Entanglement and complexity of islands be.HEP meeting

Juan Hernandez

Vrije Universiteit Brussel

Brussels, Dec 22 2021

Juan Hernandez

Entanglement and complexity of islands

Brussels, Dec 22 2021 1 / 29

Outline

- Entanglement entropy
- 3 Holography
- 4 Islands
- 5 Complexity
- Conclusion

э

- 4 回 ト - 4 三 ト

What is a black hole?

Astrophysicist:

- Massive object in space
- Collapse from gravitational force

Theorist:

- Solution to Einstein's equations
- Singularity
- Event horizon

Information theorist:

- System with (nearly) maximal entropy
- Fast scrambling

Black holes

Astrophysics

- Active galactic nuclei
- Gravitational waves
- EH telescope

Theorists

- Black hole thermodynamics
- Playground for QG
- Information paradox

Black holes

Astrophysics

- Active galactic nuclei
- Gravitational waves
- EH telescope

Theorists

- Black hole thermodynamics
- Playground for QG
- Information paradox

< 行

Black holes

Astrophysics

- Active galactic nuclei
- Gravitational waves
- EH telescope

Theorists

- Black hole thermodynamics
- Playground for QG
- Information paradox

Outline

2 Entanglement entropy

3 Holography

5 Complexity

Conclusion

э

A D N A B N A B N A B N

Entropy

Entanglement entropy

- $\rho_A = \mathrm{Tr}_{\bar{A}} |\Psi\rangle \langle \Psi|$
- $S(\rho_A) = -\operatorname{Tr}_A(\rho_A \log \rho_A)$
- Quantifies the amount of entanglement of ρ_A

Thermodynamic entropy

- N = # of states compatible with observables λ_i
- $S(\lambda_i) = \log N$
- For BH: $S(M, Q, J) = \frac{A}{4G}$

Entropy

Entanglement entropy

- $\rho_A = \mathrm{Tr}_{\bar{A}} |\Psi\rangle \langle \Psi|$
- $S(\rho_A) = -\operatorname{Tr}_A(\rho_A \log \rho_A)$
- Quantifies the amount of entanglement of ρ_A

Thermodynamic entropy

- N = # of states compatible with observables λ_i
- $S(\lambda_i) = \log N$
- For BH: $S(M, Q, J) = \frac{A}{4G}$

In a quantum theory, entanglement entropy \leq thermodynamic entropy

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Information paradox

Entropy curve

Hawking radiation

- Particle pair creation
- Near horizon
- Fall/escape of partners

Entanglement of black hole

- Pairs are entangled
- Constant Hawking radiation
- Linear increase in entropy

Information paradox

Entropy curve

Hawking radiation

- Particle pair creation
- Near horizon
- Fall/escape of partners

Entanglement of black hole

- Pairs are entangled
- Constant Hawking radiation
- Linear increase in entropy

Entanglement and complexity of islands

Outline

Black holes and information paradox

Entanglement entropy

5 Complexity

Conclusion

A D N A B N A B N A B N

3

Holography

Holography

- Equivalence between two theories
- *d* + 1 dimensional quantum gravity
- *d* dimensional quantum field theory

3

Holography

Information paradox

- Black hole in d + 1 dimensional quantum gravity
- Think in terms of *d* dimensional quantum field theory
- Entanglement entropy must somehow decrease

Holographic entanglement entropy

Holographic dictionary

- Entanglement entropy of ρ_A
- Area of surface γ_A
- Geometric computation

$$S(\rho_A) = \frac{A(\gamma_A)}{4G}$$

4 E b

Outline

- Black holes and information paradox
- Entanglement entropy
- 3 Holography
- Islands
- 5 Complexity

Conclusion

3

15 / 29

A D N A B N A B N A B N

Generalized entropy and island rule

For a theory with gravity, generalized entropy

$$S_{gen}(R) = S_{EE}(R) + rac{A(\partial R)}{4G}$$

A B A A B A

< 🗇 🕨

э

Generalized entropy and island rule

For a theory with gravity, generalized entropy

$$S_{gen}(R) = S_{EE}(R) + rac{A(\partial R)}{4G}$$

In addition, the island rule

$$S_{gen}(R) = \min_{I} \left(S_{EE}(R \cup I) + \frac{A(\partial R)}{4G} + \frac{A(\partial I)}{4G} \right)$$

Juan Hernandez

< 行

Generalized entropy and island rule

For a theory with gravity, generalized entropy

$$S_{gen}(R) = S_{EE}(R) + rac{A(\partial R)}{4G}$$

In addition, the island rule

$$S_{gen}(R) = \min_{I} \left(S_{EE}(R \cup I) + \frac{A(\partial R)}{4G} + \frac{A(\partial I)}{4G} \right)$$

 $\frac{A(\partial I)}{4G}$ is very big. Islands only relevant when there is a lot of entanglement between R and I

16 / 29

Islands

The island rule

Island rule

- Entanglement entropy
- When gravity is included
- Allow for "entanglement islands"

Entanglement curve

- Early: no islands
- Entanglement increases
- Late: island configuration
- Entropy decreases

Juan Hernandez

Entanglement and complexity of islands

Brussels, Dec 22 2021

Islands

The island rule

Island rule

- Entanglement entropy
- When gravity is included
- Allow for "entanglement islands"

Entanglement curve

- Early: no islands
- Entanglement increases
- Late: island configuration
- Entropy decreases

Islands

The island rule

Island rule

- Entanglement entropy
- When gravity is included
- Allow for "entanglement islands"

Entanglement curve

- Early: no islands
- Entanglement increases
- Late: island configuration
- Entropy decreases

Example: BH + bath

Black hole + bath models

- Black hole in gravitational theory
- Couple to non gravitational baths
- Black hole evaporates into baths

< 1[™] >

Example: BH + bath

Black hole + bath models

- Black hole in gravitational theory
- Couple to non gravitational baths
- Black hole evaporates into baths

21 / 29

< 行

Outline

- Black holes and information paradox
- Entanglement entropy
- 3 Holography
- 4 Islands

A D N A B N A B N A B N

22 / 29

3

Holographic complexity

Entanglement entropy is not enough

- Entanglement entropy equilibrates fast
- Quantifies entanglement between A and A^c

Another measure of entanglement

- Keeps increasing for very long times
- Sensitive to entanglement within *A*

$$C(\rho_A) = \frac{V(\Sigma_A)}{4G\ell}$$

Brussels, Dec 22 2021

Complexity Circuit complexity

What is holographic complexity on the field theory side?

- Slow to thermalize
- Linear increase in time
- Reach very large values

$$C_{\Psi_R}(\Psi_T) = \min_U D(U)$$

s.t. $U|\Psi_R\rangle = |\Psi_T\rangle$

Brussels, Dec 22 2021

24 / 29

Entanglement vs complexity

Example: black hole + circular baths

Three extremal surfaces

- Early time surface
- Thermal surface
- Island surface

Two phases

- Early
- Late

-

Entanglement vs complexity

Example: black hole + circular baths

Entropy curve

< 1[™] >

э

Entanglement vs complexity

Example: black hole + circular baths

Complexity curve

-

э

27 / 29

Outline

- Black holes and information paradox
- Entanglement entropy
- 3 Holography
- 4 Islands
- 5 Complexity

A D N A B N A B N A B N

3

Conclusion

Summary

- Black holes and information paradox
- Resolution: islands
- Two measures of entanglement
- Entanglement entropy
- Complexity

< 行

э

29 / 29