ 2⇥10�4 and K ⇠ 3⇥1037 erg Hz�3. In this case, the

GW emission becomes negligible compared to the magnetic torque and eq. 13 simplifies

to
dEgw

d⌫
⇠ K⌫

3 (16)

Considering that magnetars represent about 10% of newborn NS, in agreement with the

estimates of [36] and population synthesis of [17], we obtain for the mass fraction of the

progenitors � = 0.1�NS where the mass fraction of neutron star progenitors is given by:

�NS =
Z 40M�

8M�
⇠(m)dm = 9⇥ 10�3M�1

� (17)

where ⇠(m) is the modified A Salpeter IMF from eq. 7 and where we have assumed that

NS progenitors have masses larger than 8 M� [28] and that stars with masses larger

than 40 M� give rise to black holes. Evolution of such massive stars being very fast, we

can replace the previous expressions in eq. 10, and obtain:

⌦gw(⌫o) ⇠ 4⇥ 10�21
⌫
4
o

Z zsup(⌫o)

0
dz

R⇤(z)(1 + z)2

E(z)
(18)

The energy density increases as ⌫
4
o at low frequencies and reaches a maximum of

⌦gw ⇠ 1⇥ 10�10 around 1100 Hz.

When the product �B is large enough (K >> ⇡
2
I⌫

�2), GW emission becomes

the most important process. In the saturation regime where the spindown is purely

gravitational, eq. 13 simplifies to:

dEgw

d⌫
⇠ ⇡

2
I⌫ (19)

and the energy density increases as ⌫
2
o at low frequencies and reaches a maximum of

⌦gw ⇠ 1.3 ⇥ 10�8 around 1600 Hz (Fig. 1). It has been suggested that the internal

magnetic field could be dominated by the toroidal component [39, 40]. In this case

"B = 1.6⇥ 10�4
< B

2
t,16 > (20)

where < B
2
t,16 > is the mean value of the internal toroidal component in unit of 1016 G,

and whether the rotational energy is dissipated due to dipole or GW emission depends

on the ratio B
2
t /B.
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When the number of sources is large enough for the time interval between events to be

small compared to the duration of a single event (D >> 1), the waveforms overlap to

produce a continuous background. Due to the central limit theorem, such backgrounds

obey the Gaussian statistic and are completely determined by their spectral properties.

They could be detected by data analysis methods in the frequency domain such as the

cross correlation statistic presented in the next section [29]. On the other hand, when

the number of sources is small enough for the time interval between events to be long

compared to the duration of a single event (D << 1), the sources are resolved and

may be detected by data analysis techniques in the time domain (or the time frequency

domain) such as match filtering [30, 31]. An interesting intermediate case arises when

the time interval between events is of the same order of the duration of a single event.

These signals, which sound like crackling popcorn, are known as ”popcorn noise”. The

waveforms may overlap but the statistic is not Gaussian anymore so that the amplitude

on the detector at a given time is unpredictable. For such signals, data analysis strategies

remain to be investigated [32, 33], since the time dependence is important and data

analysis techniques in the frequency domain, such as the cross correlation statistic, are

not adapted.

4. Models of astrophysical stochastic backgrounds

In this section, we investigate two processes able to produce a continuous stochastic

backgrounds in the frequency band of terrestrial interferometers.

4.1. magnetars

Rotating neutron stars (NSs) with a triaxial shape may have a time varying quadrupole

moment and hence radiate GWs at twice the rotational frequency. The total spectral

gravitational energy emitted by a NS born with a rotational period P0, and which

decelerates through magnetic dipole torques and GW emission, is given by:

dEgw

d⌫
= K⌫

3(1 +
K

⇡2Izz
⌫
2)�1 with ⌫ 2 [0� 2/P0] (13)

where

K =
192⇡4

GI
3

5c2R6

"
2

B2 sin2
↵

(14)

In this expression R is the radius of the star, " = (Ixx � Iyy)/Izz the ellipticity, Iij the

principal moment of inertia , B the magnetic field and ↵ the angle between the rotation

and the dipole axis.

In the original scenario of [34, 35], super-strong crustal magnetic fields (B '
1014 � 1016 G) can be formed by dynamo action in proto neutron stars with very small

rotational periods, larger than the break up limit around 0.5�1 ms, but smaller than the

convective overturn at 3 ms. For these highly magnetized neutron stars, the distortion

induced by the magnetic torque, becomes significant, overwhelming the deformation due
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Figure 3. magnetars: constraints on the dipole external magnetic field Be↵ and
the distortion parameter � with co-aligned and coincident detectors and integration
time T = 3 yr. The black continuous line corresponds to advanced detectors and
a detection threshold S/N = 1, the light grey lines to 3rd generation detectors and
S/N = 1 (continuous) and S/N = 5 (dashed). The grey continuous line shows the limit
above which the spindown is almost purely gravitational and corresponds to S/N ⇠ 2
with advanced detectors and S/N ⇠ 23 with the third generation. The average values
of Be↵ for observed AXPs and SGRs as well as the magnetar limit, are also plotted
for comparison.

(S/N)�1
fb�ns (S/N)�1

Rmw yr�1
Rmw yr�1(S/N = 5)

inital (HL) 138.3 1.3 6.6

initial (c-co) 1.55 0.015 0.074

Ad (HL) 0.047 4.5⇥ 10�4 0.0022

Ad (c-co) 0.0025 2.4⇥ 10�5 1.2⇥ 10�4

3rd (HL) 4.5⇥ 10�4 4.3⇥ 10�6 2.2⇥ 10�5

3rd (c-co) 1.6⇥ 10�4 1.5⇥ 10�6 7.5⇥ 10�6

Table 1. Constraints on the product fb�ns and on the galactic coalescence rate Rmw of
double neutron stars for di↵erent generation of detectors, for an integration time T = 3
yr and detection thresholds S/N = 1 (column 1 and 2) and S/N = 5 (third column).
HL indicates a pair of detectors separated such as the LIGO Hanford-Livingston pair,
and c-co a pair of co-aligned and coincident detectors. One can obtain the constraints
for any detection threshold from columns 1 and 2 by multiplying the values given in
column 1 and 2 (S/N = 1) by the S/N . Column 3 corresponds to S/N = 5)

Regimbau and Mandic, 2008



Conclusion

• It is not clear that the background will bring extra informations compared to 
individual detection for CBCs

• The situation is different for other astrophysical background or the 
cosmological background

• Parameter estimation errors jeopardize the chance to observe any other
background in NG detectors


