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Outline 2

1 What are we looking for? Why is it interesting?

2 What GW catalogs are we using? What do we expect in near-future?

3 Which neutrino telescopes are contributing? What are the results?

4 What are the prospects?



Binary mergers Phys. Rev. D 93, 044019

Phys. Rev. D 93, 123015 3

Mergers of compact objects (Neutron Stars -NS-, Black
Holes -BH-) are established gravitational wave (GW)
emitters.

• BNS (NS+NS) or NSBH (NS+BH): may produce
short Gamma-Ray Bursts with neutrino production

• BBH (BH+BH): neutrinos may be produced in the
accretion disks of the BHs

Spectrum E−γ often considered in searches
and MeV/GeV emission?

Shape isotropic (not realistic at high energy)
or presence of directional jet?

Timing GW170817 + GRB170817A observation
hints to prompt signal for BNS

https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.93.123015
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Mergers of compact objects (Neutron Stars -NS-, Black
Holes -BH-) are established gravitational wave (GW)
emitters.

• BNS (NS+NS) or NSBH (NS+BH): may produce
short Gamma-Ray Bursts with neutrino production

• BBH (BH+BH): neutrinos may be produced in the
accretion disks of the BHs

Spectrum E−γ often considered in searches
and MeV/GeV emission?

Shape isotropic (not realistic at high energy)
or presence of directional jet?

Timing GW170817 + GRB170817A observation
hints to prompt signal for BNS

→ probing the environment
of the source

→ constraining MHD pa-
rameters and neutrino
transport mechanisms

https://doi.org/10.1103/PhysRevD.93.044019
https://doi.org/10.1103/PhysRevD.93.123015


Existing GW catalogs Phys.Rev.X 11 (2021) 021053

arXiv:2111.03606 5

O1 O2 O3a O3b O4
202320222021202020192018201720162015

LIGO starts Virgo joins KAGRA joins

Since 2015, almost 100 confirmed detections
distributed through 4 catalogs:

• GWTC-1: 11 events from O1 and O2

• GWTC-2: 39 events from O3a

• GWTC-2.1: low-significance events from O3a

• GWTC-3: 35 events from O3b

From O4, we expect ∼ 100 new detections per year.

https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2111.03606


Neutrino telescopes: current 6

Golden technique: detection of Cherenkov light produced after neutrino interactions
Golden technology: large water volume instrumented with photomultipliers

Super-Kamiokande ANTARES IceCube

Where? mine in Japan deep in Mediterranean deep at South Pole
When? 1996 – running 2006 – 2022 2010 – running

How?
11k PMTs on the walls 12 lines 86 strings

50 kt 10 Mt 1 Gt



Neutrino telescopes: current & future 7

Golden technique: detection of Cherenkov light produced after neutrino interactions
Golden technology: large water volume instrumented with photomultipliers

Hyper-Kamiokande KM3NeT IceCube-Gen2

Where? mine in Japan deep in Mediterranean deep at South Pole
When? by 2028 under construction (2026) by 2032

How?
20k+ PMTs 3× 115 lines +120 strings

50 kt 10 Mt + 2× 0.5 Gt 10 Gt



Neutrino telescopes: energy ranges 8

MeV GeV TeV PeV

Cherenkov rings

Increase of PMT rate Signal on few DOMs
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Follow-up strategies and datasets 9

Type Super-
Kamiokande

ANTARES &
KM3NeT

IceCube
(+DeepCore)

Others

Energy range 7− 100 MeV &
0.1 GeV − TeV

GeV − TeV &
TeV − PeV

0.5− 5 GeV &
5 GeV − TeV &

TeV − PeV

KamLAND: ν̄e
1.8-111 MeV,
1000 s

NOvA: MeV−TeV,
1000 s and 0-45 s

AUGER:
> 0.1 EeV, 24 h

Time window 1000 s 1000 s 1000 s + 3 s
Flavours ν̄e/all all all/νµ
Online Under study Yes Yes

Published O1+O2, O3a O1, O2 O1, O2, O3a
Under progress O3b O3a, O3b O3b

https://doi.org/10.3847/1538-4357/abd5bc
https://doi.org/10.1103/PhysRevD.101.112006
https://doi.org/10.22323/1.395.0968


Super-Kamiokande ApJ. 918 (2021) 2, 78 10

Papers: GW150914/GW151226 (ApJ.Lett. 830 (2016) 1), GW170817 (ApJ.Lett. 857 (2018) 1, L4),
all O3 events (ApJ. 918 (2021) 2, 78)

Using low- (MeV ν̄e) and
high-energy (GeV-TeV)
samples

Bkg: ∼ 0.1 event /1000 s

Limits (E−2, all-flavour):
30− 2000 GeV cm−2

2× 1056−4× 1059 erg

Likelihood analysis to quantify
signalness of observation
[Ppre = 0.2%,Ppost = 7.8%]

BBH stacking: assuming E ν
iso = fν ×Mtot, fν < 1.1× 1054 erg M−1

�

To be updated with O3b (GWTC-3) results

https://doi.org/10.3847/1538-4357/ac0d5a
https://doi.org/10.3847/2041-8205/830/1/L11
https://doi.org/10.3847/2041-8213/aabaca
https://doi.org/10.3847/1538-4357/ac0d5a


ANTARES ApJ.Lett. 850 (2017) 2, L35

Eur.Phys.J.C 80 (2020) 5, 487 11

Papers: GW150914 (PRD 93, 122010), GW151226 (PRD 96, 022005), GW170104 (Eur.Phys.J.C 77

(2017) 12, 911), GW170817 (ApJ.Lett. 850 (2017) 2, L35), 6 O2 events (Eur.Phys.J.C 80 (2020) 5, 487)

Using both track and
shower events

Bkg: 2.7× 10−3/1000 s

Limits (E−2, per flavour):
1− 9 GeV cm−2

2× 1053 − 3× 1055 erg

Ongoing study

• follow-up of O3 events

• all-flavour constraints

• considering isotropic / jetted emission

• studies w/ KM3NeT first data (ORCA4/6)

https://doi.org/10.3847/2041-8213/aa9aed
https://doi.org/10.1140/epjc/s10052-020-8015-6
http://dx.doi.org/10.1103/PhysRevD.93.122010
https://doi.org/10.1103/PhysRevD.96.022005
https://doi.org/10.1140/epjc/s10052-017-5451-z
https://doi.org/10.1140/epjc/s10052-017-5451-z
https://doi.org/10.3847/2041-8213/aa9aed
https://doi.org/10.1140/epjc/s10052-020-8015-6


IceCube ApJ.Lett. 898 (2020) 1, L10

PoS ICRC (2021) 950 12

Papers: GW150914 (PRD 93, 122010), GW151226 (PRD 96, 022005), GW170817 (ApJ.Lett. 850

(2017) 2, L35), O1+O2 (ApJ.Lett. 898 (2020) 1, L10), O3a (PoS ICRC (2021) 950)

Different analyses:
GFU, > 100 GeV (νµ), b = 6.7 mHz
GRECO, 5 − 100 GeV (νµ), b = 4.5 mHz
ELOWEN, 0.5 − 5 GeV (all), b = 20 mHz

Limits (E−2, per flavour):
0.03− 1 GeV cm−2

1051 − 1055 erg

New publication with O3b
(GWTC-3) results soon

https://doi.org/10.3847/2041-8213/ab9d24
https://doi.org/10.22323/1.395.0950
http://dx.doi.org/10.1103/PhysRevD.93.122010
https://doi.org/10.1103/PhysRevD.96.022005
https://doi.org/10.3847/2041-8213/aa9aed
https://doi.org/10.3847/2041-8213/aa9aed
https://doi.org/10.3847/2041-8213/ab9d24
https://doi.org/10.22323/1.395.0950


How far we are & what we can do MNRAS 476 (2018) 1, 1191-1197

MNRAS 490 (2019) 4, 4935-4943 13

Be aware that this is a specific neutrino emission model,
others may be more optimistic (or not)

1 Waiting to get lucky for high-energy
neutrino detection?

2 Extend the reach of current large
telescopes (KM3NeT/IceCube) to the
lowest energies.

3 Perform stacking analyses and population
studies, taking benefit of the increasing
catalog of GW sources.

https://doi.org/10.1093/mnras/sty285
https://doi.org/10.1093/mnras/stz2980


To lowest energies and beyond arXiv:2105.13160

JINST 16 (2021) 12, C12012 14

How to better exploit the 0.5-5 GeV energy range?

• Very well suited for Super-K/Hyper-K but detector is relatively small
• Light in only few DOMs for KM3NeT/IceCube but huge instrumented volumes
• Pointing strongly limited by neutrino-muon scattering angle

Recover some directionality

• efforts @ UCLouvain in IceCube (K. Kruiswijk)

and KM3NeT (using mPMT structure)

• helps reducing background

Separating from noise (IceCube=20 mHz)

• Look for significant excess with. . .

• . . . short time window, stacking GWs?
• . . . combining IceCube + KM3NeT?

https://arxiv.org/abs/2105.13160
https://iopscience.iop.org/article/10.1088/1748-0221/16/12/C12012


Summary 15
Take-home message:

• Neutrino emission expected from binary mergers

• Many constraints from existing neutrino telescopes

• Promising prospects with O4...
• ... But we should also benefit from new developments:

• extension to lower energies
• synergies between experiments
• clever stacking

Involvements at UCLouvain:

• interfacing between KM3NeT
and IceCube efforts

• GeV neutrino reconstruction

• development of tools (for
instance PyJANG) for
combination of available limits

Topics not covered: other neutrino detectors and results, sub-threshold GW+ν analyses

https://github.com/mlamo/pyjang


Backups



The Super-Kamiokande experiment NIM.A 501 (2003) 418-462 17

Experiment running since 1998, located in the Mozumi mine in Japan.

11k photomultipliers
(50 cm diameters)

50 kilotons of water
39 meters diameter
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https://doi.org/10.1016/S0168-9002(03)00425-X


Cherenkov detection principle 18

1. Neutrino interacts
2. Produces charged particles
3. Emit Cherenkov light
4. Detected by 3D array of PMTs

Detector acceptance depends on energy:
lower energies → less light → needs denser PMT layout

higher energies → more absorbed by Earth → can only see downgoing νs

νµ + N → µ+ X
- fit line → direction
- amount of light → energy

Track events

νµ

µ

?

θc



Cherenkov detection principle 19

1. Neutrino interacts
2. Produces charged particles
3. Emit Cherenkov light
4. Detected by 3D array of PMTs

Detector acceptance depends on energy:
lower energies → less light → needs denser PMT layout

higher energies → more absorbed by Earth → can only see downgoing νs

νe + ντ charged current interactions
νe + νµ + ντ neutral current interations

Shower events

ν e

?



The ANTARES experiment NIM.A 656 (2011) 11-38 20

∼ 70 m

35
0

m

• In operation since 2006
(completed in 2008)

• Off the coast of Toulon

• 12 lines

• 25 storeys/line

• 3 PMTs / storey

Total instrumented
volume:
10 Mt

https://doi.org/10.1016/j.nima.2011.06.103


The KM3NeT project J.Phys.G 43 (2016) 8, 084001 21

New optical sensors:
DOMs (Digital Optical Modules)

with 31× 3” PMTs

Deployment
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https://iopscience.iop.org/article/10.1088/0954-3899/43/8/084001


The KM3NeT project J.Phys.G 43 (2016) 8, 084001 22

New optical sensors:
DOMs (Digital Optical Modules)

with 31× 3” PMTs

Deployment
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ORCA
(France)

1 building block = 115 strings (DUs)

ARCA
(Italy)

2 building blocks ∼ 1 km3

Eν = 1− 100 GeV

Eν > 100 GeV

complementary

https://iopscience.iop.org/article/10.1088/0954-3899/43/8/084001


The IceCube experiment and Gen-2 23



Super-K - observation significance ApJ 918 (2021) 2, 78 24

Test statistic (TS) has been built to separate signal (point-source) from background (full-sky).
It is used to compute p-values (compared observed TS to background distribution).

The most significant GW+ν coincidence is
for GW190602 175927:

p = 0.22%

Considering the number of trials (N = 36
follow-ups), we get a post-trial p-value:

P = 7.8%

https://doi.org/10.3847/1538-4357/ac0d5a


Super-K - flux limits ApJ 918 (2021) 2, 78 25

L(φ0; nB ,N) =
∫ (c(Ω)φ0+nB )N

N! e−(c(Ω)φ0+nB )PGW(Ω)dΩ with c(Ω) =
∫ Emax

Emin
dEνAeff(Eν , θ)E−2

ν
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Combined FC PC UPMU

. 4× 101 GeV cm−2

. 2× 103 GeV cm−2

Better limits with the UPMU sample when the GW is below the local horizon. Combined
limits are close to the best individual one.

https://doi.org/10.3847/1538-4357/ac0d5a


IceCube - method and limits ApJ.Lett. 898 (2020) 1, L10 26

Few different samples with
background rate 4-20 mHz
and sensitivity from GeV to
PeV

Different analysis pipelines including
Maximum-likelihood Analysis where
TS is assigned to each observation
using GW localization and neutrino
directions

Flux limit = minimum flux
you need to have a
significant excess in terms
of TS (done for E−2

spectrum)

https://doi.org/10.3847/2041-8213/ab9d24


Complementarity between experiments 27

What is the expected gain by considering both experiments simultaneously to compute upper limits on
F =

∫
dn
dE dE with dn

dE ∝ E−γe−E/Ecut?

Simple test with Poisson likelihood (one per experiment and a combined one): Preliminary

Fig: Relative diff. between ANTARES and SK limits. Fig: Relative gain with the combination.
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