UCLouvain

Discovering Neutrino Astronomy

Gwenhaël De Wasseige

Disclaimer

If you did not hear what you were interested in:

Where are high-energy astrophysical neutrinos coming from?

Can we identify cosmic hadronic accelerators ?

What are the properties of these accelerators?

Neutrino telescopes

Neutrino telescopes

x 8

Neutrino telescopes

X 3

IB

x 8

IceCube South Pole, Antarctica

IceCube: exciting times!

IceCube-Upgrade

IceCube: exciting times!

EeV	PeV	TeV	GeV	
			Er	hergy

KM3NeT Mediterranean Sea, France and Italy

ant in

MA DIN

ANTARES and KM3NeT: exciting times!

More than 15 years of data taking!

8 ARCA Detection Unit6 ORCA Detection Units

2021

Detectors not to scale

ARCA

KM3Ne1

ANTARES and KM3NeT: exciting times!

Expected for the next 6 months:

- 7 + 2-3 more ORCA DUs
- ORCA Instrumentation Unit
- 15 more ARCA DUs

More than 15 years of data taking!

8 ARCA Detection Unit6 ORCA Detection Units

2021

Detectors not to scale

KM3Ne1

Which information can we get?

- Amount of light -> Energy
- Timing -> Direction

KM3Ne1

- Topology (track/cascade) -> Flavour

What are the biggest achievements so far?

Joint neutrino-EM detection nature

First Glashow resonance event

https://arxiv.org/abs/2011.03545

- Updated calibration and ice model
- Changes to RA, Dec, energy

Diffuse neutrino flux 7.5 year

102 events, with 60 events > 60 TeV

Diffuse neutrino flux

- No evidence for point sources
- No correlation with the galactic plane
- <u>Best fit</u>: Single power law with spectral index $\gamma = 2.89^{+0.20}_{-0.19}$ all-flavor flux normalization $\Phi = 6.45^{+1.46}_{-0.46}$
- Data does not prefer a broken power law model

7.5 year

Neutrino Energy: 290 TeV (>180 TeV, 90% CL) RA: 77.43° (-0.65°/+0.95° 90% CL) Dec: 5.72° (-0.30°/+0.50° 90% CL)

https://arxiv.org/pdf/1807.08816 https://arxiv.org/abs/1807.08794

22 September 2017 IceCube-170922A

22 September 2017 IceCube-170922A

23

- Fermi observations of a known blazar TXS 0506+056, in a state of enhanced gamma-ray emission
- MAGIC detection of > 400 GeV gamma rays from the blazar

Dec: 5.72° (-0.30°/+0.50° 90% CL)

Archival data search

IceCube170922A

- Time-dependent point source search at location of TXS blazar
- 13 ± 5 neutrino excess in 2014-2015 over 110 days
- Significance defined using identical searches using randomized event directions: 3.5σ

First observation of a Glashow

https://www.nature.com/articles/s41586-021-03256-1

First observation of a Glashow resonance event

https://www.nature.com/articles/s41586-021-03256-1

- > 40% of the signal kept
- Background reduction by 5 orders of magnitude
- Reduction of the energy threshold for astrophysical searches by 2 orders of magnitude

- > 40% of the signal kept
- Background reduction by 5 orders of magnitude
 Reduction of the energy threshold for astrophysical searches by 2 orders of magnitude

What am I doing?

Solar flares

Compact binary mergers

Solar flares

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

 $\pi \rightarrow \mu \rightarrow \overline{\nu}_{\mu}$

π°→2 γ

 $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

 $\mu \rightarrow e^{+} \overline{\nu}_{e}^{+} \overline{\nu}_{\mu}$

Po atm >

hadron acceleration (up to several GeV)

> p,a... = Solar Energetic Particles

https://arxiv.org/abs/2101.00610

Solar flares

U.L. Fargion model with $\langle E_{\nu} \rangle = 140 \text{ MeV}$

Search for a neutrino signal from the brightest flares seen in gamma rays

• • $\delta_p = 3.4$, Proton spectral cutoff = 3 GeV

ICECUBE

Compact binary mergers

For BNS, NSBH and Mass Gap events Search for a prompt signal $[t_0, t_0+3] s$

For all eventsSearch in an extendedtime window t_0 -500, t_0 +500] s

GW170817 Compact binary mergers

https://arxiv.org/abs/2105.13160

Gamma ray observation

Compact binary mergers

LVC 01+02+03 events

Distribution of Kolomogorov-Smirnov test to evaluate the compatibility between the two distributions: p-value = 0.3

Compact binary mergers

LVC 01+02+03 events

Distribution of Kolomogorov-Smirnov test to evaluate the compatibility between the two distributions:

p-value = 0.3

https://arxiv.org/abs/2105.13160

Bonus

Solar neutrinos

45

Solar neutrinos

Eur. Phys. J. C (2017) 77: 146

Solar density profile

C.A. Argüelles, GDW, A. Fedynitch, B.J.P. Jones (2017)

Neutrino floor

~1 order of magnitude

C.A. Argüelles, GDW, A. Fedynitch, B.J.P. Jones (2017) See also Ng. et al. and Edsjö et al. (2017)

Understanding the *noise* from the Deep Sea

Understanding the *noise* from the Deep Sea

Bay Aquarium Research Institute (Monterey Bay Aquarium Research Institute)

Understanding the *noise* from the Deep Sea

Data recorded

56

Mean PMT Rates for DetID-49 DU-3 - colours from 1.0kHz to 20.0kHz (HRV ratio threshold 0.5) PMTs ordered from top to bottom - 2021-07-09 15:08:40.184017

UTC time [20s/px]

Discovering Neutrino Astronomy

Solar atmospheric flux

C.A. Argüelles, GDW, A. Fedynitch, B.J.P. Jones (2017)