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Cyclotron principle

Cyclotrons solved the problem of linear accelerators, i.e. in order to increase the energy of the particle in a linear

accelerator longer and longer linacs are needed = increase in cost and length. E.g. CLIC is 50 km linac. The best is to

drive particles in a circular orbit and reuse the accelerating structure many times. The first circular accelerator was a
proposed by Lawrence in 1930. The first built cyclotron had a kinetic energy of 1.2 MeV.

This is our first circular accelerator =» cyclotron
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Let’s derive the equation of motion in a cyclotron. The coordinate system is the following:

1.
Va

The magnetic field has only one component:

o (g)

We can get the equation of motion from the Lorentz force:
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We assume that the motion is confined in the (x,y) plane, therefore:

Pu My dp . mv:x
p = poy = (mvy> 9 d_t =p= m‘[)y
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Dy = MUy = quBz

p.y — mljy = —qUyB,



Differentiating the equations versus time we get:
2
.o 9T,
Uy + WBZ Uy = 0
2
L4,
Uy + WBZ Uy =0
with solutions
v, (t) = vycosw,t
v, (t) = vpsinw,t

with
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=» CYCLOTRON FREQUENCY OR LARMOR FREQUENCY

The cyclotron frequency does not depend on the particle velocity. Since the particle is NON-RELATIVISTIC, y =1, and m

= m,, and since B is also constant, an increase of energy cannot be compensated by an increase of revolution
frequency, therefore is compensated by an increase of bending radius, p. Therefore, the particle describes a spiral.

Synchronous condition = w, = wg. such every time the particle
crosses the gap sees an accelerating electric field.



When the particle becomes RELATIVISTIC we cannot assume m = m,, but m=Ym, which increases with energy. In this
case, w, decreases and therefore, wy will have to be decreased accordingly. This gives rise to the

w, = LBZ * cte

Yymg

SynchroCyclotrons only work for a limited range of energies and provide with pulsed beam, therefore they provide
with less intensity than cyclotrons, but a bit more energy. The solution to this intensity limitation is the use of
cyclotrons in which the magnetic field increases as the radius increases =

Wz = LBz(p) = cte

ymy



Transfer Line

Quartz Quartz

Cyclotron

e |

chamber

Quadrupoles :

Qa,Qb: Ly = 310 mm Emittance as measured in the 90’s
B = 23 [Gauss/A] =23 10-4 [T/A] at poles
r =50 mm Values for a 65MeV

proton beam at s=0

12,9 mm
8 mr
1,5 mm
8 mr
0 mm
0%
0,355 GeV/c

Q1,Q2,Q3,Q4: [=292mm

B = 76,4 [Gauss/A] = 76,4 10-4 [T/ A]
r = 38,1 mm

U o T < < X X

(P =momentum central path)
Bending magnet length (for beam line R) :

Swt : [;ﬁ= 958,1 mm



Sequence Position of elements = position of center (rem: wall width unknown at this point, | took 1000 mm)

Elements [mm] Typical current used for protons (65MeV)  [A]
Ouput cyclo 0

Stl.h 355 not used
Qa 982 121,3
Qb 1397 128,8
St2.v 2960 3,68
Q1 4602 38,9
Q2 5016 35,5
quartz 5578

Swt* 6492 85,6
quartz 10878

Q3 14880 29,8
Q4 15264 31,6
St3.h 16014 3,5
St4.v 16403 0,6
quartz 18608

* The center for the bending magnet was considered as the half of the effective path length of a central particule in the bending magnet.



Question 1: quadrupole polarities

Using a magnetic probe, power each quadrupole of the line, one by one, to the same current, e.g. 30 A and find the

north pole. Determine if the quadrupole is focusing or defocusing. y
A focusing quadrupole, Figure 1, is defined when for a positive current \ S N /
injected into the circuit by the power converter, the north is on the top-right 1\ /77\/

pole. For a positive charged particle coming into the picture, like an injected
beam from a source, the force is focusing (blue lines) in the horizontal plane
and defocusing (red lines) in the vertical plane.

A defocusing quadrupole, Figure 2, is defined when for a positive current . ‘
injected into the circuit by the power converter, the south is on the top-right \ /
pole. For a charged particle coming into the picture, like an injected beam y
from a source, the force is defocusing (red lines) in the horizontal plane and
focusing (blue lines) in the vertical plane.

Fig. 2




Question 2: determine the beam emittance

Emittance as measured in the 90’s

Values for a 65MeV X 12,9 mm
proton beam ats=0 | X 8 mr
Yy 1,5 mm
y' 8 mr 1.5 mm X,y (mm)
| gimm ° 12.9 mm
o)
(P =momentum central path) I(: 0’352 (/SoeV/c Area/Tt=a b

€,=12.9 mm 8 mrad =103.2 mm mrad
£y=1.5 mm 8 mrad =12 mm mrad

Let’s measure the emittance using the quadrupole scan method and compared with the measurements
obtained in the 90’s



Measurement of the beam emittance
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We see that all particles travel along their individual ellipses in phase space. If we now choose one with the
largest phase ellipse within a particular beam, we know all particles within that ellipse will stay within that
ellipse. Therefore we are able to describe the collective behavior of a beam formed by many particles by the
dynamics of a single particle.

Since all particles enclosed by a phase space ellipse stay within that ellipse, we only need to know how the ellipse
parameters transform along the beam line to be able to describe the beam.



Let’s define the beam matrix with the well known Twiss parameters:
. (011 012) . ( p —a)
o= =&
021 0322 —-a Y

011 = <x12> = &f

, 5 . .
py = (xer) — ¢y £ = 0,1 0,5 — 0% If we find a way to determine the beam

, matrix, then we can measure the emittance
012 = (x;x';) = —ca

QUADRUPOLE SCAN METHOD TO MEASURE BEAM EMITTANCE

To determine the beam matrix at a place Po, we consider a beam transport line with one quadrupole at Po and a beam
size monitor at P1. We vary the strength of the quadrupole and measure the beam size at P1 as a function of the
guadrupole strength. This is equivalent to measure the beam size at a different locations in the line.

Beam size
monitor

‘ (l—d/fd)_(ld)( 1 0)
3 ; —1/f 1) \o1 )\ -1/f1

Po P1 Matrix in thin lens

A 4



It can be demonstrated (H. Wiedemann, Particle Accelerator Physics, Chapter 5.1 Measurement of beam emittance) that
form the beam matrix at PO, one can get the beam matrix element 11 at P1, i.e. the beam size at P1:

This is what we This we vary in steps
measure with the beg' (d2€égm 1) k> + (_zd qu'()‘ll — 2d2€q00‘12@<7
diagnostic device

+ (00,11 + 2d 00,12 + d*00.22) -

lg and d are known

a b
Fitting 07 11 (k) to a parabola y = ak?+ bk + c¢| will determine the whole beam matrix at PO
a
00,11 = W
1 Geometrical emittance
o . —b — 2d€q(f().11 2 2
0,12 = 22, ; » E” = 011 032 — 017
_ ¢—00,11 — 2doy 12 ‘
0022 = P2 - Normalized emittance

En = YrelPrel€



The beam matrix not only defines the beam emittance but also the betatron
functions at the beginning of the quadrupole in this measurement. We gain
with this measurement a full set of initial beam parameters

(g, Bo, Yo, €) and may now calculate beam parameters at any point along
the transport line.

0o,11 00,12 By —Q
g, = =€

00,21 09,22 -y Vo

COMMENTS

* Chose setting with focus closed to the SEM grid

+ Careful at the focus - beam very small and
possible space charge effects

* Guarantee large beam size variation with
quadrupole strength, to be able to accurately fit
the 3 parameters.




Dispersion [m]

Disp-free optics
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Proposal: use the quadrupole scan method varying Qa and measuring the beam size in Quartzl =
advantage: there is no dispersion. While doing the Qa scan you should keep Qb, Q1 and Q2 OFF.

Quartz1 Quartz2

Cyclotron

weon | .

chamber

Watch up! Once you obtain the Twiss parameters for Qa, you have to transport them back through the drift
up to the entrance of the cyclotron, s,.

Keep the steer magnets St.h/v OFF for all this exercise



Question 3: define the transfer line of the
cyclotron in MADX

Define the cyclotron transfer line in MADX

Use the Twiss parameters at s, obtained via the quad scan method as initial conditions for the Twiss
Check the beta functions and the dispersion

Check the line trajectory with SURVEY command (plot x,y vs. z not s)

. : A _ . .
Plot the beam size along the transfer line. Assume a p—p = 1073 when there is dispersion.
0

Check that the demanded currents in the power converters are within the maximum and minimum allowed values.
If the beam size in some parts of the line is too large, you can constrain the beta function those regions, e.g.

# Several matching methods can be used: LMDIF, MIGRAD, SIMPLEX, JACOBIAN
myString="'""
savebeta, label=betaEnd, place=#e;

No AN E

MATCH, SEQUENCE=myCell, betx=10, bety=10;
constraint, betx=40, range=#e;
constraint, alfx=@, range=#e;

constraint, bety=40, range=#e;
constraint, alfy=@, range=#e;

constraint, betx<1000, range=#s/#e;
constraint, bety<1000, range=#s/#e;

VARY, NAME= k_Qa, STEP=0.00001;

VARY, NAME= k_Qb, STEP=0.00001;

VARY, NAME= k_Q1, STEP=0.00001;

VARY, NAME= k_Q2, STEP=0.00001;

VARY, NAME= k_Q3, STEP=0.00001;

VARY, NAME= k_Q4, STEP=0.00001;

JACOBIAN, CALLS=50, TOLERANCE=1e-20;//method adopted
ENDMATCH;

twiss,betx=10, bety=10;

myMad. input (myString);



