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21.03.2022 Introduction to accelerator physics, R. Alemany Fernandez




Phase space ellipse

* Inthe previous lecture we introduced the following:

* Second we replace the amplitude factor A by \/¢ = a constant term called
emittance

x(s) = /2B (s)cos((s) + ¢) Hill'sequation solution

* Let's try to understand what emittance is by going to phase space
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* Why is convenient to work in phase space?

23.03.2022

(Phase space and emittance)

Analysis of x=f(t) =» provides information
about the path taken by the system BUT
NOT about the energy.

Analysis of v=f(t) =» provides information
about the energy of the system BUT
NOT about the trajectory taken.

... Let's be inventive and try to analyse
the evolution of the velocity as a
function of position v=f(x)

x=0 =0
v=max K=max

U=potential energy JUAS 2017 24 January 2017
K=kinetic energy
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space and emittance)

@ Each point (x,v) in the ellipse represents an
STATE of the physical system with well
define position and velocity.

@ All the points (x,v) in the ellipse have the
SAME ENERGY (E))

@ If the initial elongation is smaller; then we get
a smaller ellipse with energy E, (E,<E,).

Phase @ If we change(l() the ellipse shape will change.

:spring constant

A beam of charged particles in an
accelerator subjected to focusing and
defocusing forces have the same dynamics as W{RIAEEIg:To]slgeXqaE1dlels)
the system above.The beam dynamics also
x=0 U=0 reproduces an ellipse in phase space ...

v=max K=max

U=potential energy JUAS 2017 24 January 2017
K=kinetic energy
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* We take the position and its derivative (angle=velocity)
x(s) =\ eB(s)cos(P(s) + ¢)

NG

x'(S) = = ma(s) [COS(I/J(S) + qb) + Sin(l/)(s) + ¢)]
* Where a(s) = _5_'2(2

* To arrive to an expression describing the phase space motion (x,x’) we
have to eliminate the terms which depend on phase advance ¥ (s)

cos((s) + ¢) = =) VBEX(5) _al)x(s)

NEo) sin(yY(s) + ¢) = Ve NEIO)

* If we now use the general relation sin“8 + cos“8 = 1
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* If we now use the general relation sin?6 + cos“6 = 1

2 2
(S) (a(s) X(s) + ’—ﬁ(s)x’(s)) _

HE VB (s)
2
s If we |ntr0d uce the dEf|n|t|On Y(S) — 1+'B(Z(S§S) (Attention this is not relativistic gamma)
'I"ea (Proof Appendix C of “The
2 2 sics of Particle
y(s)x2(s) + 2a(s)x(s)x'(s) + B(s)x™(s) = B

* The emittance, ¢, introduced originally as a
constant of integration, has now an obvious
meaning =@ it is related to the area of the
ellipse, and it is constant €=» if conservative
system, like the one presented two slides ago,
and in linear beam dynamics
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Twiss functions

B'(s) 1+ a?(s)

a(s) =

B &Y(5) =~

Determine the shape and orientation of the ellipse
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(Phase space and emittance)

4 Each point (x,v) in the ellipse represents an
STATE of the physical system with well
define position and velocity.

' @ All the points (x,v) in the ellipse have the
SAME ENERGY (E))

¢ [f the initial elongation is smaller, then we get
a smaller ellipse with energy E, (E,<E,).

€ If we change K the ellipse shape will change.

2 . S
p + Exz = cte * Inboth cases, the energy is conserved, the area of the ellipse is
2m 2 conserved, is an invariant of motion over time.

A beam of charged particles in an _ _
NIl ©  In the case of the mass attached to the spring, the ellipse has

defocusing forces have the same dynamics as always the same shape for a given initial conditions.
the system above.The beam dynamics also

reproduces an ellipse in phase space ... _ ] _
* Inthe case of a particle in an accelerator, since k=k(s), as the

U=potental energy JUAS 2017 24 January 2017 particle moves along the closed orbit, the shape and position of
e the ellipse changes according to the amplitude function B(s).
BUT THE AREA REMAINS CONSTANT.
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- - UNnB
Liouville’s theorem T e

Each particle, in absence of non conservative forces, has a constant invariant.

Under the influence of conservative forces the particle density in phase space is constant.
Magnetic fields of dipoles and quadrupoles are conservative:

In a beam the phase space is maintained constant

Beamsize  Xpax = VB(S)E  X'pax = VY (5)E
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converging beam waist diverging
beam A beam

Along a beam line, the orientation and aspect ratio of the ellipse varies, BUT THE
AREA remains CONSTANT in the absence of non-linear forces or acceleration

AREA = EMITTANCE (€)
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x(s) = /¢ (S) A

How much is x'(s) at this position? (put x,, . (s)
in the ellipse equation and solve for x’)

xmax(s) — 4/ 8:8(5) x,min(s) = _a\/g/lg(s)

23.03.2022

X

Xmax = B(s)

!
min

= —a /B(s)

| Large 8 [In the middle of | Ellipse

a foc quadrupole
B=max & a=0

Large beam size Max beam size
Small Zero divergence +
divergence
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So far we have considered the trajectory of a single particle and defined the phase space ellipse and emittance
However, a beam is made of many particles (10** protons for LHC) each injected with different position and angle,
and therefore moving with different amplitudes and describing different ellipses

This raises the question of what we mean by the AVERAGE EMITTANCE of a beam consisting of an assembly of
many particles

To answer the question let’s think about the equilibrium distribution of particles in a beam
In most cases the Gaussian distribution is a good description of the transverse density function

o y2 N: number of particle of charge e in the beam
Ne S SPARe) . . :
( ) Sii 20x 203 ) oxy:horizontal, vertical beam sizes
plxy) = e
TL'O'xO'y
The horizontal distribution can be obtained by setting y=0
p(x) All particles which lie exactly one standard deviation o
Po from the beam axis may be assigned a precise

emittance eqrp via the relation
o(s) = \/€STD,3(5)
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o (s)
Emittance of the whole beam E i
B(s)

£(5) = /EBG)cosGh ) + ) o

envelope

ince all particle
trajectories lie
inside this
Oscillation amplitude envelope, it
defines the
BEAM SIZE
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Aperture

* When designing an accelerator is important to ensure that the beam has
sufficient room available in the transverse phase space

* Even particles undergoing extremely large betatron oscillations can then
still circulate stably

* This raises the question how large the phase space ellipse of a particle is
allowed to be before it collides with the wall of the vacuum chamber and it
is lost g 1x

@ .

Vacuum chamber size at position s

s this an acceptable solution?
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Evolution of the B function through the lattice

* The B function is an important quantity in linear beam dynamics

* Itallowstoca
* |t allowsto ca
Detween two

culate the beam size along the magnet structure
culate the phase advance of the betatron oscillations in

noINnts

* Now we will learn how to calculate the evolution of the B function itself

through the storage ring
* As usual we need initial conditions, in this case the value of the 8
function at the starting point in the lattice B(s,)

* Starting from

this initial value we can calculate step by step the evolution

of B by the use of appropriate transformations

* There are two methods, we will briefly try to understand them

23.03.2022
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METHOD 1

* We describe the trajectory of the particle by the vector X, which travels
around the phase space ellipse during the motion of the particle around
the orbit

* At the beginning of the magnet structure, s=s,=0, we have X=X

X0
XO = (X(’)) X(’I; = (XO xé) (Transpose matrix)
* We define the beta matrix
I 2
BO — ( 'BO —CZO) a(S)E—ﬁT(S);ﬁ(S)&)’(S)E1-;?5)(5) Twiss functions
—Qo Yo

e If we calculate the product XS By 1 X = yox5 + 2a9x0xy + Boxs® = €
* We also know that the trajectory vector at any position s can be calculated

= X1 =MX, Where MM = MT(MT)"1 =1
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* Let’s now play with the matrices
e=XIBg1Xy = X MT(MT) 1B MM X,
ATBT = (BA)T & A'B7'=(BA)™!
e = X§By1Xo = X§ M (MT)" (MB, )")MX,

= XIMT(MB,M")"1MX,
—_ (MXO)T(MBoMT)_lMXO

X X

e =X BylXy = XI(MB,M")~1x,; = XI'B{1X,

s

Since at point s=s1 the particle trajectory is given
by X1 and the B1 matrix, then it follows

Bl —_ MBoMT
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X1 — MXO

B1 — MBoMT

Evolution of the beta function along the
lattice uses the same cos(h), sin(h)
matrices as the particle trajectory

quadrupole

Q4
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Example: calculate the beta function
around a symmetry point in a field-free
drift section

* The symmetry pointis s=5,=0

* All the coordinates at this point will have the label *

* Here the gradient of the beta function is zero, i.e.a™ = 0

* The beta function at this position is §* =M X = MX,

p
\/ E)=1G D s
B, = MT




- ( B, —“o) Beta function around a

—ay Yo symmetry point

2

g0 o] 2
B0 = Do L) D=5 "

5 1
g \| | 7

B
A s2 @ around a symmetry
‘ B1=08"+—; int
| ﬁ* POI
. The beta function grows quadratically with the
5,=0 S=S, distance from the symmetry point and grows
B* a*=0 faster the smaller the
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\100.- B*—OSSm 1.0

B-functions and beam sizes o at distance s from the interaction point at s =o, for
8°=0.55,2,11 and 9o m up to L*=+26 m, for the LHC design beam energy Eb=7TeV and
normalized emittance €,=3.75um.
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METHOD 2

* We start with two trajectory vectors at different positions in the lattice, s,
and s, and its optical functions at s, and s

X:(xo) X_x Bo, Ao, Y g ,a ,y
0 x(’) —x’ 040,70 0 Ao

* Ats_ and s we have the same invariant of motion

£ = Px"* + 2axx’ + yx* = Lyxy % + 2a9x0x, + VoXo*
mqq m12)
my1 My
Xo = MIX with M1 = (%2 7 2
* Solving for X, and bringing x, and x', as a function of X and the matrix
elements to the invariant equation we obtain

* Wealsoknow X = MX, with M :(
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e = Px'? + 2axx" +yx* = fo(—ma1x + my;x")?
+2a5(Myyx — Myxx ) (—My1x + My x")
+Yo(Mypx — mypx")?

* Rearranging terms we end up
. 2
p = mi1fo — 2miymyay + miyy,
a = —Mmy Mmq1 Py + (Myamyq + Mypmyq)ay — My,mysY

. 2
Y = m51fo — 2My,my g + M55

y) y)
b mqq —2Mm My, mqo Lo
a|=|-—Mmymyy My;My1 + MMy —MyMyy (04

y m%l _2m22m21 m22 )/O
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Dispersion calculation

* We said “dispersion is the orbit of a particle with Ap/p =1"

D(s) + -2 D(s) = =
s)+—=D(s) =—
p* p
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Dispersion calculation

D(s) +—=D(s) = -
S = e =Y
p* p

This is an inhomogeneous differential equation, which we already solved in its
homogeneous form (slide 12)

Now we just need to obtain the inhomogeneous solution

Since the right hand side of the equation is a constant, we can propose as solution:
Dinh:C

1 1
D”(S) Iz —ZD(S) —

: p2 7 T p
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Slide 12:

xX"+—=x=0 Dipole matrix

p?
NONE cos/p psin®/p\ /xq
(x’(s)) & —S/p sinS/p cos S/p (X’o)

D(s) = AcosS/p + BsinS/p + p

homogeneous inhomogeneous

A . ;
D'(s) = —Sin S/p +—COS S/p

The constants of integration A and B are determined by the initial conditions at s=0

D(0) = D, D'(0) = D}

Inserting those in the equations for D and D’ we get:

A=Dg—p B = pDy
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D(s) = DycosS/p+ DypsinsS/p + p (1 — CO0S %)

Do . .
D'(s) = —?Osm S/p+DycosS/p + Sln%

D(s) g */p psinsfp  p(1—cosS/p) | /Do(s)
<D'(S)> = | —5sin¥fp  cosS/p S
1

0 0 1 !

* What would be the trajectory in both planes through a dipole magnet?

/ x(s)  cos /o psin®/p 0 0 p(1—cosS/p) ]
x'(s) _%Sins/p cos®fp 0 0 sin®/p
y(s) | = 0 0 T— 0
y'(s) 0 0 o— 0
\Ap/ / 0 0 0 O 1
Po 7
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Calculate transfer matrices from optical functions

Up to now we have used the transfer matrix M to calculate uniquely
optical functions at the end of a magnet structure from known initial
conditions

Now we want to use the known values of the optical functions at the
beginning and end of the magnet structure to calculate how the particle
trajectory evolves

This has the advantage that many of the characteristics of the beam
transport system can be discussed without knowing in detail the
magnet structure

| will save you the mathematics (see page 88 in K. Wille)

| just bring you directly to the results, which is the useful thing
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s is the phase advance of the betatron oscillation between s, and s
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Periodic lattices

* Very simple, solve the matrix below for one turn, i.e. s_=s

/ (COSl/J + agpsiny) \/m:si‘m,b \
M = =0
\(a 2y ;;01 el \/% (cosy — asiny) )
COSYiyurn ': asSiNYeyrn Bssineym
Mtum - _(1 i asl'B)SSlnl/)turn COSYyrn — AsSINYypp
SHLEIS 1 (STl gg Betatron tune
Vewrn = . BG) Oxy = Py g m Number of

23.03.2022 l/)tu‘rn — ZnQ

oscillations per turn



Stability Criterion:

. . . o S m
Question: what will happen, if we do not make too g | T
. ° » ‘J B — -:: i
many mistakes and your particle performs oo //“ L
one complete turn ? B \
‘:J | ,.',; W
/

Matrix for 1 turn:

- ' 1 0 o
M:((ml/jnm'i'q&n%lm ﬂssm%an ] = COSW(O 1) +Sinu/( ﬂj

=% Siny/twn QO8YWp, — % Siny/twn -7
1 J

Matrix for N turns:

M" =(1-cosy+J -siny) " =1-cos N+ -sin Ns

The motion for N turns remains bounded, if the elements of M" remain bounded

v=red < |eosyl<] o




Measurement of the beam emittance

_
o

8
6
4
2
0
-2
-4
-6
-8

We see that all particles travel along their individual ellipses in phase space. If we now choose one with the
largest phase ellipse within a particular beam, we know all particles within that ellipse will stay within that
ellipse. Therefore we are able to describe the collective behavior of a beam formed by many particles by the
dynamics of a single particle.

Since all particles enclosed by a phase space ellipse stay within that ellipse, we only need to know how the ellipse
parameters transform along the beam line to be able to describe the beam.
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Let’s define the beam matrix with the well known Twiss parameters:
& (011 012) i ( p —a)
o= =&
021 022 —a Yy

0515l = <x12> = &
2 If we find a way to determine the beam

2 = i
Oyp = (x{z) =&y € = 011 022 012 ' .
. matrix, then we can measure the emittance
012 = (x;x';) = —€a

QUADRUPOLE SCAN METHOD TO MEASURE BEAM EMITTANCE

To determine the beam matrix at a place Po, we consider a beam transport line with one quadrupole at Po and a
beam size monitor at P1. We vary the strength of the quadrupole and measure the beam size at P1 as a function of
the quadrupole strength. This is equivalent to measure the beam size at a different locations in the line.

Beam size
monitor
(l—d/f d) B (ld)( 1 0)
“ d —1/f 1) \o1)\-1/f1
Po P1 Matrix in thin lens
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It can be demonstrated (H. Wiedemann, Particle Accelerator Physics, Chapter 5.1 Measurement of beam emittance) that
form the beam matrix at Po, one can get the beam matrix element 11 at P1, i.e. the beam size at Pz:

This is what we This we vary in steps
measure with the beam

diagnostic device

lg and d are known

a b

Fitting 07 11 (k) to a parabola y = ak?+ bk + ¢ will determine the whole beam matrix at Po

a
202°
202

—b — 2d€q0'().11
2d%(,

00,11 —
Geometrical emittance

00,12 = 2 2

b

€" = 011 0272 — 013

¢ — 0011 — 2doy 12
d? .

Normalized emittance

En = Vrelﬁrelg
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The beam matrix not only defines the beam emittance but also the
betatron functions at the beginning of the quadrupole in this
measurement. We gain with this measurement a full set of initial beam

parameters (g, By, Yo, €) and may now calculate beam parameters at any
point along the transport line.

00,11 00,12 By —ag
Oy = —

00,21 09,22 -y Yo

COMMENTS
Chose setting with focus closed to the SEM grid
Careful at the focus — beam very small and

possible space charge effects

Guarantee large beam size variation with
quadrupole strength, to be able to accurately fit
the 3 parameters.
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Disp-free optics

0.1
¢ Sigma’ measured 2.0

2 _ -Signia? bet

E
o
2
w
=
)
=3
2
A

A 2 é
'VIAAAAAA v
\AAAAADM

0.84 0.86 0.88 090 092 094 0.96
BTM.QNO20 strength [m-2]
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Emittance: geometrical and normalized
emittance

* In these lectures | have used (x,x’) and (y,y’) as the phase space coordinates.

RF‘

g ps +—=V
After crossing the RF cavity ¢
_ 2% Dy the particle gains energy in
S|ny’:7 > 4 yI:T the longitudinal direction, but I /
Dl Dl Yo <Y
not in the transverse b d
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Phase space

I . . p
e S
12
Y.

Yb

When we accelerate, as |p| increases y’ decreases

23.03.2022

Py _ Py _ Py
1Dl ymgov ymogpfc

Y

If we choose as phase space coordinates (y,p,), the
phase space does not shrink because as |p| increases y’
decreases and the product remains constant, i.e. p,
remains constant.

1

As y’ goes as — to get an invariant emittance we have

YB
to multiply by yp:
A Dy
prom gt . b pna . d o
Eliiaall y-y yymO,Bc

p
eyp =ym—(")vc=8n
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Spares
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A : unBe
ALB A rms Emittance Coivashat e

de Barcelona

The emittance is the area of the phase space occupied by all particles in a beam
Each particle has its own ‘invariant emittance’

rms emittance represents the beam characteristics, and is defined as:

g™ = \[(x2)(x'2) — (x x')?

Rms values behave the same for all distributions in linear systems
Most usual beam distributions are gaussian

XI
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A unBs

aeea Emittance and beam dimensions R
«  The emittance is the area of the phase space occupied by the particles
With the emittance and the Twiss parameters in a point of the

accelerator, the beam dimensions are obtained : ¢, , € ¢, ,

Ellipse area= r¢,

(%)= Bee.
(x?)=7.e.

<xx'> =—-a.&,

By, —a; =1

Gl = aomoliceioy Qe S 34
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