),
( CENTRE NATIONAL
) DE LA RECHERCHE
L.jlsgralo:r(: d'Af\?.o:’\‘/-l‘o- xxxxxx SC]ENTIFIQUE

s it still intersting to look at the gravitational-wave
background with NG detectors?

Tania Regimbau

GW Orchestra — Louvain-la-Neuve



Two Questions

Q1. Does the background have an interest compared to individual detections?
- intrinsic parameter distribution? (masses, spins etc...)
- redshift distribution?
- sky distribution?

Q2. Will we be able to get rid of the correlated noise (see Kamiel’s talk) and
astrophysical foreground from CBCs?



What sources contribute to the background

Definition: A stochastic background of gravitational waves has resulted from
the superposition of a large number of independent unresolved sources.

- Sources that overlap and cannot be separated individually.

- Sources that are below the sensitivity of the detectors.



The case of a cosmological background
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%1072

h(t)

_1 .5 L 1 I L | 1
0 200 400 600 800 1000
Time (s)



The case of the CBC background
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Detection methods for non-Gaussian gravitational wave stochastic backgrounds

Steve Drasco* and Eanna E. Flanagan'
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
(Dated: November 1, 2018)

A gravitational wave stochastic background can be produced by a collection of independent grav-
itational wave events. There are two classes of such backgrounds, one for which the ratio of the
average time between events to the average duration of an event is small (i.e., many events are on
at once), and one for which the ratio is large. In the first ca ignal is continuous, sounds
something like a constant hiss, and has a Gaussian probabjly distribution. I'wthe second case, the
discontinuous or intermittent signal sounds something like popcorn popping, ind is described by
a non-Gaussian probability distribution. In this paper weNsddress the issugst finding an optimal
detection method for such a non-Gaussian background. As a first step, we examine the idealized
situation in which the event durations are short compared to the detector sampling time, so that
the time structure of the events cannot be resolved, and we assume white, Gaussian noise in two
collocated, aligned detectors. For this situation we derive an appropriate version of the maximum
likelihood detection statistic. We compare the performance of this statistic to that of the standard
cross-correlation statistic both analytically and with Monte Carlo simulations. In general the max-
imum likelihood statistic performs better than the cross-correlation statistic when the stochastic
background is sufficiently non-Gaussian, resulting in a gain factor in the minimum gravitational-
wave energy density necessary for detection. This gain factor ranges roughly between 1 and 3,
depending on the duty cycle of the background, for realistic observing times and signal strengths
for both ground and space based detectors. The computational cost of the statistic, although signif-
icantly greater than that of the cross-correlation statistic, is not unreasonable. Before the statistic
can be used in practice with real detector data, further work is required to generalize our analysis
to accommodate separated, misaligned detectors with realistic, colored, non-Gaussian noise.




The case of the BNS background
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The case of the BNS background
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simulated with MDC_Generation package (Regimbau 2012)


https://ui.adsabs.harvard.edu/link_gateway/2012PhRvD..86l2001R/doi:10.1103/PhysRevD.86.122001
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Q1: Does the background have an interest compared to
individual detections?



Individual detections
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With 2G detectors

Individual detections and background probe different redshifts.
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With 2G detectors

Individual detections and background probe different redshifts.
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With 2G detectors

e The sources that are detected now are the closest and the loudest sources

 The sample of individual detections is strongly biased toward small redshift and
large masses

* The background contains informations about average values.



Astrophysical background

The integrated GW flux is the sum of all the individual contributions:
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With 2G detectors
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With 2G detectors
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With 2G detectors
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Peak related to the

With 2G detectors
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With 2G detectors

e The sources that are detected now are the closest and the loudest sources

 The sample of individual detections is strongly biased toward small redshift and
large masses

* The background contains informations about average values.

 What is it with next generations ?



With 3G detectors

Individual detections and background probe different redshifts?
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With 3G detectors

Individual detections and background probe different redshifts?
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Q2. Will we be able to get rid of the astrophysical
foreground from CBCs with NG



What do we have in the background?

The total background is the sum of different contributions:

QGVV — Qastro, r T+ Q(:osmo + chc-

The total background from CBCs is formed by resoved and unresolved sources:

Q.= € + ()

cbc,res cbc,unres



Residual background
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https://ui.adsabs.harvard.edu/link_gateway/2017PhRvL.118o1105R/doi:10.1103/PhysRevLett.118.151105

Subtracting the background from CBCs

The total background is the sum of different contributions:

QGVV — Qastro, r Qcosmo + chc-

The background from CBCs is formed by resoved and unresolved sources:

chc= chc,res + chc,unres

Errors on parameters estimation:

chc — chc, rec T Qerror + chc, unres



Effect of errors on parameter estimation

In addition to non resolved sources the residual contains a contribution due to waveforms non perfectely removed:

chc — chc, rec T Qerror + chc, unres

The contribution from parameter estimation erros is:

1
Qerror — _fFerror(f)

PcC

Ferror( _ 1 7TC 2 Z htrue recovered (f)) <htrue (f) hrecovered (f) ) 2)

Sachdev et al., PhysRevD.102.024051
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Effect of errors on parameter estimation
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Effect of errors on parameter estimation
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The situation get worse with 9 parameters
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A foreground for other backgrounds
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What can we do ?

Projection methods (Cutler and Harms 2006; Sharma et al. 2020)

Bayesian method (Biscoveanu et al. 2020)

Notching in the time frequency plan (Zhong et al. 2022)

For ET, use the null stream



Other backgrounds : astrophysical predictions
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Astrophysical background

The integrated GW flux is the sum of all the individual contributions:

Zmax (0)
Fow(f) = [, p@o [ " 22 0,2) 00 o, )
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of individual sources
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with the individual fluence: 5 =7 fs) = 5 f5 (Hy (s % (s




Constraints on young pulsars/magnetars

Spectral energy density:
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Constraints on pulsars/magnetars

Spectral energy density:
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Conclusion

* [t is not clear that the background will bring extra informations compared to
individual detection for CBCs

* The situation is different for other astrophysical background or the
cosmological background

* Parameter estimation errors jeopardize the chance to observe any other
background in NG detectors



