# Entanglement and complexity of islands 

 be.HEP meetingJuan Hernandez

Vrije Universiteit Brussel
Brussels, Dec 222021

## Outline

(1) Black holes and information paradox
(2) Entanglement entropy
(3) Holography
(4) Islands
(5) Complexity

6 Conclusion

## What is a black hole?

Astrophysicist:

- Massive object in space
- Collapse from gravitational force

Theorist:

- Solution to Einstein's equations
- Singularity
- Event horizon

Information theorist:

- System with (nearly) maximal entropy

- Fast scrambling


## Black holes

## Astrophysics

- Active galactic nuclei
- Gravitational waves
- EH telescope

Theorists

- Black hole thermodynamics
- Playground for QG
- Information paradox



## Black holes

## Astrophysics

- Active galactic nuclei
- Gravitational waves
- EH telescope

Theorists

- Black hole thermodynamics
- Playground for QG
- Information paradox


## Black holes

Astrophysics

- Active galactic nuclei
- Gravitational waves
- EH telescope

Theorists

- Black hole thermodynamics
- Playground for QG
- Information paradox



## Outline

## (1) Black holes and information paradox

## (2) Entanglement entropy

(3) Holography
(4) Islands
(5) Complexity

6 Conclusion

## Entropy

Entanglement entropy

- $\rho_{A}=\operatorname{Tr}_{\bar{A}}|\Psi\rangle\langle\Psi|$
- $S\left(\rho_{A}\right)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
- Quantifies the amount of entanglement of $\rho_{A}$

Thermodynamic entropy

- $N=\#$ of states compatible with observables $\lambda_{i}$
- $S\left(\lambda_{i}\right)=\log N$
- For BH: $S(M, Q, J)=\frac{A}{4 G}$


## Entropy

Entanglement entropy

- $\rho_{A}=\operatorname{Tr}_{\bar{A}}|\Psi\rangle\langle\Psi|$
- $S\left(\rho_{A}\right)=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)$
- Quantifies the amount of entanglement of $\rho_{A}$

Thermodynamic entropy

- $N=\#$ of states compatible with observables $\lambda_{i}$
- $S\left(\lambda_{i}\right)=\log N$
- For $\mathrm{BH}: S(M, Q, J)=\frac{A}{4 G}$

In a quantum theory, entanglement entropy $\leq$ thermodynamic entropy

## Information paradox

## Entropy curve

Hawking radiation

- Particle pair creation
- Near horizon
- Fall/escape of partners

Entanglement of black hole

- Pairs are entangled
- Constant Hawking radiation
- Linear increase in entropy



## Information paradox

## Entropy curve

Hawking radiation

- Particle pair creation
- Near horizon
- Fall/escape of partners

Entanglement of black hole

- Pairs are entangled
- Constant Hawking radiation
- Linear increase in entropy



## Outline

## (1) Black holes and information paradox

(2) Entanglement entropy

## (3) Holography

(4) Islands
(5) Complexity

6 Conclusion

## Holography

Holography

- Equivalence between two theories
- $d+1$ dimensional quantum gravity
- d dimensional quantum field theory



## Holography

Information paradox

- Black hole in $d+1$ dimensional quantum gravity
- Think in terms of $d$ dimensional quantum field theory
- Entanglement entropy must
 somehow decrease


## Holographic entanglement entropy

Holographic dictionary

- Entanglement entropy of $\rho_{A}$
- Area of surface $\gamma_{A}$

- Geometric computation

$$
S\left(\rho_{A}\right)=\frac{A\left(\gamma_{A}\right)}{4 G}
$$

## Outline

## (1) Black holes and information paradox

(2) Entanglement entropy
(3) Holography
4. Islands
(5) Complexity
6) Conclusion

## Generalized entropy and island rule

For a theory with gravity, generalized entropy

$$
S_{g e n}(R)=S_{E E}(R)+\frac{A(\partial R)}{4 G}
$$

## Generalized entropy and island rule

For a theory with gravity, generalized entropy

$$
S_{g e n}(R)=S_{E E}(R)+\frac{A(\partial R)}{4 G}
$$

In addition, the island rule

$$
S_{g e n}(R)=\min _{I}\left(S_{E E}(R \cup I)+\frac{A(\partial R)}{4 G}+\frac{A(\partial I)}{4 G}\right)
$$

## Generalized entropy and island rule

For a theory with gravity, generalized entropy

$$
S_{g e n}(R)=S_{E E}(R)+\frac{A(\partial R)}{4 G}
$$

In addition, the island rule

$$
S_{g e n}(R)=\min _{I}\left(S_{E E}(R \cup I)+\frac{A(\partial R)}{4 G}+\frac{A(\partial I)}{4 G}\right)
$$

$\frac{A(\partial I)}{4 G}$ is very big. Islands only relevant when there is a lot of entanglement between $R$ and I

## The island rule

Island rule

- Entanglement entropy
- When gravity is included
- Allow for "entanglement islands"


## Entanglement curve

- Early: no islands
- Entanglement increases
- Late: island configuration
- Entropy decreases


Thermodyanmic entropy
of the black hole


## The island rule

Island rule

- Entanglement entropy
- When gravity is included
- Allow for "entanglement islands"


Entanglement curve

- Early: no islands
- Entanglement increases
- Late: island configuration
- Entropy decreases


## The island rule

Island rule

- Entanglement entropy
- When gravity is included
- Allow for "entanglement islands"

Entanglement curve

- Early: no islands
- Entanglement increases
- Late: island configuration
- Entropy decreases



## Example: BH + bath

Black hole + bath models

- Black hole in gravitational theory

- Couple to non gravitational baths
- Black hole evaporates into baths



## Example: BH + bath

Black hole + bath models

- Black hole in gravitational theory

- Couple to non gravitational baths
- Black hole evaporates into baths



## Outline

## (1) Black holes and information paradox

(2) Entanglement entropy
(3) Holography
(4) Islands
(5) Complexity

6 Conclusion

## Holographic complexity

Entanglement entropy is not enough

- Entanglement entropy equilibrates fast
- Quantifies entanglement between $A$ and $A^{c}$

Another measure of entanglement


- Keeps increasing for very long times
- Sensitive to entanglement within A

$$
C\left(\rho_{A}\right)=\frac{V\left(\Sigma_{A}\right)}{4 G \ell}
$$

## Complexity

Circuit complexity

What is holographic complexity on the field theory side?

- Slow to thermalize

Circuit complexity

- Linear increase in time
- Reach very large values

$$
\begin{aligned}
& C_{\Psi_{R}}\left(\Psi_{T}\right)=\min _{U} D(U) \\
& \text { s.t. } \quad U\left|\Psi_{R}\right\rangle=\left|\Psi_{T}\right\rangle
\end{aligned}
$$



## Entanglement vs complexity

Example: black hole + circular baths


Three extremal surfaces

- Early time surface
- Thermal surface
- Island surface

Two phases

- Early
- Late


## Entanglement vs complexity

Example: black hole + circular baths

## Entropy curve





## Entanglement vs complexity

Example: black hole + circular baths

Complexity curve




## Outline

## (1) Black holes and information paradox

(2) Entanglement entropy
(3) Holography
(4) Islands
(5) Complexity
(6) Conclusion

## Conclusion

## Summary

- Black holes and information paradox
- Resolution: islands
- Two measures of entanglement
- Entanglement entropy
- Complexity

