
L'expérience CMS au collisionneur d'hadrons LHC et le World LHC Computing Grid

Giacomo BRUNO

Centre de Recherche CP3, Departement de Physique - UCL

Inauguration Tier2 / Green, UCL, 31 Octobre 2008

✓The predictions of a relativistic quantum field theory, called **the Standard Model**, are consistent with all experimental observations related to 3 out of 4 fundamental interactions (gravity is left out) in phenomena occurring at the energy scale of up to 100 GeV.

✓ Some Standard Model predictions make non sense at **the yet unexplored TeV scale**. The minimum to cure this behaviour would be the existence of one additional, and yet unobserved, elementary particle: **the Higgs boson**.

✓A fit of SM predictions to experimental precision results constrains the Higgs mass to be around 100 GeV (100 times heavier than the proton).

Unanswered Questions

- a. Are the particles fundamental or do they possess structure ?
- b. Why are there three generations of quark and lepton are there more ?
- c. What is the nature of the dark matter that pervades our galaxy ?
- d. Are protons unstable ?
- e. Are there new states of matter at exceedingly high density and temperature?
- f. Do the neutrinos have mass, and if so why are they so light ?
- g. Can gravity be included in a theory with the other three interactions ?
- h. What is the origin of mass?
- i. Why is the charge on the electron equal and opposite to that on the proton?
- j. Why is there overwhelmingly more matter than anti-matter in the Universe ?

Higgs' identikit

- The Higgs is heavy
 - Most easily produced in heads-on collisions at O(TeV)
- The Higgs is rare
 - SM prediction: to produce 1 (light) Higgs per second need to collide every second 2x (10¹⁸ protons having 7 TeV) in an area of 1000 µm².
 - Production rate increases rapidly with beam energy
 - A Heavier Higgs is even more rare

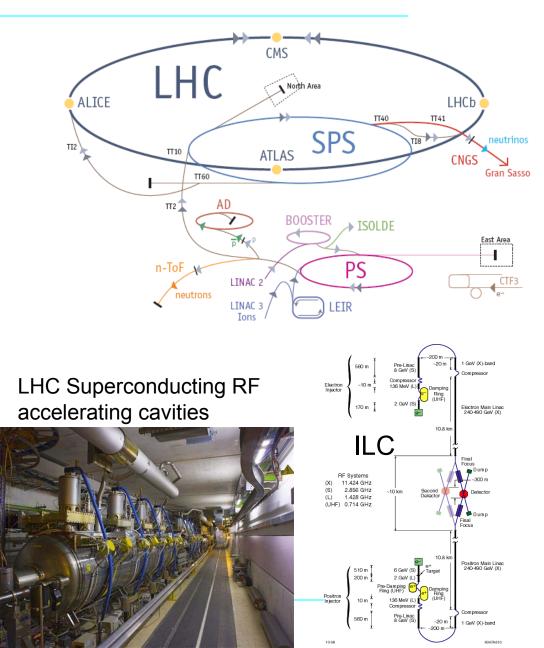
Energy (mass) available (producible) in collisions


- Fixed target
 - Beam Particle Energy = 1 TeV
 - Proton Target (M ~1 GeV)

43.3 GeV

Heads-on collisions

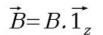
E_{cm}=2 TeV

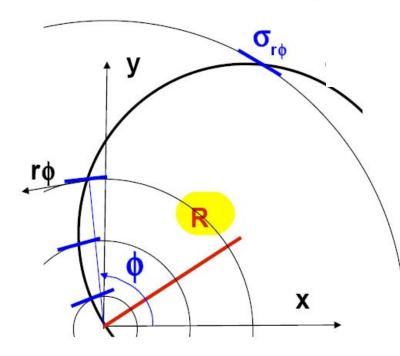

- Beam Particle Energy = 1 TeV

31 Octobre 2008 Inauguration T2 - UCL LHC, C

The LHC

- C→Collider
 - Highest producible masses for given beam energy
- (C→Circular)
 - Can have more time to accelerate particles → high energy beams
 - Can inject more and more particles in the ring → high intensity beams
 - Can re-cycle non interacted beams → eco-friendly..
- $H \rightarrow$ Hadron (protons)
 - Higher cross section
 - Lower beam energy losses

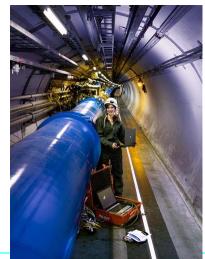

31 Octobre 2008 Inauguration T2 - UCL


L→ Large

•

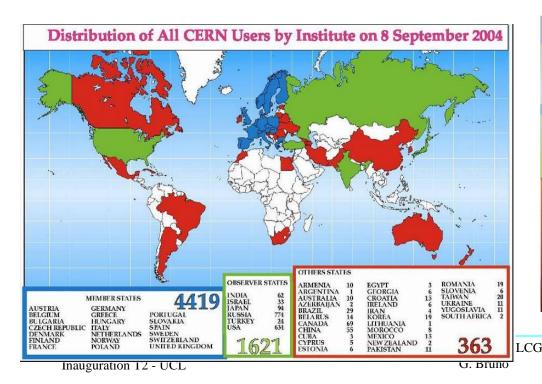
p = q B R

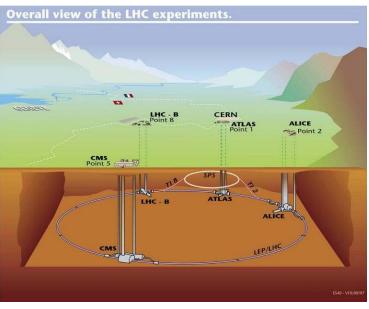
In convenient units:
p_T[GeV/c]=0.3 B[Tesla]R[m]



P=7000 GeV/c, B=8 T \rightarrow R=3 km

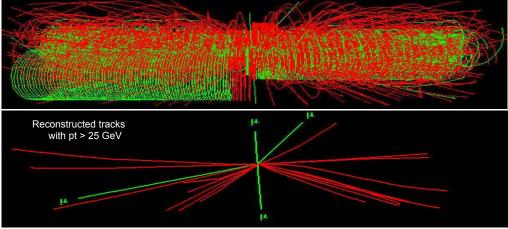
LHC radius is 4.2 km (27 km long)

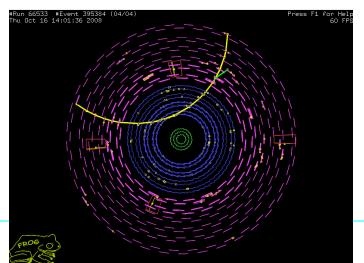

- Technological limitation from superconducting dipole magnets
 - 1232 dipole magnets of 15 m length cooled with liquid helium at -271°C providing 8.3 T
 - 10 years of R&D at CERN
 - 5 years of industrialization
 - 3 years of production
- September 19th incident caused by
 - "faulty electrical connection in a region between two of the accelerator's magnets". CERN DG



31 Octobre 2008 Inauguration T2 - UCL LHC, CMS et WLCG Engineers checking the electronics of the cryogenic instrumentation under a dipole magnet.

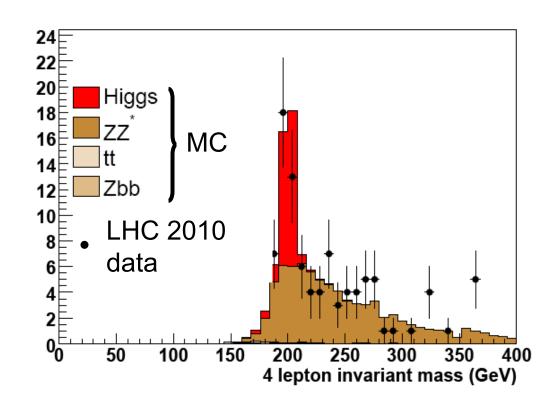
The European Organization for Nuclear Research (CERN)

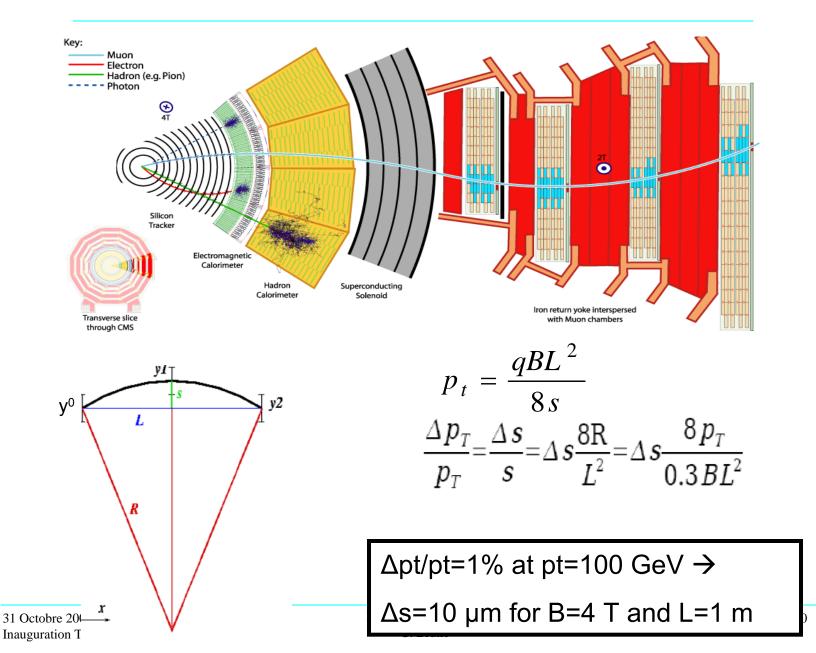

- Accelerator Facilities
 - SuperProtonSynchroton (proton/antiproton up to 400 GeV 7 km long – discovery of W and Z particles)
 - LEP (now dismantled electron and positron up to 100 GeV 27 km long - precision tests of Standard Model)
 - LHC (protons up to 7 TeV LEP tunnel)
 - Four experiments: ATLAS, CMS, ALICE and LHCB



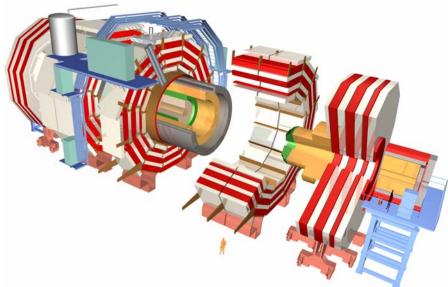
"Events"

 an LHC event - something like this repeats every 25 ns

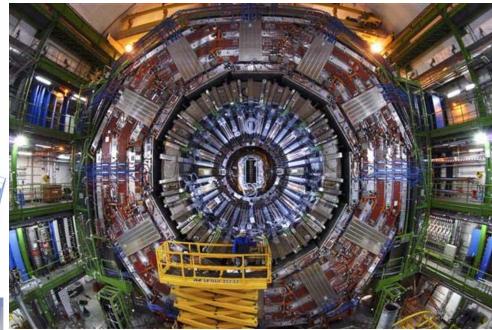

• A real cosmic event (all we have for now..)


31 Octobre 2008 Inauguration T2 - UCL

2010, the could-be Higgs Discovery


- One Higgs decay mode
 - $H \rightarrow ZZ \rightarrow e^+e^-\mu^+\mu^-$
- Measure e and µ
- Compute Higgs mass assuming decay chain above
- Red peak width determined by detector quality (precision of energy measurement,)

Particle identification and measurement



The CMS Detector

- 200 Institutes
 - 6 Belgian universities (UA, UCL, UG, ULB, UMH, VUB).
 - Silicon Strip Tracker
 - Tier2

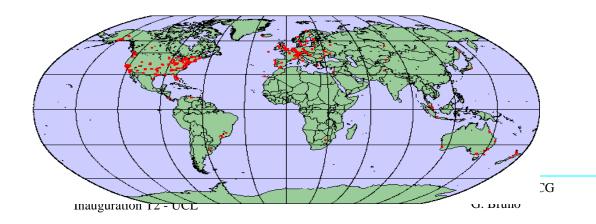
CMS et WLCG G. Bruno

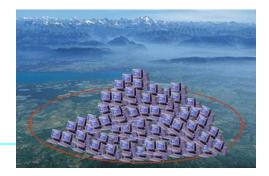
The LHC Data Challenge

- 40 million collisions per second
- After online filtering, 100 collisions of interest per second
- 1 Megabyte of data per collision
 - recording rate: 0.1 Gigabyte/sec/experiment
- 10⁹ collisions recorded each year
 - stored data: 1 Petabyte/year/experiment
- In addition:
 - Need as many fully simulated events
 - Data needs to be "reconstructed"
 - go from individual detector channel electronic signals to particles
 - Detectors needs to be calibrated
 - And data corrected
 - Data needs to be analyzed to extract final results

1 Megabyte (1MB) A digital photo

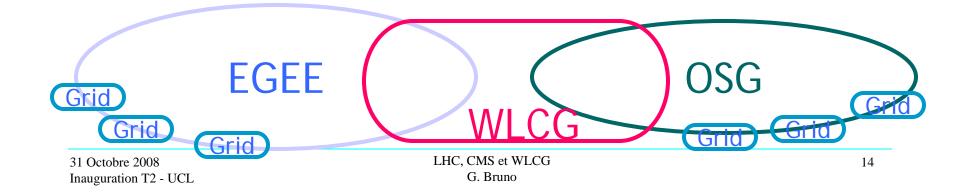
1 Gigabyte (1GB) = 1000MB 5GB = A DVD movie


1 Terabyte (1TB) = 1000GB World annual book production

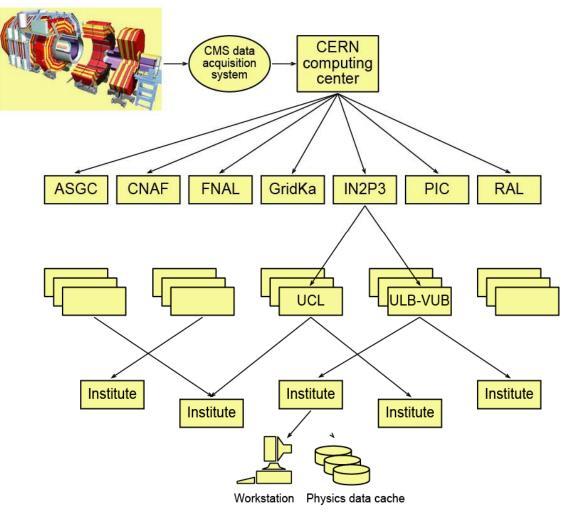

1 Petabyte (1PB) = 1000TB Annual production of one LHC experiment

1 Exabyte (1EB) = 1000 PB 3EB = World annual information production

The LHC Data Challenge (II)


- Problem: even with Computer Centre upgrade, CERN can provide only a fraction of the necessary resources.
 CMS needs: 30000 CPUs, 25 000 TB disk, 35 000 TB tape
- Solution: CERN has over 500 partners institutes in the world. Most have and/or need significant computing resources (in general also for several other scientific purposes). Build a Grid that **unites these computing resources.**
 - share loads
 - absorb fluctuations in computing resources demand

Grid Projects


- CERN projects:
 World LHC Computing Grid (WLCG)
- EU-funded projects led by CERN:
 Enabling Grids for E-SciencE (EGEE)
 - 260 sites, 72,000 CPUs, 20 PB storage
 - 150 Virtual Organizations

CMS Computing Model

Tier 0 (level 0)

- permanent storage of raw data
- distribution of raw data to Tier 1
- detector calibration and alignment

Tier 1 (level 1)

- partial copy of raw data
- subsequent data reconstruction passes
- long term storage of processed data

Tier 2 (level 2)

- MC production
- partial copy of reconstructed data
- physics analysis

Outlook

- Particle Physics aims at pushing forward our fundamental comprehension of the Universe we live in
- It prepares the ground for far-future Applied Science
- It already pushes applied science beyond its frontiers