


• Charge particle motion in a magnetic field
• Equations of motion è derivation and assumptions
• Type of magnets

TBD 1

• Rigidity formula
• Relativistic equations
• Create a storage ring with the Earth Magnetic field

TUTO 1

• Phase space ellipse
• Emittance
• Beam size

TBD 3

• Beam size and aperture calculations

TUTO 3

• Effect field errors
• Resonances

TBD 4 TUTO 4

TBD 2

• Application of transfer matrices
• Thin lens
• FoDo cell

TUTO 2

• Particle trajectory
• Transfer Matrices
• Thin lens approximation

• Betatron oscillations
• Betatron tune
• Dispersion

• How the tune changes from a quadrupole defect
• Optimize beta beating
• Orbit bumps

• Aperture
• Beta function evolution
• Periodic lattices

• Coupling
• Chromaticity



• In the previous lecture we introduced the following:

• Second we replace the amplitude factor A by 𝜀� è a constant term called 
emittance

𝑥 𝑠 = 𝜀𝛽(𝑠)� cos	(𝜓 𝑠 + 𝜙) Hill’s equation solution

• Let’s try to understand what emittance is by going to phase space



• Why is convenient to work in phase space?



:spring constant

(In linear approximation)



𝑥 𝑠 = 𝜀𝛽(𝑠)� cos	(𝜓 𝑠 + 𝜙)

𝑥0(𝑠) = −
𝜀�

𝛽 𝑠� α s [cos 𝜓 𝑠 + 𝜙 + 𝑠𝑖𝑛 𝜓 𝑠 + 𝜙 ]

• We take the position and its derivative (angle≡velocity)

• Where 𝛼 𝑠 ≡ −9:(;)
<

• To arrive to an expression describing the phase space motion (x,x’) we 
have to eliminate the terms which depend on phase advance 𝜓 𝑠

cos 𝜓 𝑠 + 𝜙 =
𝑥(𝑠)
𝜀𝛽(𝑠)� sin 𝜓 𝑠 + 𝜙 =

𝛽(𝑠)� 𝑥′(𝑠)
𝜀�

+
𝛼 𝑠 𝑥(𝑠)
𝜀𝛽(𝑠)�

• If we now use the general relation 𝑠𝑖𝑛<𝜃 + 𝑐𝑜𝑠<𝜃 = 1



• If we now use the general relation 𝑠𝑖𝑛<𝜃 + 𝑐𝑜𝑠<𝜃 = 1

𝑥<(𝑠)
𝛽(𝑠)

+
𝛼 𝑠
𝛽 𝑠� 𝑥 𝑠 + 𝛽 𝑠� 𝑥′(𝑠)

<

= 𝜀

• If we introduce the definition γ 𝑠 ≡ EFGH(;)
9(;)

(Attention this is not relativistic gamma)

𝛾 𝑠 𝑥< 𝑠 + 2𝛼 𝑠 𝑥 𝑠 𝑥0 𝑠 + 𝛽 𝑠 𝑥0< 𝑠 =
𝐴𝑟𝑒𝑎
𝜋

= 𝜀
(Proof Appendix C of “The 
Physics of Particle 
Accelerators” K. Wille)

• The emittance, 𝜀, introduced originally as a 
constant of integration, has now an obvious 
meaning è it is related to the area of the 
ellipse, and it is constant çè if conservative 
system, like the one presented two slides ago, 
and in linear beam dynamics



𝜶 𝒔 ≡ −
𝛽0 𝑠
2

, 𝜷 𝒔 	&	𝜸(𝒔) ≡
1 + 𝛼<(𝑠)
𝛽(𝑠)

Determine the shape and orientation of the ellipse



𝐴𝑟𝑒𝑎
𝜋

= 𝜀

𝑬 =
𝒑𝟐

𝟐𝒎
+
𝒌
𝟐
𝒙𝟐 = 𝒄𝒕𝒆 • In both cases, the energy is conserved, the area of the ellipse is 

conserved, is an invariant of motion over time. 

• In the case of the mass attached to the spring, the ellipse has 
always the same shape for a given initial conditions.

• In the case of a particle in an accelerator, since k=k(s), as the 
particle moves along the closed orbit, the shape and position of 
the ellipse changes according to the amplitude function 𝛽(s). 
BUT THE AREA REMAINS CONSTANT.

=xmax

x’max =

𝜀 𝛾_
�

𝜀
𝛽_

�







=xmax

x’max =

𝜀 𝛾_
�

𝜀
𝛽_

�

𝑥 𝑠 = 𝜀𝛽(𝑠)� cos	(𝜓 𝑠 + 𝜙) =1

𝑥𝑚𝑎𝑥 𝑠 = 𝜀𝛽(𝑠)�

How much is x’(s) at this position? (put 𝑥𝑚𝑎𝑥 𝑠
in the ellipse equation and solve for x’)

𝑥0𝑚𝑖𝑛 𝑠 = −𝛼 𝜀/𝛽(𝑠)�

Large 𝛽 In the middle of 
a foc quadrupole 
𝞫=max & 𝛼=0

Ellipse

𝑥cde = 𝜀𝛽(𝑠)� Large beam size Max beam size

𝑥cfg0 = −𝛼 𝜀/𝛽(𝑠)� Small 
divergence

Zero divergence

𝑥𝑚𝑎𝑥 𝑠 = 𝜀𝛽(𝑠)�

x

x'



• So far we have considered the trajectory of a single particle and defined the phase space ellipse and emittance
• However, a beam is made of many particles (1011 protons for LHC) each injected with different position and angle, 

and therefore moving with different amplitudes and describing different ellipses

• This raises the question of what we mean by the AVERAGE EMITTANCE of a beam consisting of an assembly of 
many particles

• To answer the question let’s think about the equilibrium distribution of particles in a beam
• In most cases the Gaussian distribution is a good description of the transverse density function

𝜌 𝑥, 𝑦 =
𝑁𝑒

2𝜋𝜎e𝜎l
𝑒

m eH
<noH

m lH
<npH

• The horizontal distribution can be obtained by setting y=0 

𝜌 𝑥

𝛔x

𝜌0

𝑒 mE< 𝜌0 = 0.607𝜌0 1 STD

N: number of particle of charge e in the beam
𝜎x,y: horizontal, vertical beam sizes

All particles which lie exactly one standard deviation 𝜎
from the beam  axis may be assigned a precise 
emittance 𝜀STD via the relation

𝜎 𝑠 = 𝜀vwx𝛽(𝑠)
�



Emittance of the whole beam 𝜀vwx =
𝜎<(𝑠)
𝛽(𝑠)

! " = $%(")� cos	(- " + /)

Oscillation amplitude

Beam 
envelope

Since all particle 
trajectories lie 

inside this 
envelope, it 
defines the 
BEAM SIZE

=1



• When designing an accelerator is important to ensure that the beam has 
sufficient room available in the transverse phase space

• Even particles undergoing extremely large betatron oscillations can then 
still circulate stably

• This raises the question how large the phase space ellipse of a particle is 
allowed to be before it collides with the wall of the vacuum chamber and it 
is lost

x

x’

Vacuum chamber size at position s

d

Is this an acceptable solution?



• The 𝞫 function is an important quantity in linear beam dynamics
• It allows to calculate the beam size along the magnet structure
• It allows to calculate the phase advance of the betatron oscillations in 

between two points
• Now we will learn how to calculate the evolution of the 𝞫 function itself 

through the storage ring
• As usual we need initial conditions, in this case the value of the 𝞫

function at the starting point in the lattice 𝞫(s0)
• Starting from this initial value we can calculate step by step the evolution 

of 𝞫 by the use of appropriate transformations

• There are two methods, we will briefly try to understand them 



• We describe the trajectory of the particle by the vector X, which travels 
around the phase space ellipse during the motion of the particle around 
the orbit

• At the beginning of the magnet structure, s=s0=0, we have X=X0

𝑋z =
𝑥z
𝑥z0 𝑋zw = 𝑥z 𝑥z0 (Transpose matrix)

• We define the beta matrix

𝐵z ≡
𝛽z −𝛼z
−𝛼z 𝛾z

• If we calculate the product 𝑋zw𝐵zmE𝑋z = 𝛾z𝑥z< + 2𝛼z𝑥z𝑥z0 + 𝛽z𝑥z0< = 𝜀
• We also know that the trajectory vector at any position s can be calculated 

as 𝑋E = 𝑀𝑋z Where 𝑀mE𝑀 = 𝑀w 𝑀w mE = 1

METHOD 1

𝜶 𝒔 ≡ −
𝛽0 𝑠
2

, 𝜷 𝒔 	&	𝜸(𝒔) ≡
1 + 𝛼<(𝑠)
𝛽(𝑠) Twiss functions



• Let’s now play with the matrices

𝜀 = 𝑋zw𝐵zmE𝑋z = 𝑋zw𝑀w 𝑀w mE𝐵zmE𝑀mE𝑀𝑋z
𝐴w𝐵w = (𝐵𝐴)w &				𝐴mE𝐵mE = (𝐵𝐴)mE

𝜀 = 𝑋zw𝐵zmE𝑋z = 𝑋zw𝑀w( 𝑀w mE(𝑀𝐵z )mE)𝑀𝑋z
= 𝑋zw𝑀w(𝑀𝐵z𝑀w)mE𝑀𝑋z

= (M𝑋z)w(𝑀𝐵z𝑀w)mE𝑀𝑋z
𝑋Ew 𝑋E

𝜀 = 𝑋zw𝐵zmE𝑋z = 𝑋Ew(𝑀𝐵z𝑀w)mE𝑋E = 𝑋Ew𝐵EmE𝑋E

Since at point s=s1 the particle trajectory is given 
by X1 and the B1 matrix, then it follows 𝐵E = 𝑀𝐵z𝑀w



𝑋E = 𝑀𝑋z

𝐵E = 𝑀𝐵z𝑀w

Evolution of the beta function along the 
lattice uses the same cos(h), sin(h) 
matrices as the particle trajectory

M=



• The symmetry point is s=s0=0
• All the coordinates at this point will have the label *
• Here the gradient of the beta function is zero, i.e. 𝛼∗ = 0
• The beta function at this position is 𝛽∗

s
s0=0

𝛽

𝛽∗, 𝛼∗ = 0

𝑥(𝑠)
𝑥′(𝑠) = 1 𝑠

0 1
𝑥z
𝑥′z k=0

DRIFT

=M

𝐵E = 𝑀𝐵z𝑀w

𝑋E = 𝑀𝑋z



𝐵E 𝑠 = 1 𝑠
0 1

𝛽∗ 0

0
1
𝛽∗

1 0
𝑠 1 =

𝛽∗ +
𝑠<

𝛽∗
𝑠
𝛽∗

𝑠
𝛽∗

1
𝛽∗

𝐵z ≡
𝛽z −𝛼z
−𝛼z 𝛾z

Beta function around a 
symmetry point

-𝛼 around a symmetry 
point

s
s0=0

𝛽

𝛽∗, 𝛼∗ = 0
s=s1

𝛽E = 𝛽∗ +
𝑠E<

𝛽∗
The beta function grows quadratically with the 
distance from the symmetry point and grows 

faster the smaller the 𝛽



LHC

Figure 1. β-functions and beam sizes σ at distance s from the 
interaction point at s0=0, for β∗=0.55,2,11 and 90 m up to 
L∗=±26 m, for the LHC design beam energy Eb=7TeV and 
normalized emittance ϵN=3.75μm.

Figure 1. β-functions and beam sizes σ at distance s from the 
interaction point at s0=0, for β∗=0.55,2,11 and 90 m up to 
L∗=±26 m, for the LHC design beam energy Eb=7TeV and 
normalized emittance ϵN=3.75μm.

β-functions and beam sizes σ at distance s from the interaction point at s0=0, for 
β∗=0.55,2,11 and 90 m up to L∗=±26 m, for the LHC design beam energy Eb=7TeV and 
normalized emittance ϵN=3.75μm.



METHOD 2
• We start with two trajectory vectors at different positions in the lattice, s0

and s, and its optical functions at s0 and s

𝑋z =
𝑥z
𝑥z0 𝑋 =

𝑥
𝑥0 𝛽z, 𝛼z, 𝛾z 𝛽 , 𝛼 , 𝛾

• At s0 and s we have the same invariant of motion 

𝜀 = 𝛽𝑥0< + 2𝛼𝑥𝑥0 + 𝛾𝑥< = 𝛽0𝑥00< + 2𝛼0𝑥0𝑥00 + 𝛾0𝑥0<

• We also know 𝑋 = 𝑀𝑋z with 𝑀 =
𝑚EE 𝑚E<
𝑚<E 𝑚<<

𝑋z = 𝑀mE𝑋 with 𝑀mE =
𝑚<< −𝑚E<
−𝑚<E 𝑚EE

• Solving for X0 and bringing x0 and x’o as a function of X and the matrix 
elements to the invariant equation we obtain



𝜀 = 𝛽𝑥0< + 2𝛼𝑥𝑥0 + 𝛾𝑥< = 𝛽z(−𝑚<E𝑥 + 𝑚EE𝑥0)<
+2𝛼z(𝑚<<𝑥 − 𝑚E<𝑥0)(−𝑚<E𝑥 +𝑚EE𝑥0)
+𝛾z(𝑚<<𝑥 − 𝑚E<𝑥0)<

• Rearranging terms we end up

𝛽 = 𝑚EE
< 𝛽z − 2𝑚E<𝑚EE𝛼z + 𝑚E<

< 𝛾z
𝛼 = −𝑚<E𝑚EE𝛽z + 𝑚<<𝑚EE + 𝑚E<𝑚<E 𝛼z − 𝑚<<𝑚E<𝛾z

𝛾 = 𝑚<E
< 𝛽z − 2𝑚<<𝑚<E𝛼z + 𝑚<<

< 𝛾z

𝛽
𝛼
𝛾

=
𝑚EE
< −2𝑚E<𝑚EE 𝑚E<

<

−𝑚<E𝑚EE 𝑚<<𝑚EE + 𝑚E<𝑚<E −𝑚<<𝑚E<
𝑚<E
< −2𝑚<<𝑚<E 𝑚<<

<

𝛽z
𝛼z
𝛾z



• We said ”dispersion is the orbit of a particle with ∆p/po=1” 

𝑥00 + E
�H
− 𝑘 𝑥 = E

�
 ∆�
��

𝑥 𝑠 = 𝐷 𝑠
∆𝑝
𝑝�

= D(s)

𝐷00(𝑠) +
1
𝜌<
𝐷(𝑠) =

1
𝜌

=1
=1



𝐷00(𝑠) +
1
𝜌<
𝐷(𝑠) =

1
𝜌

• This is an inhomogeneous differential equation, which we already solved in its 
homogeneous form (slide 12) 

• Now we just need to obtain the inhomogeneous solution
• Since the right hand side of the equation is a constant, we can propose as solution: 

Dinh=C

𝐷00(𝑠) +
1
𝜌<
𝐷(𝑠) =

1
𝜌0

C

𝐶 = 𝜌



𝑥(𝑠)
𝑥′(𝑠) =

𝑐𝑜𝑠 𝑠 𝜌_ 𝜌𝑠𝑖𝑛 𝑠 𝜌_
−𝑠 𝜌_ 𝑠𝑖𝑛 𝑠 𝜌_ 𝑐𝑜𝑠 𝑠 𝜌_

𝑥z
𝑥′z

𝑥00 +
1
𝜌<
𝑥 = 0

Slide 12:
Dipole matrix

D 𝑠 = 𝐴𝑐𝑜𝑠 ; �⁄ + B𝑠𝑖𝑛 ; �⁄ + 𝜌

D’ 𝑠 = −�
�
𝑠𝑖𝑛 ; �⁄ + �

�
𝑐𝑜𝑠 ; �⁄

homogeneous inhomogeneous

• The constants of integration A and B are determined by the initial conditions at s=0

𝐷 0 = 𝐷z 𝐷′ 0 = 𝐷z0

𝐴 = 𝐷z − 𝜌 𝐵 = 𝜌𝐷z0
• Inserting those in the equations for D and D’ we get:



D 𝑠 = 𝐷z𝑐𝑜𝑠 ; �⁄ + 𝐷z0𝜌𝑠𝑖𝑛 ; �⁄ + 𝜌 1 − 𝑐𝑜𝑠 ;
�

D’ 𝑠 = −x�
�
𝑠𝑖𝑛 ; �⁄ + 𝐷z0𝑐𝑜𝑠 ; �⁄ + 𝑠𝑖𝑛 ;

�

𝐷(𝑠)
𝐷′(𝑠)
1

𝑐𝑜𝑠 𝑠 𝜌_

−
1
𝜌
𝑠𝑖𝑛 𝑠 𝜌_

0

𝜌𝑠𝑖𝑛 𝑠 𝜌_

𝑐𝑜𝑠 𝑠 𝜌_

0

𝜌 1 − 𝑐𝑜𝑠 𝑠 𝜌_
𝑠𝑖𝑛 𝑠 𝜌_

1

=

𝐷z(𝑠)
𝐷z′(𝑠)
1

𝑥(𝑠)
𝑥′(𝑠)
𝑦(𝑠)
𝑦′(𝑠)
∆𝑝

𝑝z_

• What would be the trajectory in both planes through a dipole magnet?

𝑐𝑜𝑠 𝑠 𝜌_

−
1
𝜌
𝑠𝑖𝑛 𝑠 𝜌_

0

𝜌𝑠𝑖𝑛 𝑠 𝜌_
𝑐𝑜𝑠 𝑠 𝜌_

0

𝜌 1 − 𝑐𝑜𝑠 𝑠 𝜌_
𝑠𝑖𝑛 𝑠 𝜌_

0

0 0

0 0

1 s
0 1
0 0

0 0
0 0

0
1

=

𝑥0(𝑠)
𝑥0′(𝑠)
𝑦0(𝑠)
𝑦0′(𝑠)
∆𝑝

𝑝z_



• Up to now we have used the transfer matrix M to calculate uniquely 
optical functions at the end of a magnet structure from known initial 
conditions

• Now we want to use the known values of the optical functions at the 
beginning and end of the magnet structure to calculate how the particle 
trajectory evolves

• This has the advantage that many of the characteristics of the beam 
transport system can be discussed without knowing in detail the 
magnet structure

• I will save you the mathematics (see page 88 in K. Wille)
• I just bring you directly to the results, which is the useful thing



𝑋E = 𝑀𝑋z

𝑀 =

𝛽
𝛽z

�
(𝑐𝑜𝑠𝜓 + 𝛼z𝑠𝑖𝑛𝜓) 𝛽𝛽z

� 𝑠𝑖𝑛𝜓

𝛼z − 𝛼 𝑐𝑜𝑠𝜓 − 1 + 𝛼z𝛼 𝑠𝑖𝑛𝜓
𝛽𝛽z

�

𝛽z
𝛽

�
(𝑐𝑜𝑠𝜓 − 𝛼𝑠𝑖𝑛𝜓)

𝛙 is the phase advance of the betatron oscillation between s0 and s



𝑀 =

𝛽
𝛽z

�
(𝑐𝑜𝑠𝜓 + 𝛼z𝑠𝑖𝑛𝜓) 𝛽𝛽z

� 𝑠𝑖𝑛𝜓

𝛼z − 𝛼 𝑐𝑜𝑠𝜓 − 1 + 𝛼z𝛼 𝑠𝑖𝑛𝜓
𝛽𝛽z

�

𝛽z
𝛽

�
(𝑐𝑜𝑠𝜓 − 𝛼𝑠𝑖𝑛𝜓)

• Very simple, solve the matrix below for one turn, i.e. s0=s
=1

=0

𝑀𝑡𝑢𝑟𝑛 =
	𝑐𝑜𝑠𝜓���g + 𝛼;𝑠𝑖𝑛𝜓���g 𝛽;𝑠𝑖𝑛𝜓���g
− 1 + 𝛼;< 𝑠𝑖𝑛𝜓���g

𝛽;
	𝑐𝑜𝑠𝜓���g − 𝛼;𝑠𝑖𝑛𝜓���g

𝜓���g = �
𝑑𝑠
𝛽(𝑠)

;F�

;
𝑄e,l =

1
2𝜋

�
𝑑𝑠
𝛽(𝑠)

;F�

;

Betatron tune
Number of 

oscillations per turn𝜓���g = 2𝜋𝑄





𝐴𝑟𝑒𝑎
𝜋

= 𝜀 =xmax

x’max =

𝜀 𝛾_
�

𝜀
𝛽_

�

We see that all particles travel along their individual ellipses in phase space. If we now choose one with the 
largest phase ellipse within a particular beam, we know all particles within that ellipse will stay within that 
ellipse. Therefore we are able to describe the collective behavior of a beam formed by many particles by the 
dynamics of a single particle.

Since all particles enclosed by a phase space ellipse stay within that ellipse, we only need to know how the ellipse 
parameters transform along the beam line to be able to describe the beam.



Let’s define the beam matrix with the well known Twiss parameters:

𝜎 =
𝜎EE 𝜎E<
𝜎<E 𝜎<< = 𝜀 𝛽 −𝛼

−𝛼 𝛾

𝜎EE = 𝑥f< = 𝜀𝛽
𝜎<< = 𝑥f0< = 𝜀𝛾

𝜎E< = 𝑥f𝑥′f = −𝜀𝛼

𝜀< = 𝜎EE 𝜎<< − 𝜎E<< If we find a way to determine the beam 
matrix, then we can measure the emittance

To determine the beam matrix at a place Po, we consider a beam transport line with one quadrupole at Po and a 
beam size monitor at P1. We vary the strength of the quadrupole and measure the beam size at P1 as a function of 
the quadrupole strength. This is equivalent to measure the beam size at a different locations in the line.

QUADRUPOLE SCAN METHOD TO MEASURE BEAM EMITTANCE

Po P1

Beam size 
monitor

Matrix in thin lens

d



a b
c

𝑦 = 𝑎𝑘< + 𝑏𝑘 + 𝑐Fitting 𝜎E,EE 𝑘 to a parabola will determine the whole beam matrix at P0

It can be demonstrated (H. Wiedemann, Particle Accelerator Physics, Chapter 5.1 Measurement of beam emittance) that 
form the beam matrix at P0, one can get the beam matrix element 11 at P1, i.e. the beam size at P1:

This is what we 
measure with the beam 

diagnostic device

This we vary in steps

lq and d are known

𝜀< = 𝜎EE 𝜎<< − 𝜎E<<
Geometrical emittance

𝜀g = 𝛾���𝛽���𝜀
Normalized emittance



The beam matrix not only defines the beam emittance but also the 
betatron functions at the beginning of the quadrupole in this 
measurement. We gain with this measurement a full set of initial beam 
parameters 𝛼z, 𝛽z, 𝛾z, 𝜀 	and may now calculate beam parameters at any 
point along the transport line. 

𝜎0 =
𝜎z,EE 𝜎z,E<
𝜎z,<E 𝜎z,<< = 𝜀 𝛽0 −𝛼0

−𝛼0 𝛾0





• In these lectures I have used (x,x’) and (y,y’) as the phase space coordinates.
y

s

�⃑�py

ya'

siny’=
�p
�⃑
è y’=

�p
�⃑

y

s

�⃑�py

ya'ps 𝑝; +
𝑞
𝑐
𝑉

RF
yb'

After crossing the RF cavity 
the particle gains energy in 
the longitudinal direction, but 
not in the transverse yb’ < ya’



y

y'

ya'

yb'

Phase space

siny’=
�p
�⃑

è y’=
�p
�⃑
= �p

�c��
= �p

�c�9 

When we accelerate, as �⃑� increases y’ decreases 

If we choose as phase space coordinates (y,py), the 
phase space does not shrink because as �⃑� increases y’ 
decreases and the product remains constant, i.e. py
remains constant.

As y’ goes as E
�9

to get an invariant emittance we have 

to multiply by 𝛾𝛽:

𝜀 =
𝐴
𝜋
= 𝑎 ¢ 𝑏 = 𝑦 ¢ 𝑦0 = 𝑦

𝑝l
𝛾𝑚z𝛽𝑐

𝜀𝛾𝛽 = 𝑦
𝑝l
𝑚z𝑐

= 𝜀g








