


• Charge particle motion in a magnetic field
• Equations of motion è derivation and assumptions
• Type of magnets

TBD 1

• Rigidity formula
• Relativistic equations
• Create a storage ring with the Earth Magnetic field

TUTO 1

• Phase space ellipse
• Emittance
• Beam size

TBD 3

• Beam size and aperture calculations

TUTO 3

• Effect field errors
• Resonances

TBD 4 TUTO 4

TBD 2

• Application of transfer matrices
• Thin lens
• FoDo cell

TUTO 2

• Particle trajectory
• Transfer Matrices
• Thin lens approximation

• Betatron oscillations
• Betatron tune
• Dispersion

• How the tune changes from a quadrupole defect
• Optimize beta beating
• Orbit bumps

• Aperture
• Beta function evolution
• Periodic lattices

• Coupling
• Chromaticity



• Ideal magnets that agree with the hard-edge model cannot be built
• Manufacture tolerances, not perfect pole ends, etc, produce a non-

perfect magnetic field and introduce field errors

• We’ll study two types of errors: 
• Dipole errors èOrbit distortion and emittance growth
• Quadrupole errors èOrbit distortion and emittance growth

èTune shift
è Beta beating
èChromaticity



• Assume a dipole field error of strength ∆B acting over a length l

𝛒
𝛂

arc=l

For small angles: arc=𝛂 x 𝛒
So the angle described by the particle is  𝛂=arc/𝛒
If we multiply and divide by B:

𝛼 = %&
%'

èRigidity formula è 𝛼 = %&
(
)*

Particle trajectory in a 
magnetic field, B∆𝛼 = ∆𝑥- = ∆%&

(
)*

In general



∆𝛼 = ∆𝑥- = ∆%&
(
)*

• If l is not too long, the disturbance can be described by a localized 
angular kick right in the middle of the disturbing field, i.e. l/2, and 
we can approximate it to a infinitesimally short field disturbance

• Consider a particle travelling exactly along the orbit in front of the 
disturbance with the trajectory vector (x, x’) = (0, 0) 



• (x, x’) = (0, 0) è this particle has, therefore, zero emittance

• But immediately after the field disturbance, it travels at an angle 
∆x’ w.r.t. orbit

• The trajectory vector is now (0, ∆x’)

• This deflection will lead to betatron oscillations as a result of the 
focusing elements in the lattice

• And now the particle emittance is not zero but



• And now the particle emittance is not zero but

𝛾 𝑠 𝑥0 𝑠 + 2𝛼 𝑠 𝑥 𝑠 𝑥- 𝑠 + 𝛽 𝑠 𝑥-0 𝑠 =
𝐴𝑟𝑒𝑎
𝜋

= 𝜀Remember

(x=0, ∆x’)

𝛽 𝑠 ∆𝑥-0 𝑠 = 𝜀𝑒𝑟𝑟𝑜𝑟

For a given field error, the increase in 
emittance is proportional to the beta 

function at the point of the disturbance!!!!

=xmax

x’max =

! "#�

! %#
�



It is a fundamental property of beam 
optics that the effect of a field error 

increases with the beta function



• Therefore, special care has to be taken when designing magnets that will be placed in 
regions of large beta è e.g. the LHC inner triplets è very very high quality magnets 
(with collision optics beta = 4.5 km) è very very expensive

• In circular accelerators the beam passes over and over again through the same 
disturbance and it is deflected with the same angle each time

• After many revolutions a stable equilibrium is established  resulting in a new distorted 
orbit è a static betatron oscillation about the unperturbed ideal orbit, with a phase or 
angular shift as follows

ss0

x

x
∆x’ 

x’-∆x’ 

Ideal orbit
distorted orbit

x’



• In equilibrium the perturbed orbit has a displacement x from the 
ideal orbit at s0

• The angle right before de perturbation is x’-∆x’, and x’ after the 
perturbation

• Hence at s0 the vector trajectory is (x,x’)

• After one revolution the particle passes again through the same 
disturbance and arrives with a trajectory vector (x, x’-∆x’), the 
distorted orbit can be evolved using

𝑥
x’−∆x’ = 𝑀<=>?

𝑥
𝑥′

𝑀𝑡𝑢𝑟𝑛 =
	𝑐𝑜𝑠𝜓<=>? + 𝛼G𝑠𝑖𝑛𝜓<=>? 𝛽G𝑠𝑖𝑛𝜓<=>?
− 1 + 𝛼G0 𝑠𝑖𝑛𝜓<=>?

𝛽G
	𝑐𝑜𝑠𝜓<=>? − 𝛼G𝑠𝑖𝑛𝜓<=>?

(TBD 3)

s
s0

x

x
∆x’ 

x’-∆x’ 

Ideal orbit
distorted orbit

x’



• 𝜓<=>? = 2π𝑄
• Because of the periodicity condition the beta function and its derivative 

are the same at the beginning and end of a revolution

𝑀𝑡𝑢𝑟𝑛 =
	𝑐𝑜𝑠2𝜋𝑄 + 𝛼(𝑠N)𝑠𝑖𝑛2𝜋𝑄 𝛽(𝑠N)𝑠𝑖𝑛2𝜋𝑄

−𝛾 𝑠N 𝑠𝑖𝑛2𝜋𝑄 	𝑐𝑜𝑠2𝜋𝑄 − 𝛼(𝑠N)𝑠𝑖𝑛2𝜋𝑄

• Putting this matrix in the equation of the trajectory, we get for x and x’

𝑥 = ∆𝑥-
𝛽(𝑠N)
2𝑡𝑎𝑛𝜋𝑄

𝑥′ =
∆𝑥-

2
1 −

𝛼(𝑠N)
𝑡𝑎𝑛𝜋𝑄

Distorted orbit at any 
point, s, around the ring

For integer tunes the orbit distortion grows without bound è INTEGER RESONANCES
Don’t design your accelerator with an integer tune



• The simplest case of a quadrupole field error is a transverse misalignment

Magnetic field

y

Horizontal focusing quadrupole

Beam axis
Magnet axis

∆x
∆y



• For a quadrupole with a gradient 𝑔 = Q%R
QS

• At the point where the error is located, there is the following error field
∆𝐵S
∆𝐵U

= 𝑔 ∆𝑦
∆𝑥

• This leads to a deflection in both planes of è

∆𝑥′
∆𝑦′ =

𝑞
𝑝
𝑙
∆𝐵U
∆𝐵S

=
𝑞
𝑝
𝑔𝑙 ∆𝑥

∆𝑦 = 𝑘𝑙 ∆𝑥
∆𝑦

𝑞
𝑝
𝐵U 𝑠 = 	

𝑞
𝑝
𝐵UN +

𝑞
𝑝
𝑑𝐵U
𝑑𝑥

𝑥 +
1
2!
𝑞
𝑝
𝑑0𝐵U
𝑑𝑥0

𝑥0 +
1
3!
𝑞
𝑝
𝑑^𝐵U
𝑑𝑥^

𝑥^ + ⋯	

∆𝛼 = ∆𝑥- = ∆%&
(
)*

(slide 5)



• This leads to a deflection in both planes of

∆𝑥′
∆𝑦′ =

𝑞
𝑝
𝑙
∆𝐵U
∆𝐵S

=
𝑞
𝑝
𝑔𝑙 ∆𝑥

∆𝑦 = 𝑘𝑙 ∆𝑥
∆𝑦

• Like a dipole field error, this misalignment causes an angular deflection of 
the trajectory in both planes

• Therefore we have an orbit distortion that can be calculated

𝑥 = ∆𝑥-
𝛽(𝑠N)
2𝑡𝑎𝑛𝜋𝑄

𝑥′ =
∆𝑥-

2
1 −

𝛼(𝑠N)
𝑡𝑎𝑛𝜋𝑄

(And the equivalent equation for the y plane)

The orbit distortion is proportional to the size of the 
misalignment (∆x, ∆y) and the beta function at the 
quadrupole position



• A quadrupole misalignment gives an orbit distortion

• What about an error in the quadrupole field?
• It changes the focusing properties and therefore the beta function and 

therefore it changes the tune
• It can be demonstrated (K. Wille page 116-118) that the tune shift due to 

a quadrupole of finite length l with a very small gradient error ∆k is

∆𝑄 =
1
4𝜋

a ∆𝑘𝛽 𝑠 𝑑𝑠
Gbc&

Gb

• ∆𝑄 is proportional to the 𝜷-function at the quadrupole
• Field quality, power supply tolerances, etc are much tighter at 

places where the 𝜷-function is large: mini-beta quads 𝜷≈km, 
arc quads 𝜷≈ m

• 𝜷 is a measure for the sensitivity of the beam



• On top of generating a tune shift, a quadrupole error changes the beta 
function (demonstration K. Wille pages 118-120)

∆𝛽 𝑠N = −
𝛽N

2𝑠𝑖𝑛2𝜋𝑄
a 𝛽 𝑠 ∆𝑘 𝑠 𝑐𝑜𝑠 2 𝜓 𝑠 − 𝜓N − 2𝜋𝑄 𝑑𝑠
Gec&

Ge

s0

s1

observation

distortion

𝛙

• We see that ∆𝛃 grows without bounds if sin2𝛑Q è0
• The tune must NOT HAVE INTEGER OR HALF-

INTEGER values
• Unlimited growth of 𝛃è unlimited growth of beam 

size è beam losses



HERA QH HERA QV

LHC

LEIR

SPS



LHC tune diagram SPS LHC protons parameters



SPS LHC ions parameters with slip-stacking

Slip-stacking 
plateauInjection plateau

Qh=26.3722
Qv=26.3591

Ramp to 300 GeV Ramp to 450 GeV





Green model beta

Red measured beta



• A quadrupole error when ∆i
i
≠ 0 is called CHROMATICITY

𝑘 =
𝐺
𝑝
𝑞*



In case of momentum spread: 𝑝 = 𝑝m + ∆𝑝

𝑘 =
𝑞𝐺

𝑝m + ∆𝑝 
≈
𝑞𝐺
𝑝m

1 −
∆𝑝
𝑝

= 𝑘m + ∆𝑘

= 𝑘m ∆𝑘 = −𝑘m
∆𝑝
𝑝m

∆𝑘 acts as a quadrupole error in the machine and leads to a tune spread:

∆𝑄 =
1
4𝜋

a ∆𝑘𝛽 𝑠 𝑑𝑠
Gbc&

Gb
∆𝑄 = −

1
4𝜋

a 𝑘m
∆𝑝
𝑝m
𝛽 𝑠 𝑑𝑠

Gbc&

Gb

Definition of chromaticity:

∆𝑄 = 𝑄′
∆𝑝
𝑝m

𝑄′ = −
1
4𝜋

o𝑘(𝑠)𝛽 𝑠 𝑑𝑠
�

�



𝑄′ = −
1
4𝜋

o𝑘(𝑠)𝛽 𝑠 𝑑𝑠
�

�

• Chromaticity is generated by the lattice itself!!!

• Q’ is a number indicating the size of the tune spot in the tune diagram

• Q’ is always created if the beam is focused è is determined by the 
focusing strength k of all quadrupoles

• Because due to chromaticity the tune spot is a pancake, some particles 
get close to resonances and are lost

Natural chromaticity



2. We need additional 
quadrupole strength for each 

momentum deviation: ∆i
iq𝑥r 𝑠 = 𝐷(𝑠)

∆𝑝
𝑝m

We have to apply a magnetic 
field that raises quadratically
with increasing x è sextupole

1. We need to sort the particles as a 
function of the momentum:



𝑞
𝑝
𝐵U 𝑠 = 	

𝑞
𝑝
𝐵UN +

𝑞
𝑝
𝑑𝐵U
𝑑𝑥

𝑥 +
1
2!
𝑞
𝑝
𝑑0𝐵U
𝑑𝑥0

𝑥0 +
1
3!
𝑞
𝑝
𝑑^𝐵U
𝑑𝑥^

𝑥^ + ⋯	

𝑘N =
1
𝜌
=
𝐵
𝐵𝜌

1
𝑚

𝑘v =
𝑞
𝑝
𝑑𝐵U
𝑑𝑥

=
1
𝐵𝜌

𝑑𝐵U
𝑑𝑥

=
1
𝐵𝜌

𝑔
1
𝑚0

𝑘0 =
𝑞
𝑝
𝑑0𝐵U
𝑑𝑥0

=
1
𝐵𝜌

𝑑0𝐵U
𝑑𝑥0

1
𝑚^

DIPOLE

QUADRUPOLE

SEXTUPOLE

OCTUPOLE



𝑘GwS< =
𝑞
𝑝
𝑔x𝑥 = 𝑚GwS<𝑥 = 𝑚GwS<𝐷

∆𝑝
𝑝m

𝑄′ = −
1
4𝜋

o(𝑘 𝑠 − 𝑚GwS<𝐷)𝛽 𝑠 𝑑𝑠
�

�

Normalized quadrupole strength for a sextupole:

Corrected chromaticity

p>pop<po

p>pop<po





x

s

1

-1

L

1st turn

2nd turn

3rd turn
4th turn

x

x’

(1,0)

(0,-1)

(-1,0)

(0,1)

Q=1.25

After a certain number of turns around the machine 
the phase advance of the betatron oscillation is such 
that the oscillation repeats itself. 

𝜓<=>? = 2𝜋𝑄

Q=1.25 è q (fractional tune) = 0.25

4x0.25=1



• Let’s have now a tune of Q=3.333 (3Q=10) è q=0.333 èQ=y<=>?
0z

0 2p

y
𝜓<=>? = 2𝜋 { 0.33 = 2.0923 = 120N

The betatron oscillation will repeat itself 
after 3 turns = 3x1200=3600

This could also be achieve by Q=2.333 è 3Q=7

The order of the resonance is defined as:

n x Q = integer

Third order resonance betatron oscillation

1st turn

2nd turn

3rd turn

2πq = 2π/3
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ü For Q = 2.00: Oscillation induced by the dipole kick grows on each turn 
and the particle is lost (1st order resonance Q = 2).

y’b

x

Q = 2.00
x’b

x

Q = 2.50

ü For Q = 2.50: Oscillation is cancelled out every second turn, and 
therefore the particle motion is stable.

x’b

2nd turn

1st turn

3rd turn



Q = 2.33
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ü For Q = 2.50: Oscillation induced by the quadrupole kick grows on each 
turn and the particle is lost 

(2nd order resonance 2Q = 5)

∝

ü For Q = 2.33: Oscillation is cancelled out every third turn, and 
therefore the particle motion is stable.

Q = 2.50 1st turn

2nd turn

3rd turn

4th turn

Q = 2.33



30.03.2022
Introduction to accelerator physics, R. Alemany 

Fernandez

ü For Q = 2.33: Oscillation induced by the sextupole kick grows on each 
turn and the particle is lost 

(3rd order resonance 3Q = 7)

∝

ü For Q = 2.25: Oscillation is cancelled out every fourth turn, and 
therefore the particle motion is stable.

1st turn

2nd

turn

3rd turn

4th turn

Q = 2.33 Q = 2.25

5th turn



ü Quadrupoles excite 2nd order resonances

ü Sextupoles excite 1st and 3rd order resonances

ü Octupoles excite 2nd and 4th order resonances

ü This is true for small amplitude particles and low strength excitations

ü However, for stronger excitations sextupoles will excite higher order 
resonance’s (non-linear)
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ü Coupling is a phenomena, which converts betatron
motion from one plane (horizontal or vertical) into 
motion in the other plane.

ü Fields that will excite coupling  are:

ü Skew quadrupoles, which are normal 
quadrupoles, but tilted by 45º about it’s 
longitudinal axis.

ü Solenoidal (longitudinal magnetic field)
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N

S

N

S

Magnetic field

Like a normal quadrupole, but 
then tilted by 45º
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Magnetic field
Particle trajectory

Beam axis

Transverse velocity 
component
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Above:
The LPI solenoid that was used for the initial 
focusing of the positrons. 
It was pulsed with a current of 6 kA for some 
7 υs, it produced a longitudinal magnetic field 
of 1.5 T.

At the right:
The somewhat bigger CMS solenoid
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ü This coupling means that one can transfer oscillation energy from 
one transverse plane to the other.

ü Exactly as for linear resonances there are resonant conditions.

ü If we meet one of these conditions the transverse oscillation 
amplitude will again grow in an uncontrolled way.

nQh ± mQv = integer



A beautiful demonstration of how 
energy can be transferred from one 
oscillator to another is provided by 
two weakly coupled pendulums
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Qh

Qv

2          2.25        2.5         2.75
2.33 2.66

2

2.25

2.5

2.75
Qh - Qv= 0

4Qh =11

2Qv =5

4Q=9
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4.0

5.0

4.1 4.2 4.3 4.4 4.5

QH

QV

5.1

5.2

5.3

5.4

5.5

5.6

5.7
3Qv=17

Injection

Ejection

3Qv=16

2Qv=11

3
Q

h
=

13

Qh-2Qv=-6

Qh-Q
v= -1

Qh-2Qv= -7

2Q
h-

Q
v=

 -3

Qh+Qv=10

2Q
h+Q

v=14

Qh+2Qv=15

During acceleration we change the 
horizontal and vertical tune 
to a place where the beam is the least 
influenced by resonances.

injection

ejection
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Move a large 
emittance beam 
around in this tune 
diagram and 
measure the beam 
losses.

Not all resonance 
lines are harmful.
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ü There are many things in our machine, which will excite resonances:

ü The magnets themselves

ü Unwanted higher order field components in our magnets

ü Tilted magnets

ü Experimental solenoids (LHC experiments)

ü The trick is to reduce and compensate these effects as much as possible 

and then find some point in the tune diagram where the beam is stable.


