


• Charge particle motion in a magnetic field
• Equations of motion è derivation and assumptions
• Type of magnets

TBD 1

• Rigidity formula
• Relativistic equations
• Create a storage ring with the Earth Magnetic field

TUTO 1

• Phase space ellipse
• Emittance
• Beam size

TBD 3

• Beam size and aperture calculations

TUTO 3

• Effect field errors
• Resonances

TBD 4 TUTO 4

TBD 2

• Application of transfer matrices
• Thin lens
• FoDo cell

TUTO 2

• Particle trajectory
• Transfer Matrices
• Thin lens approximation

• Betatron oscillations
• Betatron tune
• Dispersion

• How the tune changes from a quadrupole defect
• Optimize beta beating
• Orbit bumps

• Aperture
• Beta function evolution
• Periodic lattices

• Coupling
• Chromaticity
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Simple Harmonic Motion

A simple harmonic oscillator is an 
oscillator that is neither driven nor 
damped. It consists of a mass m, which 
experiences a single force F, which 
pulls the mass in the direction of the 
point x = 0 and depends only on the 
position x of the mass and k. 
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DIPOLE
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LINEAR BEAM 
DYNAMICS!!



• We have seen in the previous course how to generate magnetic fields in 
the region of the beam

• Let’s now find a solution for the equations of motion
• In dipoles and quadrupole magnets there is no coupling (in first order) 

between the horizontal and vertical plane (we have two different 
equations for x and y)

• Then, let’s solve just one plane, e.g. the x-s
• To simplify even more, let’s assume the B field ends abruptly at the 

beginning and end of the magnets “hard-edge model” (we ignore the edge 
field issue)

• Within the magnets we assume constant B field, i.e. 1/𝜌= cte and k=cte
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• We can solve this equation, section  by section, either within a magnet or 
within  a field-free region = drift region



• A quadrupole is characterized by its strength, k, and its length, l
• There is no bending è 1/𝜌= 0

𝑥"" +
1
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− 𝑘 𝑥 = 0

𝑥"" − 𝑘𝑥 = 0 (k=cte)

Homogeneous and linear-second-order differential equation 

• Convention is that defocusing magnets k > 0 and focusing magnets k<0
• For a focusing quadrupole the solution is

𝑥 𝑠 = 𝐴𝑐𝑜𝑠 |𝑘|� 𝑠 + 𝐵𝑠𝑖𝑛 |𝑘|� 𝑠
𝑥"(𝑠) = − |𝑘|� 𝐴𝑠𝑖𝑛 |𝑘|� 𝑠 + |𝑘|� 𝐵𝑐𝑜𝑠 |𝑘|� 𝑠



• The integration constants A and B are determined by the initial conditions
• Initial conditions èat the beginning of the magnet s=0, the particle 

trajectory has position x0 and angle x’0
• Inserting these initial conditions in the solutions we get: A=x0, B=x’0/√k
• We can also express the solution in a more elegant way using matrices:

𝑥(𝑠)
𝑥′(𝑠) =

𝑐𝑜𝑠 |𝑘|� 𝑠 1
|𝑘|�L 𝑠𝑖𝑛 |𝑘|� 𝑠

− |𝑘|� 𝑠𝑖𝑛 |𝑘|� 𝑠 𝑐𝑜𝑠 |𝑘|� 𝑠
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k<0FOCUSING



𝑥 𝑠 = 𝑥0𝑐𝑜𝑠ℎ 𝑘� 𝑠 + 𝑥
"
0

𝑘�N
𝑠𝑖𝑛ℎ 𝑘� 𝑠

𝑥′ 𝑠 = 𝑥0 𝑘� 𝑠𝑖𝑛ℎ 𝑘� 𝑠 + 𝑥"0𝑐𝑜𝑠ℎ 𝑘� 𝑠

𝑥(𝑠)
𝑥′(𝑠) =

𝑐𝑜𝑠ℎ 𝑘� 𝑠 1
𝑘�N
𝑠𝑖𝑛ℎ 𝑘� 𝑠

𝑘� 𝑠𝑖𝑛ℎ 𝑘� 𝑠 𝑐𝑜𝑠ℎ 𝑘� 𝑠

𝑥@
𝑥′@ k>0DEFOCUSING



k=0, sin𝛼≌𝛼

𝑥(𝑠)
𝑥′(𝑠) =

𝑐𝑜𝑠 |𝑘|� 𝑠 1
|𝑘|�L 𝑠𝑖𝑛 |𝑘|� 𝑠

− |𝑘|� 𝑠𝑖𝑛 |𝑘|� 𝑠 𝑐𝑜𝑠 |𝑘|� 𝑠
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• Dipole with constant bending radius 1/𝜌=cte and no gradient, k=0
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• The solution is like a focusing quadrupole

𝑥(𝑠)
𝑥′(𝑠) =

𝑐𝑜𝑠 𝑠 𝜌N 𝜌𝑠𝑖𝑛 𝑠 𝜌N
−𝑠 𝜌N 𝑠𝑖𝑛 𝑠 𝜌N 𝑐𝑜𝑠 𝑠 𝜌N
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DIPOLE BEAM FOCUSING!!



• How can a dipole with k=0 have a focusing effect?
• Let’s consider again the trajectories of two particles within a 1800 dipole

• In this magnet all trajectories are semicircles with same radius 𝜌
• If we consider as reference trajectory the one described by YELLOW particle
• And analyze the trajectory of the second GREEN particle displaced by +x:

• GREEN particle approaches the ideal trajectory and crosses it at point B
• Then runs inside the orbit and exits with a displacement of -x  

Weak focusing!! B

1800 dipole

𝞺

x -x
A C

x

-x

Weak focusing in x
Drift in y 
(horizontal dipole) 

B
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k=0DRIFT
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• In general a particle travelling along the accelerator moves in x and y, 
therefore we need to deal with four-dimensional vectors and matrices
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• In many practical situations we have that the focal length of the lens is much bigger 
than the length of the magnet

𝑓 =
1
𝑘𝑙\

≫ 𝑙\

• In this case we can make the following approximation

𝑙\ → 0	𝑤ℎ𝑖𝑙𝑒	𝑘𝑙\ = 𝑐𝑡𝑒
• The quadrupole matrix elements can then be reduced to

𝑐𝑜𝑠 |𝑘|� 𝑠 1
|𝑘|�L 𝑠𝑖𝑛 |𝑘|� 𝑠

− |𝑘|� 𝑠𝑖𝑛 |𝑘|� 𝑠 𝑐𝑜𝑠 |𝑘|� 𝑠k<0
FOCUSING
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• So far we have only considered particle 
motion within one magnet

• But a storage ring or transfer line is made of 
many magnets

• The first approach would be:
• Take the first element, calculate the 

position and angle after the beam crosses 
the element

• Take the resulting position and angle and 
use it as initial position and angle through 
the next magnet

• And so on so forth …

Di=drift sections
Qi = quadrupoles
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What will happen if the particle performs a second turn … and a third turn 
… and 1010 turns? 



• Up to now we have simplified our calculations assuming that k = cte within the 
quadrupole magnet

• But when we have to use a set of magnets in an storage ring, each quadrupole can have 
a different strength è the restoring force is not constant k=k(s)

• More over, the particle crosses the magnets over and over again, therefore, 
k(s)=k(s+L), i.e. k(s) is periodic (L: accelerator circumference)

• Therefore, the original equation of motion

𝑥"" − 𝑘𝑥 = 0 (k=cte) (slide 9) 

• Has to be generalized to k=k(s)

𝑥(𝑠)"" − 𝑘(𝑠)𝑥(𝑠) = 0 Hill’s equation of motion



𝑥(𝑠)"" − 𝑘(𝑠)𝑥(𝑠) = 0 Hill’s equation of motion

• The solution, x(s), describes a transverse oscillation about the ideal orbit 
known as betatron oscillation, whose amplitude and phase depend on 
the position s along the orbit

• Hill’s equation owns his name from the Astronomer G. W. Hill

In 1878, Hill provided the first complete mathematical solution to 
the problem of the apsidal precession of the Moon's orbit around 
the Earth, a difficult problem in lunar theory first raised in Isaac 
Newton's Principia Mathematica of 1687.[2] This same work also 
introduced what is now known in physics and mathematics as the 
"Hill differential equation", which describes the behavior of a 
parametric oscillator and which made an important contribution to 
the mathematical Floquet theory. (from Wikipedia)



• The solution to this equation has the usual cosine form
𝑥 𝑠 = 𝐴𝑢 𝑠 cos	(𝜓 𝑠 + 𝜙)

• The constant amplitude factor A and the phase 𝜙 are integration 
constants fixed by the initial conditions

• Inserting the solution x(s) and its derivative x’(s) into the Hill’s equation we 
obtain

𝐴[𝑢"" − 𝑢𝜓"& − 𝑘 𝑠 𝑢]𝑐𝑜𝑠(𝜓 + 𝜙)	− 𝐴[2𝑢"𝜓" + u𝜓""] sin 𝜓 + 𝜙 = 0

• Since 𝜓 s has a different value at every point in the orbit, and A≠0, the 
equation above can only be satisfied if

𝑢"" − 𝑢𝜓"& − 𝑘 𝑠 𝑢 = 0
2𝑢"𝜓" + u𝜓"" = 0 2

𝑢"

𝑢
+
𝜓""

𝜓"
= 0 𝜓 𝑠 = l

𝑑𝜎
𝑢&(𝜎)
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− 𝑘 𝑠 𝑢 = 0

Non-linear differential equation with no general 
analytic solution è numerical methods
How do we do with complicated magnet 
structures with many individual magnets?

Forget about this, we’ll use the same approach as for a single 
particle trajectory, i.e. we’ll develop a matrix method to calculate 

the FULL BEAM OPTICS in the same simple way

• First we introduce the beta function (also known as amplitude function)

𝛽 𝑠 ≡ 𝑢&(𝑠)
• Second we replace the amplitude factor A by 𝜀� a constant term called 

emittance

𝑥 𝑠 = 𝜀𝛽(𝑠)� cos	(𝜓 𝑠 + 𝜙) 𝜓 𝑠 = l
𝑑𝜎
𝛽	(𝜎)
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We saw before that turn after turn the particles perform betatron
oscillations around the orbit amplitude-position-dependent under the action 
of the quadrupoles. We see that this action has a net FOCUSING effect

𝑥 𝑠 = 𝜀𝛽(𝑠)� cos	(𝜓 𝑠 + 𝜙)

Oscillation amplitude

Beam 
envelope

Since all particle 
trajectories lie 

inside this 
envelope, it 
defines the 
BEAM SIZE



• If we know how 𝛽(s) evolves step by step through the magnet structure, in 
the same way as the particle trajectory and we know the value of the 
EMITTANCE è we can know the transverse beam size at any point in the 
accelerator

(We’ll come back to this)



• Let’s come back to the relation 𝜓 𝑠 = l
𝑑𝜎
𝛽	(𝜎)
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• In a circular accelerator the integral “0 ⟶ 𝑠” is equivalent to a complete 
revolution

𝑄u,> =
1
2𝜋

w
𝑑𝑠

𝛽𝑥, 𝑦	(𝑠)

�

�

PHASE ADVANCE

BETATRON TUNE

Number of betatron oscillations the beam 
(each particle) performs after one turn
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1 full betatron oscillation ½ betatron oscillation

1.5 betatron oscillations in x èTune = Qx = 1.5



• So far we have studied monochromatic beams of particles, but this is 
slightly unrealistic

• We always have some small momentum spread among all particles:   
∆𝑝 = 𝑝 − 𝑝@ ≠ 0

• Consider three particles with p respectively: less than, greater than, and 
equal to p0 , traveling through a dipole

• Remember Bρ = p /q 
• The system introduces a correlation of 

momentum with transverse position 
• This correlation is known as dispersion (an 

intrinsic property of the dipole magnets)













• LEIR
• SPS
• LHC
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Kinj = 4.2 MeV/nucleon

Kext = 72 MeV/nucleon

Kinj: kinetic energy at injection
Kext: kinetic energy at extraction

LEIR



SPSHorizontal axis is give in units of phase advance

26.62 x 2𝜋



LHC Operational cycle:
Squeeze è reduce β* (β@IP)

IR2

IR1

IR3 IR4

IR5

IR6 IR7 IR8

IR1

Beta function at top energy and after squeeze

4500 m
Beta function at Injection

IR1

IR5

IR1IR3 IR4 IR6 IR7 IR8IR2

250 m

180 m

180 m

@IP β*=0.5 m
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