Neutrino emission from gravitational wave sources Experimental landscape and prospects

12th CosPa meeting

Mathieu Lamoureux CP3, UCLouvain (Belgium)

- What are we looking for? Why is it interesting?
- What GW catalogs are we using? What do we expect in near-future?
- ³ Which neutrino telescopes are contributing? What are the results?
- What are the prospects?

Mergers of compact objects (Neutron Stars -NS-, Black Holes -BH-) are established gravitational wave (GW) emitters.

- **BNS** (NS+NS) or **NSBH** (NS+BH): may produce short Gamma-Ray Bursts with neutrino production
- **BBH** (BH+BH): neutrinos may be produced in the accretion disks of the BHs

Spectrum	$E^{-\gamma}$ often considered in searches		
	and MeV/GeV emission?		
Shape	isotropic (not realistic at high energy)		
	or presence of directional jet?		
Timing	GW170817 + GRB170817A observatior		
	hints to prompt signal for BNS		

Binary mergers

Mergers of compact objects (Neutron Stars -NS-, Black Holes -BH-) are established gravitational wave (GW) emitters.

- **BNS** (NS+NS) or **NSBH** (NS+BH): may produce short Gamma-Ray Bursts with neutrino production
- **BBH** (BH+BH): neutrinos may be produced in the accretion disks of the BHs

Spectrum	$E^{-\gamma}$ often considered in searches			
	and MeV/GeV emission?			
Shape	isotropic (not realistic at high energy)			
	or presence of directional jet?			
Timing	GW170817 + GRB170817A observation			
	hints to prompt signal for BNS			

5

Golden technique: detection of Cherenkov light produced after neutrino interactions **Golden technology:** large water volume instrumented with photomultipliers

Super-Kamiokande

Where? When? How? mine in Japan 1996 – running 11k PMTs on the walls 50 kt deep in Mediterranean 2006 – 2022 12 lines 10 Mt

ANTARES

IceCube

deep at South Pole 2010 – running 86 strings 1 Gt **Golden technique:** detection of Cherenkov light produced after neutrino interactions **Golden technology:** large water volume instrumented with photomultipliers

Hyper-Kamiokande

Where? When? How? mine in Japan by 2028 20k+ PMTs 50 kt deep in Mediterranean under construction (2026) 3×115 lines $10 \text{ Mt} + 2 \times 0.5 \text{ Gt}$

KM3NeT

IceCube-Gen2

deep at South Pole by 2032 +120 strings 10 Gt

Neutrino telescopes: energy ranges

Follow-up strategies and datasets

-	
	1
-	ł
· ·	

	B K		IceCube	
Туре	Super- Kamiokande	ANTARES & KM3NeT	IceCube (+DeepCore)	Others
Energy range	7 — 100 MeV & 0.1 GeV — TeV	GeV — TeV & TeV — PeV	0.5 — 5 GeV & 5 GeV — TeV & TeV — PeV	KamLAND: $\bar{\nu}_e$ 1.8-111 MeV, 1000 s
Time window Flavours Online	$1000{ m s}$ $ar u_e/{ m all}$ Under study	1000 s all Yes	$1000{ m s}+3{ m s}$ all/ $ u_{\mu}$ Yes	NOvA: MeV – TeV, 1000 s and 0-45 s AUGER:
Published Under progress	01+02, O3a O3b	01, 02 03a, 03b	01, 02, 03a 03b	- > 0.1 ECV, 2411

Super-Kamiokande

Papers: GW150914/GW151226 (ApJ.Lett. 830 (2016) 1), GW170817 (ApJ.Lett. 857 (2018) 1, L4), all O3 events (ApJ. 918 (2021) 2, 78)

To be updated with O3b (GWTC-3) results

ANTARES

11

Papers: GW150914 (PRD 93, 122010), GW151226 (PRD 96, 022005), GW170104 (Eur.Phys.J.C 77 (2017) 12, 911), GW170817 (ApJ.Lett. 850 (2017) 2, L35), 6 O2 events (Eur.Phys.J.C 80 (2020) 5, 487)

Ongoing study

- follow-up of O3 events
- all-flavour constraints

- considering isotropic / jetted emission
- studies w/ KM3NeT first data (ORCA4/6)

IceCube

12

Papers: GW150914 (PRD 93, 122010), GW151226 (PRD 96, 022005), GW170817 (ApJ.Lett. 850 (2017) 2, L35), O1+O2 (ApJ.Lett. 898 (2020) 1, L10), O3a (PoS ICRC (2021) 950)

How far we are & what we can do

13

Be aware that this is a specific neutrino emission model, others may be more optimistic (or not)

Waiting to get lucky for high-energy neutrino detection?

- Extend the reach of current large telescopes (KM3NeT/IceCube) to the lowest energies.
- Perform stacking analyses and population studies, taking benefit of the increasing catalog of GW sources.

To lowest energies and beyond

JarXiv:2105.13160 □ JINST 16 (2021) 12, C12012

How to better exploit the 0.5-5 GeV energy range?

- Very well suited for Super-K/Hyper-K but detector is relatively small
- Light in only few DOMs for KM3NeT/IceCube but huge instrumented volumes
- Pointing strongly limited by neutrino-muon scattering angle

Recover some directionality

- efforts @ UCLouvain in IceCube (K. Kruiswijk) and KM3NeT (using mPMT structure)
- helps reducing background

0.5 $\cos(\theta_{reco}^{zenith})$

0.0

-0.1

-1.0

Separating from noise (IceCube=20 mHz)

- Look for significant excess with...
 - ... short time window, stacking GWs?
 - \ldots combining IceCube + KM3NeT?

Summary

Take-home message:

- Neutrino emission expected from binary mergers
- Many constraints from existing neutrino telescopes
- Promising prospects with O4...
- ... But we should also benefit from new developments:
 - extension to lower energies
 - synergies between experiments
 - clever stacking

- interfacing between KM3NeT and IceCube efforts
- GeV neutrino reconstruction
- development of tools (for instance PyJANG) for combination of available limits

Topics not covered: other neutrino detectors and results, sub-threshold GW+ ν analyses

Backups

The Super-Kamiokande experiment

UNIM.A 501 (2003) 418-462

17

Experiment running since 1998, located in the Mozumi mine in Japan.

Cherenkov detection principle

- 1. Neutrino interacts
- 2. Produces charged particles
- 3. Emit Cherenkov light
- 4. Detected by 3D array of PMTs

TRACK EVENTS

 $u_{\mu} + N \rightarrow \mu + X$ - fit line \rightarrow direction

- amount of light \rightarrow energy

 $\label{eq:Detector acceptance depends on energy:} \\ \mbox{lower energies} \rightarrow \mbox{less light} \rightarrow \mbox{needs denser PMT layout} \\ \mbox{higher energies} \rightarrow \mbox{more absorbed by Earth} \rightarrow \mbox{can only see downgoing } \nu \mbox{s}$

Cherenkov detection principle

- 1. Neutrino interacts
- 2. Produces charged particles
- 3. Emit Cherenkov light
- 4. Detected by 3D array of PMTs

Shower events

 $\nu_{e}+\nu_{\tau}$ charged current interactions $\nu_{e}+\nu_{\mu}+\nu_{\tau}$ neutral current interations

1)e

$\begin{array}{c} \label{eq:Detector} \textbf{Detector} \ \textbf{acceptance} \ \textbf{depends on energy:} \\ \textbf{lower energies} \rightarrow \textbf{less light} \rightarrow \textbf{needs denser PMT layout} \\ \textbf{higher energies} \rightarrow \textbf{more absorbed by Earth} \rightarrow \textbf{can only see downgoing } \nu \textbf{s} \end{array}$

The ANTARES experiment

- In operation since 2006 (completed in 2008)
- Off the coast of Toulon
- 12 lines
- 25 storeys/line

UNIM.A 656 (2011) 11-38

• 3 PMTs / storey

Total instrumented volume: 10 Mt

The KM3NeT project

□ IJ J.Phys.G 43 (2016) 8, 084001 21

18 DOMs / string

New optical sensors: DOMs (Digital Optical Modules) with $31 \times 3''$ PMTs

The KM3NeT project

🛄 J.Phys.G 43 (2016) 8, 084001

22

New optical sensors: 1 building block = 115 strings (DUs) DOMs (Digital Optical Modules) 18 with $31 \times 3''$ PMTs **ORCA** DOMs / string (France) $E_{
u} = 1 - 100 \,\mathrm{GeV}$ complementary $E_{\nu} > 100 \, {
m GeV}$ Italy 2 building blocks $\sim 1 \, \text{km}^2$ Deploymen

The IceCube experiment and Gen-2

Test statistic (TS) has been built to separate signal (point-source) from background (full-sky). It is used to compute p-values (compared observed TS to background distribution).

Better limits with the UPMU sample when the GW is below the local horizon. Combined limits are close to the best individual one.

Few **different samples** with background rate 4-20 mHz and sensitivity from GeV to PeV

Different **analysis pipelines** including Maximum-likelihood Analysis where TS is assigned to each observation using GW localization and neutrino directions

Flux limit = minimum flux you need to have a significant excess in terms of TS (done for E^{-2} spectrum)

What is the expected gain by considering both experiments simultaneously to compute upper limits on $F = \int \frac{dn}{dE} dE$ with $\frac{dn}{dE} \propto E^{-\gamma} e^{-E/E_{cut}}$?

Simple test with Poisson likelihood (one per experiment and a combined one): **PRELIMINARY**

Fig: Relative diff. between ANTARES and SK limits.

Fig: Relative gain with the combination.