Introduction to longitudinal beam dynamics ||

Longitudinal phase space

- As in the case of transverse beam dynamics, where it is more convenient to work in phase space because we can answer in one go what is the position and energy of the system at any moment ...
- we also prefer to work in phase space when dealing with the longitudinal motion
- In this case we can answer in one go what is the phase difference and energy difference between the ideal particle and the real particle

Ellipse area = invariant = emittance

TRANSVERSE BEAM DYNAMICS

LONGITUDINAL BEAM DYNAMICS

- In the phase space plane $(w, \Delta \varphi)$ or $\left(\frac{\Delta p}{p_{s}}, \Delta \varphi\right)$ the synchronous particle is at the origin of coordinates and the real particle describes a given trajectory around it.
- Expressing the longitudinal phase space in terms of $\left(\frac{\Delta p}{p_{s}}, \Delta \varphi\right)$ is usually more convenient because $\frac{\Delta p}{p_{s}}$ determines by how much the closed orbit will be different from the ideal one thanks to the Eq. 5: $\frac{\Delta l_{\Delta E}}{l_{s}}=\alpha \frac{\Delta p}{p_{s}}$.
- The stability condition will determine the range of initial values such $(w, \Delta \varphi)$ or $\left(\frac{\Delta p}{p_{s}}, \Delta \varphi\right)$ will be bounded during the movement.

As we said in Part I, in order to obtain the first equation of motion, Eq. 25, we have assumed that the beam energy can be changed only by the applied RF field, and we have neglected any other energy variation due to interaction with the environment or the synchrotron radiation.

We are dealing with a conservative system and therefore there has to be an invariant and this is usually the energy. Let's calculate the invariant.

$$
\begin{aligned}
& \text { From Part l: } \\
& \begin{aligned}
w=\frac{\Delta W}{W_{s}}=\frac{W-W_{s}}{W_{s}} & \text { Eq. } 20 \\
\Delta \varphi & =\varphi-\varphi_{S}
\end{aligned} \\
& \text { Eq. } 21
\end{aligned}
$$

To obtain the invariant we cross multiply the first and second equation of motion, and we integrate:

FIRST EQUATION OF MOTION $\dot{w}=\frac{q V_{\max } \Omega_{s}}{2 \pi W_{s}}\left(\sin \left(\Delta \varphi+\varphi_{S}\right)-\sin \varphi_{s}\right)$
SECOND EQUATION OF MOTION

$$
\begin{equation*}
\Delta \dot{\varphi}=\frac{\delta(\Delta \varphi)}{\delta t}=h \Gamma_{s} \Omega_{s} w \tag{Eq. 25}
\end{equation*}
$$

$$
h \Gamma_{s} \Omega_{s} w d w=\frac{q V_{\max } \Omega_{s}}{2 \pi W_{s}}\left(\sin \left(\Delta \varphi+\varphi_{s}\right)-\sin \varphi_{s}\right) d \varphi
$$

Now we integrate Eq. 45 and define as integration constant, C, the one that for $\Delta \varphi=w=0 \rightarrow$ Total Energy $=0$:

$$
\begin{equation*}
\int w d w-\int_{\varphi_{s}}^{\varphi} \frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\sin \left(\Delta \varphi+\varphi_{s}\right)-\sin \varphi_{s}\right) d \varphi=\mathrm{C} \tag{Eq. 46}
\end{equation*}
$$

$\frac{1}{2} w^{2}+\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \left(\Delta \varphi+\varphi_{s}\right)-\cos \varphi_{s}+\Delta \varphi \sin \varphi_{s}\right)=$ Total Energy $=$ Hamiltonian Eq. 47

Kinetic energy

Potential energy

\Rightarrow for a sinusoidal RF field

The value of the energy of the system is given by the initial conditions

For a general RF field, the Hamiltonian is:

$$
\begin{aligned}
\frac{1}{2} w^{2}-\int_{\varphi_{s}}^{\varphi} \frac{q}{2 \pi h \Gamma_{s} W_{s}}\left[V\left(\varphi^{\prime}\right)-V\left(\varphi_{s}\right)\right] d \varphi^{\prime} & =\text { Total Energy } \\
& =\text { Hamiltonian }
\end{aligned}
$$

$$
\text { Eq. } 48
$$

Remember: the potential energy is "minus" the integral of the RF voltage

The voltage function can be single harmonic (one RF system):

$$
V(\varphi)=V_{\max } \sin \varphi
$$

The voltage function can be double harmonic (two RF systems):

$$
V(\varphi)=V_{\max }^{A} \sin \varphi+V_{\max }^{B} \sin (n \varphi+\emptyset)
$$

where n is the frequency ratio of both RF systems and \emptyset is the relative phase between them.
e.g. SPS: the main RF system is 200 MHz and the second system is 800 MHz

The stability of the particle motion can be better understood from the plot of the RF potential.
Let's plot the potential energy of the Hamiltonian of Eq. 47

$$
U(\Delta \varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \left(\Delta \varphi+\varphi_{s}\right)-\cos \varphi_{s}+\Delta \varphi \sin \varphi_{s}\right)
$$

Eq. 51

CASE 1: NO ACCELERATION (ABOVE TRANSITION) \Rightarrow STATIONARY BUCKET

No acceleration and we are above transition $\rightarrow \varphi_{s}=\pi \quad(\cos \pi=-1)$
$U(\Delta \varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1-\cos \Delta \varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi)$
with $\Delta \varphi=\varphi-\varphi_{s}$
\# case 1: SPS protons above transition, no acceleration, $\mathrm{q}=1, \mathrm{~V}_{\max }$ $=4.5 \mathrm{e} 6 \mathrm{~V}$

The potential energy is "minus" the integral of the RF voltage

$$
\begin{aligned}
& V(\varphi)=V_{\max } \sin \varphi \\
& V\left(\varphi_{s}\right)=V_{\max } \sin \varphi_{s}=0 \Rightarrow \text { "no acceleration" } \\
& \int_{\varphi_{s}}^{\varphi} \frac{q}{2 \pi h \Gamma_{s} W_{s}}\left[V\left(\varphi^{\prime}\right)-V\left(\varphi_{s}\right)\right] d \varphi^{\prime} \\
& U(\varphi)=-\int_{\varphi_{s}}^{\varphi} \frac{q}{2 \pi h \Gamma_{s} W_{s}}\left[V\left(\varphi^{\prime}\right)-V\left(\varphi_{s}\right)\right] d \varphi^{\prime} \\
& U(\varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi)
\end{aligned}
$$

$$
U(\varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi)
$$

Near the synchronous phase the particles feel a restoring force which allows them to execute oscillations around it. In phase space these oscillations translate into closed trajectories which have an angular frequency called the synchrotron frequency.

In the case of small amplitude oscillations, i.e. when $\Delta \varphi=\varphi-\varphi_{s} \ll 1$ the angular synchrotron frequency can be analytically calculated:

$$
\Omega_{s y}=\sqrt{-\frac{q h \Gamma_{s} V_{\max } \cos \varphi_{s}}{2 \pi W_{s}} \Omega_{s}}
$$

However, quite a number of particles in the beam have large amplitude oscillations and then behave non-linear due to the shape of the potential produced by the sinusoidal RF voltage.

And for very large amplitudes they may even scape from the stable region, leading to particle losses
The division of the phase space into regions of bounded and unbounded motion in synchrotrons is the reason of grouping the particles into bunches.

The boundary between both regions is called the SEPARATRIX.
The phase space area enclosed by the separatrix is called the BUCKET.

Let's now calculate the trajectories in phase space that correspond to the plotted potential below:

$$
U(\varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi)
$$

\# case 1: SPS protons above transition, no acceleration, $\mathrm{q}=1, \mathrm{~V}_{\text {max }}$ $=4.5 \mathrm{e} 6 \mathrm{~V}$, single RF system

First let's calculate the Hamiltonian or total energy of the system, which is a constant:

$$
\text { Hamiltonian }=\text { Total Energy }=\text { Kinetic energy }+U(\varphi)=\frac{1}{2} w^{2}+\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi) \quad \text { Eq. } 53
$$

The simplest thing to do is to calculate the total energy when the kinetic energy is 0 , i.e. $\mathrm{w}=0$, and the potential energy is maximum. The potential energy is maximum when $\varphi=0$.

$$
\text { Hamiltonian }=\text { Total Energy }=0+U(0)=\frac{q V_{\max }}{\pi h \Gamma_{s} W_{s}} \quad \text { Eq. } 54
$$

We put Eq. 54 in Eq. 53 and solve for w:

$$
\text { Hamiltonian }=\text { Total Energy }=\frac{q V_{\max }}{\pi h \Gamma_{s} W_{s}}=\frac{1}{2} w^{2}+\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi)
$$

$$
U(\varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}(1+\cos \varphi)
$$

$\varphi=0 \rightarrow$ Maximum potential, zero kinetic energy

$$
w= \pm \sqrt{\frac{q V_{\max }}{\pi h \Gamma_{s} W_{s}}(1-\cos \varphi)} \quad \text { Eq. } 56
$$

Separatrix

Stationary bucket
\Rightarrow particles are not accelerated

In a stationary bucket, the synchronous particle is always at $w(\varphi)=0, \varphi=\varphi_{s}=$ 0 or π (below or above transition) because $V=q V_{\max } \sin \varphi_{s}=0$!

CASE 2: ACCELERATION (ABOVE TRANSITION)

$$
\varphi_{s}=\pi-\frac{\pi}{6}
$$

$$
U(\Delta \varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \left(\Delta \varphi+\varphi_{s}\right)-\cos \varphi_{s}+\Delta \varphi \sin \varphi_{s}\right)
$$

\# case 2: SPS protons above transition, acceleration, $\mathrm{q}=1, \mathrm{~V}_{\max }=4.5 \mathrm{e} 6 \mathrm{~V}, \varphi_{S}=\pi-\frac{\pi}{6}$

$$
\begin{aligned}
& V\left(\varphi_{s}\right)=V_{\max } \sin \varphi_{s}=V_{\max } \sin \left(\pi-\frac{\pi}{6}\right) \\
& =4.5 \mathrm{e} 6 \sin \left(\pi-\frac{\pi}{6}\right) \\
& V(\varphi)=V_{\max } \sin \varphi
\end{aligned}
$$

$$
\int_{\varphi_{s}}^{\varphi} \frac{q}{2 \pi h \Gamma_{s} W_{s}}\left[V\left(\varphi^{\prime}\right)-V\left(\varphi_{s}\right)\right] d \varphi^{\prime}
$$

$$
U(\varphi)=-\int_{\varphi_{s}}^{\varphi} \frac{q}{2 \pi h \Gamma_{s} W_{s}}\left[V\left(\varphi^{\prime}\right)-V\left(\varphi_{s}\right)\right] d \varphi^{\prime}
$$

$$
U(\Delta \varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \left(\Delta \varphi+\varphi_{s}\right)-\cos \varphi_{s}+\Delta \varphi \sin \varphi_{s}\right) \quad \text { Eq. } 51
$$

Let's now calculate the trajectories in phase space that correspond to the plotted potential before
First let's calculate the Hamiltonian or total energy of the system, which is a constant.
The simplest thing to do is to calculate the total energy when the kinetic energy is 0 , i.e. $\mathrm{w}=0$, and the potential energy is maximum. The potential energy is maximum when $\varphi=\pi-\varphi_{s}$.

First point where particles are still bounded within the separatrix

The second point where particles are still bounded is φ_{u}

$$
U\left(\pi-\varphi_{s}\right)=U\left(\varphi_{u}\right)
$$

For single RF systems the total energy or separatrix can be calculated analytically by replacing $\varphi=\pi-\varphi_{s}$ in Eq. 51:

$$
U(\Delta \varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \left(\Delta \varphi+\varphi_{s}\right)-\cos \varphi_{s}+\Delta \varphi \sin \varphi_{s}\right) \quad \text { Eq. } 51
$$

First replace $\Delta \varphi$ by $\varphi-\varphi_{s,}$ and then $\varphi=\pi-\varphi_{s}$ to obtain:

$$
\begin{equation*}
H_{\text {sep }}=U\left(\pi-\varphi_{s}\right)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(-2 \cos \varphi_{s}+\left(\pi-2 \varphi_{s}\right) \sin \varphi_{s}\right) \tag{Eq. 57}
\end{equation*}
$$

The phase space trajectory is then:

$$
\begin{equation*}
H_{s e p}=\frac{1}{2} w^{2}+U(\varphi)=\frac{1}{2} w^{2}+\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \varphi-\cos \varphi_{s}+\left(\varphi-\varphi_{s}\right) \sin \varphi_{S}\right) \tag{Eq. 58}
\end{equation*}
$$

Solving for $w(\varphi)$ we get:

$$
\begin{equation*}
w(\varphi)= \pm \sqrt{2\left(H_{\text {sep }}-U(\varphi)\right)} \tag{Eq. 59}
\end{equation*}
$$

Coming back to the second point where particles are still bounded within the separatrix, denoted φ_{u} in the previous figure, we know the energy deviation there should be zero, i.e. $\omega=0$. In this case:

$$
H_{\text {sep }}=\frac{1}{2} w_{=0}^{2}+U\left(\varphi_{u}\right)=\frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\cos \varphi_{u}-\cos \varphi_{s}+\left(\varphi_{u}-\varphi_{s}\right) \sin \varphi_{s}\right)=U\left(\pi-\varphi_{s}\right) \quad \text { Eq. } 60
$$

$$
\begin{aligned}
\left(\cos \varphi_{u}-\cos \varphi_{S}+\left(\varphi_{u}-\varphi_{S}\right) \sin \varphi_{S}\right)=\left(-2 \cos \varphi_{S}+\left(\pi-2 \varphi_{S}\right) \sin \varphi_{S}\right) & \text { Eq. } 61 \\
\cos \varphi_{u}+\varphi_{u} \sin \varphi_{S}=\cos \left(\pi-\varphi_{S}\right)+\left(\pi-\varphi_{S}\right) \sin \varphi_{S} & \text { Eq. } 62 \\
\left(\varphi_{u}-\left(\pi-\varphi_{S}\right)\right) \sin \varphi_{S}=\cos \left(\pi-\varphi_{S}\right)-\cos \varphi_{u} & \text { Eq. } 63
\end{aligned}
$$

The term $\varphi_{u}-\left(\pi-\varphi_{s}\right)$ is called the bucket width

The bucket height at φ_{s} can be evaluated from Eq. 59:

$$
w(\varphi)= \pm \sqrt{2 \frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\left(\pi-\varphi_{s}-\varphi\right) \sin \varphi_{s}-\left(\cos \varphi+\cos \varphi_{s}\right)\right)} \quad \text { Eq. } 64
$$

bucket height at $\varphi_{S} w\left(\varphi=\varphi_{s}\right)=+\sqrt{2 \frac{q V_{\max }}{2 \pi h \Gamma_{s} W_{s}}\left(\left(\pi-2 \varphi_{s}\right) \sin \varphi_{s}-2 \cos \varphi_{s}\right)}$

$$
\varphi_{u}-\left(\pi-\varphi_{s}\right)=
$$

First point where particles are still bounded within the separatrix

The second point where particles are still bounded is φ_{u}

$$
U\left(\pi-\varphi_{s}\right)=U\left(\varphi_{u}\right)
$$

Phase space area enclosed by the particle trajectory is:

$$
\begin{equation*}
A=\oint w d \varphi \tag{Eq. 65}
\end{equation*}
$$

Since (φ, w) are canonical conjugate variables, the integral is the action or Poincare invariant, therefore a constant of motion. The units of this area are (energy x time) \Rightarrow (eVs) The phase space area enclosed by the separatrix is the

bucket area

The local maximum of the potential at $\pi-\varphi_{s}$ is an unstable fixed point in the longitudinal phase space, while the local minimum gives a stable fixed point, φ_{S}, which corresponds to the centre of the bucket. At the stable and unstable fixed point the energy deviation is zero.

Using Eq. 59 and the symmetry around the φ axis, one can write for the bucket area:
bucket area
or longitudinal acceptance

$$
\begin{equation*}
A=2 \int_{\varphi_{1}}^{\varphi_{u}} w(\varphi) d \varphi=2 \int_{\varphi_{1}}^{\varphi_{u}} \sqrt{2\left(H_{\text {sep }}-U(\varphi)\right)} d \varphi \tag{Eq. 66}
\end{equation*}
$$

where $\varphi_{1}=\pi-\varphi_{s,}$ and φ_{u} can be found from Eq. 63

In the special case of a stationary bucket ($\varphi_{s}=0$ or π), the bucket area and height can be calculated analytically \Rightarrow exercise

LONGITUDINAL EMITTANCE AND BUNCH CHARACTERISTICS

All calculated variables in the previous slides, where calculated to the full extend of the stable area.
In practice, in order to avoid particle losses only a fraction of the stable area is usually occupied by the beam, enclosed by a single particle trajectory in phase space.
This area is called single particle emittance.

single particle longitudinal emittance

The trajectory of this particle can be derived from Eq. 59, but now we replace $\mathrm{H}_{\text {sep }}$ by the new value of the Hamiltonian at a phase where the trajectory crosses the horizontal axis. We call this phase φ_{1} and the Hamiltonian $H_{c}=U\left(\varphi_{1}\right)$. The second point at φ_{2} also satisfies that the energy deviation is 0 , therefore:

$$
\begin{equation*}
U\left(\varphi_{1}\right)=U\left(\varphi_{2}\right) \tag{Eq. 67}
\end{equation*}
$$

For a single RF system this means:

$$
\begin{equation*}
\cos \varphi_{1}+\varphi_{1} \sin \varphi_{s}=\cos \varphi_{2}+\varphi_{2} \sin \varphi_{s} \tag{Eq. 68}
\end{equation*}
$$

After identifying the two turning points, the area under a given trajectory can be calculated from the integral:
single particle
longitudinal emittance

$$
\begin{equation*}
\varepsilon_{l}=2 \int_{\varphi_{1}}^{\varphi_{2}} \sqrt{2\left(H_{c}-U(\varphi)\right)} d \varphi \tag{Eq. 69}
\end{equation*}
$$

Summary

Single particle synchrotron motion - no acceleration

\square All particles are oscillating around the synchronous one with frequencies called synchrotron frequencies $f_{s}(\varphi)$.
\square Stationary case: In the $\mathrm{LHC} \varphi_{s}=\pi$ (above transition) $\rightarrow V(\pi)=e V_{\max } \sin (\pi)=0 \rightarrow$ synchronous particle does not gain any energy

RF potential energy
$\quad U(\varphi)=\frac{q V_{\max }}{2 \pi h \Gamma_{S} W_{s}}(1+\cos \varphi)$

φ

Longitudinal phase space (φ, w)

φ

The state of any particle, at every moment is represented by a single point (φ, \mathbf{w}) in the Longitudinal phase-space.

Large Amplitude Oscillations

For larger phase (or energy) deviations from the reference (i.e. synchronous) the second order differential equation is non-linear:

$$
\begin{equation*}
\text { FIRST EQUATION OF MOTION } \dot{\boldsymbol{w}}=\frac{q V_{\max } \Omega_{s}}{2 \pi W_{s}}\left(\sin \left(\Delta \varphi+\varphi_{s}\right)-\sin \varphi_{s}\right) \tag{Eq. 25}
\end{equation*}
$$

SECOND EOUATION OF MOTION

$$
\begin{equation*}
\Delta \dot{\varphi}=\frac{\delta(\Delta \varphi)}{\delta t}=h \Gamma_{s} \Omega_{s} w \tag{Eq. 34}
\end{equation*}
$$

$$
\begin{equation*}
\ddot{\Delta} \ddot{\varphi}=h \Gamma_{s} \Omega_{s} \dot{w} \tag{Eq. 36}
\end{equation*}
$$

The restoring force cannot be linearised anymore and the differential equation has no analytic solution

FIRST EQUATION OF MOTION $\dot{w}=\frac{q V_{\max } \Omega_{s}}{2 \pi W_{s}}\left(\sin \left(\Delta \varphi+\varphi_{s}\right)-\sin \varphi_{s}\right)$
For $\varphi=\pi-\varphi_{S}$: unstable fixed point

$$
\begin{gathered}
\left(\sin \varphi-\sin \varphi_{s}\right)=>\sin \left(\pi-\varphi_{s}\right)-\sin \varphi_{S} \\
\sin \pi \cos \varphi_{s}-\underbrace{\cos \pi \sin \varphi_{s}-\sin \varphi_{S}=0}_{-1 \sin \varphi_{s}} \\
0 \\
\ddot{\Delta \varphi}=h \Gamma_{s} \Omega_{s} \dot{w}=0
\end{gathered}
$$

Eq. 36
No restoring force!! for $\varphi=\pi-\varphi_{s}$ and for $\varphi=\varphi_{s}$ (trivial case) \ldots and for φ_{u}

The synchrotron frequency $\rightarrow 0$

Single particle synchrotron motion - no acceleration

Stationary case: In the LHC $\varphi_{0}=\varphi_{\mathrm{s}}=\pi$ (above transition) $\rightarrow V(\pi)=\boldsymbol{e} V_{\max } \sin (\pi)=0 \rightarrow$ synchronous particle does not gain any energy

Bucket Height, $w\left(\varphi_{s}\right)$: defines

 the bucket acceptance,Longitudinal phase space (φ, \mathbf{w})
$\square \quad$ Separatrix: defines the Bucket and corresponds to the trajectory of the particle with maximum offset from φ_{s}

Bucket Length:

 determined by the RF frequency $\boldsymbol{\omega}_{\boldsymbol{R} F}$. In time units: $\Delta \tau=$ $\frac{2 \pi}{\omega_{R F}}=T_{R F}$
Single particle synchrotron motion - no acceleration

Stationary case: In the LHC $\varphi_{\mathrm{S}}=\pi$ (above transition) $\rightarrow V(\pi)=e V_{\max } \sin (\pi)=0 \rightarrow$ synchronous particle does not gain any energy

Longitudinal phase space (φ, w)

SYNCHROTRON FREQUENCY

- As discussed before, particles bounded within the bucket are performing oscillations around the stable phase.
- The synchrotron oscillation period is the time that takes to travel all around the closed trajectory (defined by the initial conditions) in phase space.
- Particles at different distances from the synchronous particle (synchronous phase) will oscillate with different synchrotron frequencies in the longitudinal phase space.
- The longer the bunch the larger the spread of synchrotron frequencies.
- Large synchrotron frequency spreads within the bunch (i.e. large bunches) provide a self-stabilizing mechanism against coherent beam instabilities, called Landau damping.

Synchrotron frequency spread

The synchrotron frequency versus the phase in the case of a single RF system and a stationary bucket (The exact curve is the solid line, the approximate solution is the dashed line)

FILAMENTATION

- The spread in synchrotron frequency is the responsible for the beam filamentation.
- E.g. in case of a large bunch (occupies substantial fraction of the bucket area) that it is not matched to the bucket, for example the bunch is injected into another machine, the difference in frequencies leads to beam filamentation.
- This process causes the mismatched bunch distribution to evolve into spirals, diluting the phase space density of the beam:

Injected beam from a previous machine

Bucket from the receiving machine

For this machine 1500 turns = 11 synchrotron periods

Injected beam from a previous machine

Bucket from the receiving machine

- The $\mathrm{w} \equiv\left(\Delta p / p_{s}\right)_{\max }$ that we need to take into account when calculating the horizontal displacement of the reference closed orbit ($x_{\Delta E}(s)=D(s) \frac{\Delta p}{p_{s}}$) is not the initial energy deviation (red arrow) but the energy deviation after filamentation (green arrow)

Single particle synchrotron motion - Synchrotron frequency distribution

- Particles closer to the synchronous one oscillate with higher frequency.
- The zero (from φ_{0}) amplitude synchrotron frequency is given by:

$$
\begin{aligned}
& \omega_{\mathrm{s} y}(0)=2 \pi f_{\mathrm{s} y}(0) \\
& =\sqrt{-\frac{h \omega_{s}^{2} \eta \cos \varphi_{s} q V_{\max }}{2 \pi \beta_{s}^{2} W_{s}}}
\end{aligned}
$$

Single particle synchrotron motion - bucket losses

\square Particles with phases outside the bucket length will be captured by the adjacent buckets.
\square Particles with $\Delta \mathrm{E}_{\text {particle }}>\Delta \mathrm{E}_{\text {bucket }}$ will not be captured in the bucket. They will follow the open dotted lines (shown in the plot) and finally will be lost when the acceleration starts.

The separatrix separates the open and the closed trajectories. Particles that are inside the bucket are grouped into Bunches.

RF cavities are used to accelerate and to bunch the particle beams.

Single particle synchrotron motion - bucket losses

Example of bound and unbound motion of the particles in the longitudinal phase space.
\square Note that particles with $\Delta \mathrm{E}_{\text {particle }}>\Delta \mathrm{E}_{\text {bucket }}$ do not stay within the bunch but are moving along the separatrices and thus along the ring, forming the un-bunched circulating beam.

H. Timko, Simulations with BLonD

Bunch parameters

\square Bunches are formed from many particles ($10^{9}-10^{15}$ particles) \rightarrow the description of the bunch and its motion is represented by statistical quantities.
\& Bunch position (usually in seconds): position of the centroid of the bunch.

* Bunch length (usually in seconds): size of the bunch.
\& Bunch emittance (in eVs): area in the longitudinal phase-space enclosed by a limiting single particle trajectory.

Projection to
the z-axis

\square The statistical nature of the bunch parameters imply a strong dependence on the particle distributions \rightarrow different conventions of defining the bunch parameters are used in the accelerators.
\square In the longitudinal plane we use the wall-current-monitors and a fast sampling oscilloscope to measure the bunch profile which is the projection of the bunch to the z -axis.
No direct measurement on the energy distribution ($\Delta \mathrm{E}=\mathrm{w}$) of the particles within the bunch.

Bunch parameters

\square Usually the bunch parameters (position, length or o) are obtained after fitting the bunch profiles \rightarrow different fitting functions can be used (Gaussian, parabolic, binomial, q-Gaussian etc.)
\square However, fitting algorithms are time consuming and cannot be efficientl applied in the operational tools. Especially in the case of LHC with large number of bunches and long duration of the fills.

Alternative algorithm based on the measurement of the Full-Width-Half Maximum (FWHM) is applied in the LHC (and the SPS).

The FWHM of each bunch is quickly measured from the acquired beam profiles and then the standard deviation σ of the bunch is obtained assuming a Gaussian distribution, according to the equation:

$$
\sigma=\frac{F W H M}{2 \sqrt{2 \ln 2}}
$$

\square The bunch length is then defined as: $\tau=\mathbf{4} \sigma$

Phase error at injection

\square Injection of a bunch into the RF bucket with a phase error $\varphi_{\mathrm{err}}=10^{\circ}$ (or $\Delta \tau_{\mathrm{err}}=\varphi_{\mathrm{err}} / \omega_{\mathrm{RF}}=0.07 \mathrm{~ns}$ in time)

Phase error at injection - Dipole oscillations

\square The bunch will initially start to oscillate as a whole with frequency close to the zero amplitude synchrotron frequency $f_{s 0}$. \square This bunch motion is called dipole oscillation

Projection into the Time axis. This is what can be measured in the machine using a wall-current monitor and a fast sampling oscilloscope.

Phase error at injection - Dipole oscillations

\square Summary plots of the bunch profiles are used to illustrate the bunch oscillations. The black lines on the plots show the centre of the RF bucket.

Waterfall plot: Each horizontal line corresponds to one acquisition of the same bunch. The colour code depicts the bunch profile density in arb. units.

Overlaying of all bunch profiles. Different colours correspond to different turns.

Phase error at injection - Dipole oscillations

After analysing the profiles i.e. fitting the bunches and getting the bunch parameters for each acquisition, we can plot the motion of the centroid of the bunch.

The motion of the bunch centroid after injection into the RF bucket with a phase error shows a clear harmonic oscillation with frequency close to the zero amplitude synchrotron frequency $\boldsymbol{f}_{\text {s0 }}$.

Phase error at injection - bunch filamentation

\square Particles having different synchrotron frequencies (fast for the particles around the centre of the bucket and slow for the ones injected close to the separatrix) will lead to the filamentation of the bunch and finally to the de-coherence of the bunch motion. Particles will adapt to the corresponding trajectories in the phase-space at the moment of injection resulting to observation of an emittance bunch blow-up.

- After filamentation the bunch blows-up.
- Larger initial phase error leads to bigger blow-up

Energy error at injection

\square Injection into the RF bucket with 30 MeV energy error \rightarrow effect on the bunch is similar to the phase error case.

Frequency Change during acceleration

- During the energy ramping, the particle velocity increases
(... which is why we call it an accelerator)
- Which means the revolution frequency of the particles increases (except for ewhich are fully relativistic)
- And we have to adjust the external RF frequency in order to stay synchronised.
- Revolution frequency and RF frequency are related by the "harmonic number".
- The harominic number is the number of RF wavelengths that fit around the ring.
$f_{r}=\frac{f_{R F}}{h}=\operatorname{Function}\left(B, R_{s}\right)$
hence :

$$
\begin{aligned}
& =\frac{1}{2 \pi} \frac{e}{m} \frac{r}{R_{S}} * B(t) \quad m=\frac{E_{S}}{c^{2}} \\
& =\frac{1}{2 \pi} \frac{e c^{2}}{E_{S}} \frac{r}{R_{s}} * B(t) \\
& =\frac{e c^{2}}{2 \pi} \frac{r}{R_{s}} * \sqrt{\frac{B(t)^{2}}{\left(m c^{2}\right)^{2}+p^{2} c^{2}}}
\end{aligned}
$$

Frequency Change during acceleration

$$
\begin{array}{r}
f_{r}=\frac{f_{R F}}{h}=\frac{c}{2 \pi R_{S}} * \sqrt{\frac{B(t)^{2}}{\frac{m^{2} c^{4}}{(r e c)^{2}}+\frac{p^{2}}{e^{2} r^{2}}}} \\
=\frac{c}{2 \pi R_{s}} * \sqrt{\frac{B(t)^{2}}{\frac{m^{2} c^{4}}{(r e c)^{2}}+B(t)^{2}}}
\end{array}
$$

$$
B=\frac{p}{e r}
$$

The RF frequency must follow the variation of the B field with the law :
$\frac{f_{R F}(t)}{h}=\frac{c}{2 \pi R_{S}}\left\{\frac{B(t)^{2}}{\left(m_{0} c^{2} / e c r\right)^{2}+B(t)^{2}}\right\}^{1 / 2}$

At relativistic energies, (as soon as ...)
We can treat f_{r} as constant.

$$
\begin{aligned}
& B>\frac{m_{0} c^{2}}{e c r} \\
& f_{r}=\frac{c}{2 \pi R_{s}}=\text { const }
\end{aligned}
$$

which is true for LHC at high energy and for electrons from the start

Spares

It can be shown that:

$$
\begin{aligned}
& \frac{\partial H \text { amiltonian }}{\partial \Delta \varphi}=-\frac{\delta}{\delta t}\left(\frac{\Delta W}{\Omega_{s}}\right) \\
& \frac{\partial H \text { amiltonian }}{\partial\left(\frac{\Delta W}{\Omega_{s}}\right)}=\frac{\delta}{\delta t} \Delta \varphi
\end{aligned}
$$

Canonical Hamiltonian equations

FIRST EQUATION OF MOTION

$$
\dot{w}=\frac{q V_{\max } \Omega_{S}}{2 \pi W_{S}}\left(\sin \left(\Delta \varphi+\varphi_{S}\right)-\sin \varphi_{S}\right) \quad \text { Eq. } 25
$$

SECOND EQUATION OF MOTION

$$
\begin{equation*}
\Delta \dot{\varphi}=\frac{\delta(\Delta \varphi)}{\delta t}=h \Gamma_{s} \Omega_{s} w \tag{Eq. 34}
\end{equation*}
$$

