# Colliders and The Large Hadron Collider 

 I. LHC layoutII. LHC Operational cycle
III. Beam measurements


## Why colliders?

What is the centre of mass energy $\rightarrow$ the interesting energy because it is the only one available for the collision products $\boldsymbol{\rightarrow}$ when two particles of masses m 1 and m 2 collide? Four-momentum Square of the four-momentum:

$$
\mathbf{p}=(E, \vec{p}) \quad \mathbf{p}^{2}=E^{2}-\vec{p}^{2}=m^{2}
$$

$\left(\mathbf{p}_{1}+\mathbf{p}_{2}\right)^{2}=E_{c m}^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(\vec{p}_{1}+\vec{p}_{2}\right)^{2}$

CASE 1:

$$
E_{\mathrm{cm}}^{2}=\left(m_{1}^{2}+m_{2}^{2}+2 m_{2} E_{1, \mathrm{lab}}\right)
$$

(m2,0)

CASE 2:

$$
E_{\mathrm{cm}}^{2}=\left(E_{1}+E_{2}\right)^{2}
$$

## Why colliders?

CASE 1: $\quad E_{\mathrm{cm}}^{2}=\left(m_{1}^{2}+m_{2}^{2}+2 m_{2} E_{1, \mathrm{lab}}\right)$
To get a Ecm $=630 \mathrm{GeV}$ to do a SppS collider (SPS in the 80's discovered the weak neutral currents with this collider), what should be the value of E , lab?

$$
\text { E1,lab ~ } 212 \mathrm{TeV}
$$

To get a Ecm = 14 TeV to do an LHC collider (LHC discovered the Higgs in 2012) what should be the value of E , lab?

$$
\text { E1,lab ~ } 100 \mathrm{PeV}
$$

If colliders would not have been invented we would not have discovered yet many particles


First collider

## Why colliders?

From the point of view of the energy, a collider is very very interesting However it has some disadvantages:

1. The beam is several orders of magnitude less dense than a fixed target $\rightarrow$ less number of interactions per second

- How do we overcome this issue?

We collide for many hours $\rightarrow$ e.g. LHC collisions $\sim 12-15$ hours
2. The collision products go out in all directions $\boldsymbol{\rightarrow}$ experiment has to cover all the space around the beam pipe

- Experiments located around the beam pipe are difficult to take in/out to install a new experiment.
- Fixed target experiments are more flexible, e.g. SPS north area: tens of experiments per year.


## I. Basic layout of the machine



## I. Basic layout of the machine: the arc

## LHC arc cells = FoDo lattice* with

$\sim 90^{\circ}$ phase advance per cell in the V \& H plane


MB: main dipole
MQ: main quadrupole
MQT: Trim quadrupole
MQS: Skew trim quadrupole
MO: Lattice octupole (Landau damping)
MSCB: Skew sextupole +
Orbit corrector (lattice chroma+orbit)
MCS: Spool piece sextupole
MCDO: Spool piece octupole +
Decapole
BPM: Beam position monitor

## The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between.
(Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)


## I. Basic layout of the machine

Golden formula (you should know by heart) Circumference $\rightarrow$ FIXED!!! by LEP

## $B \rho=\frac{p}{Z e}$

$$
\rho \approx \frac{26658.9 \mathrm{~m}}{2 \pi} \cdot 66 \% \approx 2780 \mathrm{~m}
$$

$\sim 66 \%$ of the lattice elements are dipoles
$p=$ nucleon momentum $\rightarrow$ defined by the physics case $\rightarrow \mathrm{TeV}$ range $\boldsymbol{\rightarrow} \mathbf{7 ~ T e V}$

$$
B=\frac{p}{\rho Z e} \approx 3.33 \frac{p\left(\frac{G e V}{c}\right)}{\rho(m)}=8.39 T
$$

## We need SUPERCONDUCTING technology



Field limit for normal conducting magnets due to saturation

## I. Basic layout of the machine: Superconducting magnets

## Superconducting cables of $\mathrm{Nb}-\mathrm{Ti}$



LHC $\sim 27 \mathrm{~km}$ circumf. with 20 km of superconducting magnets operating @8.3 T. An equivalent machine with normal conducting magnets would have a circumference of 100 km and would consume 1000 MW of power $\boldsymbol{\rightarrow}$ we would need a dedicated nuclear power station for such a machine. LHC consumes $\sim 10 \%$ nuclear power station

He gas $\rightarrow$ liquid @ $4.2 \mathrm{~K} \rightarrow$ superfluid @ 2.17 K


Total amount of He used @LHC $\sim 500-700 \mathrm{~T}$

## I. Basic layout of the machine: main cryodipoles (two dipoles in one)

- The geometry of the main dipoles (Total of 1232 cry, $\frac{\infty}{\infty}$



## I. Basic layout of the machine: main quadrupoles

## LHC quadrupole cross section



[^0]
## I. Basic layout of the machine: main dipoles $\rightarrow$ Field quality

The magnetic field of the main dipoles:
The stability of the geometry of the superconducting coils is essential to the field quality.
Mechanical stress during coil assembly
Thermal stresses during cool-down
Electromagnetic stresses during operation
= sources of deformations
of the coil geometry

Additional sources of field errors are the dimensional tolerances of the magnet components and of the manufacturing and assembling tooling.

The relative variations of the integrated field and of the field shape imperfections must not exceed $10^{-4}$ and


## I. Basic layout of the machine: main dipoles $\rightarrow$ Field quality

Why the tolerances are so tight?
$\rightarrow$ Because the field quality determines how long the particles can circulate in the accelerator

$$
\begin{array}{ll} 
& B_{y}+i B_{x}=B_{r e f} \\
n=1 \rightarrow \text { dipole } & \sum_{n=1}^{\infty}\left(b_{n}+i a_{n}\right)\left(\frac{x+i y}{R_{r e f}}\right)^{n-1} \\
n=2 \rightarrow \text { quadrupole } \\
n=3 \rightarrow \text { sextupole } \\
n=4 \rightarrow \text { octupole } \\
n=5 \rightarrow \text { decapole }
\end{array}
$$

Up to which order do we care?
$\rightarrow$ Up to $\mathrm{n}=7$ at least

$$
\sim 10^{-4}
$$

## I. Basic layout of the machine: main dipoles $\rightarrow$ Field quality

| Error | Side effects if error is > few $10^{-4}$ | Corrected with |
| :---: | :---: | :---: |
| al | Closed orbit perturbations and thus feed-down contributions from higher order multiple errors | Dipole correctors (MCB) |
| bl |  |  |
| a2 | Linear coupling and vertical dispersion | Skew quadrupoles (MQS) |
| b2 | Tune change, $\beta$ and dispersion beating | Trim quadrupoles (MQT) |
| a3 | Chromatic coupling and Q" | Skew sextupoles (MSS) |
| b3 | b2 feed-down at injection (persistent current effect) and off-momentum $\beta$-beat | Sextupole (MCS) |
| a4 | Dynamic aperture (DA) at injection |  |
| b4 | DA and Q" at injection | Octupole (MCO) |
| a5 | DA for off-momentum particles at injection |  |
| b5 | DA and Q"' at injection | Decapole (MCD) |
| $\begin{aligned} & \text { a6 to } \\ & \text { b7 } \end{aligned}$ | DA at injection <br> Sextupole |  |

## I. Basic layout of the machine: dipole corrector magnets



## I. Basic layout of the machine: quadrupole corrector magnets



## I. Basic layout of the machine: quadrupole corrector magnets

## 20.) Chromaticity: <br> A Quadrupole Error for $\Delta p / p \neq 0$



Why the orbit and sextupole correctors are placed close to a quadrupole?

## I. Basic layout of the machine: quadrupole corrector magnets



## I. Basic layout of the machine



## I. Basic layout of the machine: Dispersion suppression

ARC


- Cancels the horizontal dispersion generated on one side by the arc dipoles and on the other by the separation/recombination dipoles and the crossing angle bumps
- Helps in matching the insertion optics to the periodic solution of the arc
- If only dipoles are used they cannot fully cancel the dispersion, just by a factor 2.5. Therefore individual powered quadrupoles are required (Q8-QII with I ~ 6000 A )
dipole magnet

$$
\alpha=\frac{\int B d l}{p e}
$$

(Courtesy of B. Holzer)


$$
x^{\prime \prime}+K(s) x=\frac{1}{\rho} \frac{\Delta p}{p}
$$

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}
$$

# I. Basic layout of the machine: Dispersion suppression 


$\mathrm{D}(\mathrm{s})$ is created by the dipole magnets and afterwards focused by the quadrupoles

The inhomogeneous solution changes the beam size $\cdots \quad \underset{\longrightarrow}{\varepsilon=} \xrightarrow{\beta_{\text {rell }} \gamma_{\text {rel }}}$
At 7 TeV in LHC: $\varepsilon n=3.5 \mu \mathrm{~m}$ rad, $\beta=180 \mathrm{~m} . \mathrm{D}=2 \mathrm{~m}, \Delta \mathrm{p} / \mathrm{p} \sim 10^{-3}$

$$
\begin{aligned}
& \sigma=\sqrt{\sigma_{\beta}^{2}+\sigma_{D}^{2}} \\
& =\sqrt{\varepsilon \beta+D^{2}\left(\frac{\Delta p}{p}\right)^{2}}
\end{aligned}
$$

$$
\sigma=\sqrt{3.5 \cdot 10^{-6}+4 \cdot 10^{-6}}
$$

What is the beam size at 450 GeV ?
$\sigma=\sqrt{\frac{s_{n}}{(82)} \beta+D_{1}^{2}\left(\frac{\Delta p}{p}\right)^{2}} \Rightarrow \gamma(@ 7 \mathrm{TeV}) \sim 7463 \gamma(@ 450 \mathrm{GeV}) \sim 480 \beta \propto 1$
$\rightarrow \sigma=\sqrt{1.3 \cdot 10^{-6}+4 \cdot 10^{-6}} \cong \sigma_{D}+30 \% \sigma_{\beta}$
When you design your beam pipe you have to take into account the contribution of $D(s)$
Why do we suppress dispersion before reaching the IP?

## I. Basic layout of the machine



## I. Basic layout of the machine: Luminosity insertions



* Protect Inner Triplet (TAS) and D2 (TAN) from particles coming from the IP

The mechanical aperture of the inner triplets limits the maximum $\beta^{*}$ @IPs and the maximum Xangle $\rightarrow$ limit peak lumi

## Two figures of merit in a collider: energy and luminosity

## Luminosity

Luminosity $=$ number of interactions per unit of time

$$
\frac{d \mathrm{R}}{d t}=\underline{\mathrm{L} \sigma}
$$

cross-section at the given energy of the interested physics
$\mathrm{cm}^{-2} \cdot \mathrm{~s}^{-1}$


Number of particles of the first beam in the cube:

$$
n_{1}=\frac{I_{1}}{q s} \cdot \frac{l}{c}
$$

$\mathrm{l} / \mathrm{s}=$ intensity $\mathrm{per} \mathrm{cm}^{2}$
with $/=q / t$


The orange beam is crossed by n2 particles per unit of time:

$$
n_{2}=\frac{I_{2}}{q s}
$$

## Luminosity

The number of events per unit of time for two beams of 1 cm 2 is:

$$
\frac{d n}{d t}=\frac{I_{1}}{q s} \cdot \frac{l}{c} \cdot \frac{I_{2}}{q s} \cdot \sigma
$$

and for beams of a general area $s=w h$

$$
L=\frac{I_{1} I_{2}}{q^{2} c} \cdot \frac{l}{w h}
$$

If we replace $q=1.6 e-19$ coulomb and $c=3 e 10 \mathrm{~cm} / \mathrm{s}$ :

$$
L \approx 1.3 \times 10^{27} \cdot I_{1} I_{2} \cdot \frac{l}{w h}\left[\mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}\right]
$$

## Luminosity for bunched beams

$$
\frac{d \mathbf{R}}{\mathrm{dt}}=L \sigma_{\mathrm{p}}
$$

$$
\mathcal{L} \propto K \cdot \iiint_{-\infty}^{+\infty} \rho_{1}\left(x, y, s,-s_{0}\right) \rho_{2}\left(x, y, s, s_{0}\right) d x d y d s d s_{0}
$$

$$
\mathbf{N} \text { particles/bunch }
$$

$$
\rho \text { density } \neq \text { const. }
$$



For two bunches colliding HEAD ON with Gaussian beam density distribution and equal beam sizes:

$$
\mathcal{L}=\frac{N_{1} N_{2} f N_{b}}{2 \pi \sqrt{\sigma_{1 x}^{2}+\sigma_{2 x}^{2}} \sqrt{\sigma_{2 y}^{2}+\sigma_{2 y}^{2}}}
$$

Ni: number of particles in one bunch f: revolution frequency
Nb : number of bunches in one beam sigma: beam size

Reference:
Concept of luminosity

Werner Herr and Bruno Muratori*
CERN, Geneva, Switzerland

## Luminosity for bunched beams

## Examples:

|  | Energy <br> $(\mathrm{GeV})$ | $\mathcal{L}$ <br> $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ | rate <br> $\mathrm{s}^{-1}$ | $\sigma x / \sigma_{y}$ <br> $\mu \mathrm{~m} / \mu \mathrm{m}$ | Particles <br> per bunch |
| :--- | :---: | :---: | :---: | :---: | :---: |
| SPS $(\mathrm{p} \bar{p})$ | $315 \times 315$ | $610^{30}$ | $410^{5}$ | $60 / 30$ | $\approx 1010^{10}$ |
| Tevatron $(\mathrm{p} \bar{p})$ | $1000 \times 1000$ | $5010^{30}$ | $410^{6}$ | $30 / 30$ | $\approx 30 / 810^{10}$ |
| HERA $\left(\mathrm{e}^{+} \mathrm{p}\right)$ | $30 \times 920$ | $4010^{30}$ | 40 | $250 / 50$ | $\approx 3 / 710^{10}$ |
| LHC $(\mathrm{pp})$ | $7000 \times 7000$ | $1000010^{30}$ | $10^{9}$ | $17 / 17$ | $1110^{10}$ |
| LEP $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$ | $105 \times 105$ | $10010^{30}$ | $\leq 1$ | $200 / 2$ | $\approx 510^{11}$ |
| PEP $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$ | $9 \times 3$ | $300010^{30}$ | NA | $150 / 5$ | $\approx 2 / 610^{10}$ |
| KEKB $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$ | $8 \times 3.5$ | $1000010^{30}$ | NA | $77 / 2$ | $\approx 1.3 / 1.610^{10}$ |

## LHC Integrated performance

Delivered Luminosity 2018

~ $65 \mathrm{fb}-$
2018


## I. Basic layout of the machine: Luminosity insertions



## I. Basic layout of the machine: Luminosity insertions



We can have up to 30 parasitic interactions around the IP

## I. Basic layout of the machine: Luminosity insertions



## I. Basic layout of the machine: Luminosity insertions


$\beta$ is very small at the IP, but very big at the Inner triplets $\rightarrow$

$$
\beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}}
$$

Therefore, the quadrupoles around the IP have such a big apertures

## I. Basic layout of the machine: High luminosity insertions <br> ATLAS

CMS


## II. LHC Operational cycle

2E12-2000


## II. LHC Operational cycle: Squeeze $\rightarrow$ reduce $\beta^{*}$



Relative beam sizes around IP1 (Atlas) in collision

Squeeze the beam size down as much as possible at the collision point to increase the chances of a collision

$$
L \approx \frac{N_{1} N_{2} f_{\text {rev }} N_{b}}{4 \pi \sigma^{2} \longrightarrow} \sigma=\sqrt{\beta \frac{\varepsilon_{n}}{(\beta \gamma)_{\text {rel }}}}
$$

- So even tough we squeeze our $\mathrm{N}_{1,2}=100,000$ million protons per bunch down to 16 microns ( $1 / 5$ the width of a human hair) at the interaction point. We get only around 20 collisions per crossing with nominal beam currents.
- The bunches cross (every 25 ns ) so often we end up with around 600 million collisions per second - at the start of a fill with nominal current.
- Most protons miss each other and carry on around the ring. The beams are kept circulating for hours $\rightarrow 10$ hours


# II. LHC Operational cycle: Squeeze $\rightarrow$ reduce $\beta^{*}$ ( $\beta$ @IP) 



Why we cannot have $\beta^{*}=0.5 \mathrm{~m}$ at injection?
@IP $\beta^{*}=0.5 \mathrm{~m}$
$s(m)\left[{ }^{*} 0^{* *}(3)\right]$


Rbeampipe~29/24 mm we could only accommodate $\sim 4$ times the beam size and we need at least $7 \sigma$ clearance
@ 7 TeV
$\sigma_{\text {Iт }} \sim 1.2 \mathrm{~mm}$

## II. Beam measurements:

## Beam trajectory

 yasp dv Lic if you count the num parameter do you get?
## 㔷 Views $\mid$ 田



FT - P $450.12 \mathrm{GeV} / \mathrm{c}$ - Fill \# 827 INJDUMP - 10/09/08 10-41-34


TA
Тв

## II. Beam measurements: Beam trajectory correction

## YASP DV LHCRING / INJ-TEST-NB / beam 2

## 

Before correction [11/09/08 21:50:38]
Diff. MICADO / 4 iter / V [11/09/08 $21: 50: 38 \mathrm{l}$

$$
E{ }^{10} T_{\text {Mean }}=10003 / \text { RMS }=2048
$$

MSCB

376 twinaperture assemblies supplied by Tesla Eng. MCBM (dipole)


Why the orbit and sextupole correctors are placed close to a quadrupole?

## II. Beam profile measurements: Beam I on TDI screen $-\left.\right|^{\text {st }}$ and $2^{\text {nd }}$ turns



# II. Beam profile measurements: Emittance measurement - Wire scanner 

Emittance is the figure of merit for profile measurements.
But it is a derived quantity from the beam size $(\sigma=\sqrt{\beta \varepsilon})$

Where would you install a wire scanner in LHC to get the beam size and then the emittance?

Particles generated by the interaction wire - beam


## II. Beam measurements: Aperture scan



## II. Beam measurements: Dispersion measurement

YASP DV LHCRING / NOM 1.2 TeV / beam 1



## II. Beam measurements: Beta measurement

a quadrupol error leads to a shift of the tune:

$1^{\text {st }}$ Change quadrupole strength in steps

$$
\Delta Q=\int_{s 0}^{s 0+l} \frac{\Delta k \beta(s)}{4 \pi} d s \approx \frac{\Delta k l_{\text {quad }} \bar{\beta}}{4 \pi}
$$

$2^{\text {nd }}$ Measure Tune

3rd Plot Tune vs Quadrupole strength
Example: measurement of $\beta$ in a storage ring: tune spectrum

# II. Beam measurements: 

Fast BCT (Beam Current Transformer)
Torus to guide the magnetic field



SPARE SLIDES

## High Light of the LHC

production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter $L$ that is given by the design of the accelerator: ... the luminosity

$$
R=L^{*} \Sigma_{\text {react }} \approx 25 \frac{1}{10^{-15} b} 10^{-12} b=\text { some } 1000 \mathrm{H}
$$



$$
\begin{aligned}
& \text { remember: } \\
& 1 b=10^{-24} \mathrm{~cm}^{2}
\end{aligned}
$$



Integrated luminosity during RUN I

$$
\int L d t \approx 25 f b^{-1}
$$

Official number: I 400 clearly identified Higgs particles "on-tape"

## High Light of the HEP year



ATLAS event display: Higgs => two electrons \& two muons

## I. Basic layout of the machine: Superconducting magnets

- Superfluid helium $\rightarrow$ Why is it so great?!!
- very high thermal conductivity $\rightarrow$ is able to conduct away heat a thousand times better than a metallic conductor like copper
- very low viscosity coefficient $\rightarrow$ can penetrate tiny cracks, deep inside the magnet coils to absorb any generated heat
- very high heat capacity $\rightarrow$ prevents small transient temperature fluctuations


## XIV. Beam captured - mountain range

 display

## Beam parameters (nominal)

|  |  | Injection | Collision | 2012 |
| :---: | :---: | :---: | :---: | :---: |
| Proton energy | GeV | 450 | 7000 | 4000 |
| Particles/bunch |  | $1.15 \times 10^{11}$ |  | $1.6 \times 10^{11}$ |
| Num. bunches |  | 2808 |  | 1380 |
| Longitudinal emittance (4б) | eVs | 1.0 | 2.5 |  |
| Transverse normalized emittance | $\mu \mathrm{mrad}$ | 3.5 | 3.75 |  |
| Beam current | A | 0.582 |  |  |
| Stored energy/beam | MJ | 23.3 | 362 |  |
| $\beta^{*}=0.55 \mathrm{~m}$ | Peak luminosity related data |  |  |  |
| RMS bunch length $\quad \varepsilon=0.5 \mathrm{~nm} \mathrm{rad}$ | cm | 11.24 | 7.55 | $\begin{aligned} & \beta^{*}=0.6 \mathrm{~m} \\ & \varepsilon \mathrm{n}=2.5 \mu \mathrm{~m} \\ & \mathrm{rad} \end{aligned}$ |
| RMS beam size @IPI \& IP5 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$ | $\mu \mathrm{m}$ | 375.2 | $16.7$ |  |
| RMS beam size @IP2 \& IP8 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$ | $\mu \mathrm{m}$ | 279.6 | 70.9 |  |
| Geometric luminosity reduction factor (F) |  |  | 0.836 |  |
| Instantaneous lumi @IPI \& IP5 (IP2Pb-Pb, IP8) | $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ |  | $\begin{aligned} & 10^{34}\left(10^{27},\right. \\ & \left.10^{32}\right) \end{aligned}$ | $710^{33}$ |

## pPb physics during 2013

Timeseries Chart between 2012-09-12 21:41:26.494 and 2012-09-13 00:52:21.044 (LOCAL_TIME)

$\square$



$6 \longdiv { 1 4 4 }$ Save Restore ?
\# selected: 1, \# bunches: 1

[^1]
## I. Basic layout of the machine: main cryodipoles (two dipoles in one)

- The geometry of the main dipoles (Total of 1232 cryodipoles)

VERTICAL PLANE

The theoretical shape of the beam channels is a straight line, while the natural shape has ~ 0.3 mm deflection between two supports at 5.4 m distance

LHC DIPOLE : STANDARD CROSS-SECTION
HORIZONTAL PLANE

Length of the bend part $=14.3 \mathrm{~m}$


## II. The experiments: <br> Low luminosity insertions: LHCb

Centre of the exp cavern



(c) Beam 1. collision optics
IV. Momentum and betatron cleaning insertions (IR3, IR7)


Settings @7TeV and $\beta^{*}=0.55 \mathrm{~m}$
S. Redaelli, OP WG on Checkout, 08-11-2007

## I. Basic layout of the machine: quadrupole corrector magnets


II. LHC Operational cycle:

## Squeeze $\rightarrow$ reduce $\beta^{*}$



## II. Beam measurements: Integer tunes

Yasp DV LHCRING / INJ-TEST-NB_V1@O_[START] / beam 2


Vertical Harmonics

## I. Basic layout of the machine: Dispersion suppression

- Quadrupole types: MQ, MQM, MQTL


Nominal gradient $=200 / 160 \mathrm{~T} / \mathrm{m}$
Inominal $=5.4 / 4.3 \mathrm{kA}$
$\mathrm{Lmag}=2.4 / 3.4 / 4.8 \mathrm{~m}$
$\mathrm{~T}=1.9 / 4.5 \mathrm{~K}$
Cold bore $\varnothing=53 / 50 \mathrm{~mm}$
Individual powered apertures

## I. Basic layout of the machine: Low luminosity insertions

## LHCINJ.B1



LHCb


Extra challenge $\boldsymbol{\rightarrow}$ the lattice has to accommodate the injection region

## I. Basic layout of the machine

## LHC arc cells = FoDo atitice with

## ~ $90^{\circ}$ phase advance per cell in the V \& H plane



Which parameter determines the beam size (ignoring $\mathrm{D}(\mathrm{s})$ )?

$$
r^{2}=\varepsilon_{x} \beta_{x}+\varepsilon_{y} \beta_{y}
$$

(In general in proton machines $\varepsilon x \approx \varepsilon y \rightarrow$ beams are round)
In order to get the maximum aperture possible the $\beta(s)$ in both planes have to be minimized:

$$
\begin{aligned}
\frac{d}{d \mu}\left(\beta_{\max }+\beta_{\min }\right) & =\frac{d}{d \mu}\left(\frac{\left(1+\sin \frac{\mu}{2}\right) L}{\sin \mu}+\frac{\left(1-\sin \frac{\mu}{2}\right) L}{\sin \mu}\right)=\frac{d}{d \mu}\left(\frac{2 L}{\sin \mu}\right)=0 \\
\frac{L}{\sin ^{2} \mu} \cos \mu & =0 \quad \rightarrow \quad \mu=90^{\circ}
\end{aligned}
$$

## II. Beam measurements: Beta measurement



Reference: Record low beta beating in the LHC
Tomas, R. et al. Phy. Rev. Special Topics - Accelerators and Beams15(9).

# II. Beam measurements: Non-integer tunes 

FODO: $\psi=180^{\circ}$


BPM

Every $2 x T$ we measure the same position:

$$
\begin{aligned}
& \frac{1}{2 T}=f_{Q}=Q \cdot \frac{1}{T}=Q \cdot f_{\text {rev }} \\
& \rightarrow Q=0.5
\end{aligned}
$$

BPM pos $\rightarrow$ FFT $\rightarrow$ tune

 we measure the same beam position

$$
\begin{aligned}
& \mathrm{Qx}=.279 \text { @ᄂнс } \\
& \mathrm{Qy}=.310
\end{aligned}
$$


[^0]:    CERN AC - SQ1-12/97

[^1]:    02:15:02 - Subscription update 475 of LHC.BWS.5R4.B1V1/Status, Fri Jan 18 02:15:02 CET 2013

