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Motivation

Burst in Gravitational Waves physics…

LIGO/Virgo have accumulated on

Accurate description of  
Binary Inspiral dynamics 

How can we use QFT methods to describe the binary inspiral problem?

BH - BH merger
BH - NS merger
NS - NS merger



5

Motivation
[Figure from Antelis and Moreno, [1610.03567]

Post-Newtonian (PN): 

Post-Minkowskian (PM): 

QFT approach:

1 � Gm

r
⇠ v2

1 � Gm

r
, v2 ⇠ 1

r

m1 m2

S1 S2

Tradicional methods: EOB formalism [Buonanno Damour 99’]
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Motivation
[Figure from Antelis and Moreno, [1610.03567]

Post-Newtonian (PN): 

Post-Minkowskian (PM): 

Tradicional methods: EOB formalism

QFT approach:

1 � Gm

r
⇠ v2

1 � Gm

r
, v2 ⇠ 1

r

m1 m2

S1 S2

We focus on the 
scattering  at 1PM (tree-level) 
all-order in spin

[Buonanno Damour 99’]



From Amplitudes to Hamiltonians (or potentials)

Two-body bounded problem Scattering problem

Full theory

A(p, q)

Effective theory

V (p, q)

AEFT(p, q) =

~ ! 0

[Cheung, Rothstein, Solon,19’]

Matching

Afull
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Buonanno’s slide at Gravitational scattering, inspiral and radiation 2021



Buonanno’s slide at Gravitational scattering, inspiral and radiation 2021



Long Range Gravitational Scattering

spin-0 x spin-0 scattering:

V (1)
G (~r) = �

Z
d3q

(2⇡)3
M(~q)e�i~q·~r

(monopole)

[Holstein, Ross 08’]



Long Range Gravitational Scattering

spin-0 x spin-0 scattering:

Spin-0 x spin-1/2 scattering:

V (1)
G (~r) = �

Z
d3q

(2⇡)3
M(~q)e�i~q·~r

(monopole)

(dipole/ 
spin-orbit)

[Holstein, Ross 08’]



Long Range Gravitational Scattering

spin-0 x spin-0 scattering:

How do we obtain all the multipoles?

Spin-0 x spin-1/2 scattering:

V (1)
G (~r) = �

Z
d3q

(2⇡)3
M(~q)e�i~q·~r

(monopole)

Scattering observables…

[Holstein, Ross 08’]

(dipole/ 
spin-orbit)
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Pictorically…

~ ! 0Classical limit:Pµ
a +�Pµ

a

Pµ
a +�Pµ

a

b
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Pictorically…

Pµ
a +�Pµ

a

Pµ
a +�Pµ

a

~ ! 0Classical limit:

b

~ ! 0

The KMOC formalism:  
- quantum expectation values 

   - chosen initial quantum states  
   - classical observables when
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Pictorically…

Scattering of two coherent-spin 
states mediated by a graviton

Pµ
a +�Pµ

a

Pµ
a +�Pµ

a
~ ! 0Classical limit:

b

Factorizes into two three-points.
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Pictorically…

Pµ
a +�Pµ

a

Pµ
a +�Pµ

a
~ ! 0Classical limit:Classical limit:

b

{b}

{a}

Coherent amplitude as a coherent sum of definite-spin amplitudes
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Definite-spin amplitudes
{b}

{a}
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Why do we use the spinor-helicity formalism?

Off-shell Feynman Rules:

Four-momenta, polarization vectors/tensors and Dirac spinors

Difficult to go to higher-spins

Gauge-dependent terms, uses the SO(1,3) Lorentz group

pµi "µ(pi) "µ⌫(pi) v̄b(pi) ua(pi)

On-shell amplitudes:

spinor-helicity building blocks

Gauge-independent terms, uses particles’ little-group

hiajbi [iajb]

U(1) massless
SU(2) massive
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Definite-spin amplitudes - Spinor-helicity formalism
[Arkani-Hamed, Huang, Huang 2017]

p↵�̇ = pµ�
µ

↵�̇
p↵�̇ = �a

p↵✏ab�̃
b
p�̇

⌘ |pai↵[pa|�̇

"abpµ =
ihp(a|�µ|pb)]p

2m
uAa
p =

✓
|pai
|pa]

◆
Spin-1/2 Spin-1

Split the four-momenta into two Weyl spinors

Little-group: SU(2) labels
[Ochirov 2018]

a, b = 1, 2
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Definite-spin amplitudes - Spinor-helicity formalism
[Arkani-Hamed, Huang, Huang 2017]

p↵�̇ = pµ�
µ

↵�̇
p↵�̇ = �a

p↵✏ab�̃
b
p�̇

⌘ |pai↵[pa|�̇

"abpµ =
ihp(a|�µ|pb)]p

2m
uAa
p =

✓
|pai
|pa]

◆
Spin-1/2 Spin-1

Split the four-momenta into two Weyl spinors Similar for massless. Little group U(1)

Spin-1

Little-group: SU(2) labels
[Ochirov 2018]

a, b = 1, 2
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Definite-spin amplitudes - Spinor-helicity formalism
[Arkani-Hamed, Huang, Huang 2017]

p↵�̇ = pµ�
µ

↵�̇
p↵�̇ = �a

p↵✏ab�̃
b
p�̇

⌘ |pai↵[pa|�̇

"abpµ =
ihp(a|�µ|pb)]p

2m
uAa
p =

✓
|pai
|pa]

◆
Spin-1/2 Spin-1

A(1a , 2
b
 , 3

+
� ) = i

gp
2
v̄a1�

µub
2 "

+
µ (q) ! ig x h1a2bi

Example (spin-1/2): minimal coupling

x =
hq|p1|3]
mh3qi = �

p
2

m
(p1 · "+3 )

where

Split the four-momenta into two Weyl spinors Similar for massless. Little group U(1)

Spin-1

Little-group: SU(2) labels
[Ochirov 2018]

a, b = 1, 2
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Two massive vectors couplings
[Arkani-Hamed, Huang, Huang 2017]

A{b}
min{a} = �

2
h2b1ai�2x2Two massive spin-1 and a graviton:

A{b}
min{a} = �2

p
2s✓

mW v
h2b1ai�2xin the SMWW�

{a} = {a1, a2}
�2 symmetrization
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Definite-spin scattering amplitudes

Using the particles’ little-group: minimal coupling with a graviton

{b}

{a}

Best behavior in the high-energy limit

*Non-minimal later!
Use definite-spin amplitudes to contract with coherent sates

[Arkani-Hamed, Huang, Huang 2017]

{a} = {a1, a2, ..., a2s}

Spin-2s: 2s indices

*Similar for positive helicities

�2s symmetrization
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Pictorically…

Pµ
a +�Pµ

a

Pµ
a +�Pµ

a
~ ! 0Classical limit:Classical limit:

b

{b}

{a}

Coherent amplitude as a coherent sum of definite-spin amplitudes
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Coherent states and 
Coherent scattering amplitudes
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We employ the KMOC formalism with the aid of coherent-states 

Provide a rigorous framework for quantum-classical transitions

Why coherent-states?

Schwinger’s construction  
for spin-coherent sates

Massive little-group of  
definite-momenta amplitudes

SU(2)

[Arkani-Hamed, Huang, Huang 2017][Schwinger 1952]

We want to identify the classical spin from spin-coherent states

Contract with the LG index of definite-spin amplitudes



Classical coherent states
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Quantum Harmonic Oscillator
H = ~!(a†a+ 1/2) En = ~!(n+ 1/2)

classical limit0 1

Uncertainties: �nx =

r
~
m!

(n+ 1/2) �np =
p

m!~(n+ 1/2)

Coherent states: â|↵i = ↵|↵i |↵i = e�|↵|2/2 e↵â
†
e�↵⇤â|0i

�↵x =

r
~

2m!
�↵p =

r
m!~
2

Saturates the uncertainty principle

Expectation values evolve classically

Finite errors in the 
classical limit !!

Vanish in the classical limit

For the energy to be finite ||↵||2 ! 1
in the classical limit

Uncertainties:

E↵ = ~!( ||↵||2 + 1/2)
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Spin-states

Schwinger’s construction: general spin from zero-spin with 2 creation ops.
along the z-axis

Covariantize it:

SU(2)-covariant s-spin states

[Schwinger, 1952]
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Coherent Spin-states

Coherent spin-states defined as

In terms of definite spin:

We want the coherent state in terms of definite spin…
because we know the general definite-spin amplitudes
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Classical limit and crucial property

Implies that classical 
spin is obtained when

Lorentz-covariant SU(2) spin operator
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Classical limit and crucial property

Implies that classical 
spin is obtained when

Taking the classical limit (KMOC + coherent) 

)
In this limit, 

factorizes into

Lorentz-covariant SU(2) spin operator
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Dressing the Minimal coupling 

Minimal 3-point
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Dressing the Minimal coupling 

It exponentiates!

Minimal 3-point
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Boost to the same momenta

The exponent

spin generator

pa = (p1 + p2)/2 = p1 + k/2 = p2 � k/2

On-shell kinematics

spinless term

(Similar for 2)
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Boost to the same momenta

The exponent

spin generator

overlap between coherent states

pa = (p1 + p2)/2 = p1 + k/2 = p2 � k/2

On-shell kinematics

spinless term

(Similar for 2)
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Classical limit and classical three-points

Factored out the standard coherent-state overlap:

In the classical limit, we take:

and we can identify the spin expectation value

Can use directly to built four-points.

Matches the Kerr BH ‘amplitude’

Matches 1PM results

Exact cancellation between the 
spinless term and the normalization

notation: kµ = ~k̄µ

[see Guevara, Ochirov, Vines, 19’]
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General  
three-point amplitude 
and 
Kerr BHs

{b}

{a}
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General Three-point amplitude: bootstrapping

A(1a , 2
b
 , 3

+
� ) = i

gp
2
v̄a1�

µub
2 "

+
µ (q) ! ig x h1a2bi

x =
hq|p1|3]
mh3qi = �

p
2

m
(p1 · "+3 )

Spin-1/2: minimal

Adipole(1
a
 , 2

b
 , 3

+
� ) = i

gp
2
v̄a1�µ⌫u

b
2 q

µ"+⌫ (q) ! igx2h1aqihq2bi

Spin-1/2:  dipole (higher-dim operator)
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General Three-point amplitude: bootstrapping

{b}

{a}

A(1a , 2
b
 , 3

+
� ) = i

gp
2
v̄a1�

µub
2 "

+
µ (q) ! ig x h1a2bi

x =
hq|p1|3]
mh3qi = �

p
2

m
(p1 · "+3 )

Spin-1/2: minimal

Spin-1/2:  dipole (higher-dim operator)

Adipole(1
a
 , 2

b
 , 3

+
� ) = i

gp
2
v̄a1�µ⌫u

b
2 q

µ"+⌫ (q) ! igx2h1aqihq2bi

For general spin, we have 2s+1 terms

How to connect it with Kerr BHs?

[Arkani-Hamed, Huang, Huang 2017]
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Worldline effective action vs. three-point

Expanding the curvature tensor              in terms of linear grav. pertubation
in the effective action

Interpreted as the interaction

General stress-tensor:

Kerr BH corresponds:

[Porto, Rothstein, 06’] 
[Porto, Rothstein, 08’] 
[Levi, Steinhoff, 15’ ]

R�µ⌫⇢
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Worldline effective action vs. three-point

To obtain the amplitude  
from the action:

Straight particle trajectory coupled to an on-shell graviton

The interaction:

Amplitude

For Kerr:

Same as before!
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Kerr preferred solution: Non-minimal

Matching with the previous amplitude

The wilson coefficients

(Same for the magnetic) 
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Kerr preferred solution: Non-minimal

Matching with the previous amplitude

The wilson coefficients

Classically suppressed unless g±n>0 O(~�n)scales with
In order to model general spinning body, non-minimal couplings 

depends on the spin via

(Expect for a Kerr BH)

(Same for the magnetic) 
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|ini |outi

S = 1 + i T

Kosower 
Maybee 
O’Connell  
(KMOC) formalism
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Pictorically…

Pµ
a +�Pµ

a

Pµ
a +�Pµ

a

~ ! 0Classical limit:

b

~ ! 0

The KMOC formalism:  
- quantum expectation values 

   - chosen initial quantum states  
   - classical observables when

||↵||2 ! 1

||↵||2 ! 1
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Kosower Maybee O’Connell (KMOC) formalism

Changing in an operator due to scattering

�O = hout|O|outi � hin|O|ini = hin|S†
OS|ini � hin|O|ini

S = 1 + i TUsing and optical theorem

�O = ihin|[O, T ]|ini+ hin|T †[O, T ]|ini
leading order next-to-leading order

We need to prepare well-defined the initial state states.

Alternatively, we can write (indifferent at LO)

[Kosower, Maybee,O’Connell 18]
[Maybee,O’Connell, Vines 19]

[de la Cruz, Maybee,O’Connell 20]
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Kosower Maybee O’Connell (KMOC) formalism

Incoming (spineless) state:

Particles well separated  
by impact-parameter

definite momenta state

Well-behaved classical exp. values

Wave functions
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Kosower Maybee O’Connell (KMOC) formalism

|ini =
X

a1,a2

Z

p1

Z

p2

 a(p1) b(p2)⇠a1⇠a2e
ib·p1/~|p1, p2; a1, a2i

Quantum  
spin-indices

Incoming (spinning) state:

Incoming (spineless) state:

definite momenta state
[Kosower, Maybee,O’Connell 18]

[Maybee,O’Connell, Vines 19]
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Kosower Maybee O’Connell (KMOC) formalism

|ini =
X

a1,a2

Z

p1

Z

p2

 a(p1) b(p2)⇠a1⇠a2e
ib·p1/~|p1, p2; a1, a2i

Quantum  
spin-indices

Incoming (spinning) state:

Incoming (spineless) state:

definite momenta state

Incoming (coherent) state:

definite spin-statenormalization

[Kosower, Maybee,O’Connell 18]

[Maybee,O’Connell, Vines 19]

[RA, Ochirov 21]
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Kosower Maybee O’Connell (KMOC) formalism

Focusing on the first term

For the momentum operator:

Result in full QFT, need to take the classical limit
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Kosower Maybee O’Connell (KMOC) formalism

Classical limit:

From the wave-functions

From the coherent-states

Avoid head-on or  
deep-inelastic collisions i.e.

Heuristically:
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KMOC using coherent states
After some manipulation  
Leading classical impulse:

in both, we need the eikonal coherent-spin amplitudes

Pµ
a +�Pµ

a

Pµ
a +�Pµ

a

⇥
Z

k
e�ik̄·bA(0)(k)

⇥
Z

k
e�ik̄·bA(0)(k)
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Coherent scattering amplitudes

Classical limit dominated by 

Four-point factorizes…

into three-points
Holomorphic Classical Limit [Cachazo, Guevara, 17’]

[Guevara, 17’]and kinematics
[Guevara, Ochirov, Vines 18’]

[Guevara, Ochirov, Vines 19’]
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Four-point coherent amplitudes (general case)
Using the three-points

Beyond t-pole and using some notation 

notation

[Vines 17’]

A(0)(k)

Multipole expansion of particle 1 and particle 2
modeled by Wilson coefficients!
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Impulse Observables from elastic scattering

Linear impulse

Angular impulse

*cl. means initial momenta           localized on their classical values pµa,b ma,bu
µ
a,b

Matches Vines 17’

After the Fourier transform to the impact parameter space…
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COM kinematics
General spinning bodies

LO potential from tree-level amplitude

Hamiltonian



57

COM kinematics
General spinning bodies

Kerr BH

Validated by integrating the EOM to obtain linear and angular impulses

LO potential from tree-level amplitude

Hamiltonian
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Conclusion and outlook

Coherent states provide rigorous framework to extract classical observables from quantum 
scattering amplitudes

Quantum amplitudes compatible with the Kerr Black hole is favored in the 
classical limit (also favored in spin-entanglement)

Hamiltonian also obtained which can be used beyond the scattering

Extended the KMOC formalism to general spinning bodies (described by wilson coeffs.)
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Thank you for your attention
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Covariant Spin

General spin wave-functions
"abpµ =

ihp(a|�µ|pb)]p
2m

uAa
p =

✓
|pai
|pa]

◆

Combined with the Pauli-Lubanski spin operator

One-particle matrix element:

Lorentz-covariant SU(2) spin operator:

The one-particle ang.mom 
representation (with hbar)

[Guevara, Ochirov, Vines 2019]
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Pauli-Lubanski
Combined with the Pauli-Lubanski spin operator

One-particle matrix element:

Inner products:

Generalization of 
Lorentz generator:



PM vs. PN expansion

5

( 1 + v2 + v4 + v6 + v8 + v10 + v12 + v14 + ... )G

( 1 + v2 + v4 + v6 + v8 + v10 + v12 + ... )G2

( 1 + v2 + v4 + v6 + v8 + v10 + ... )G3

( 1 + v2 + v4 + v6 + v8 + ... )G4

( 1 + v2 + v4 + v6 + ... )G5

1PM

2PM

3PM

4PM

5PM

1PN 2PN 3PN 4PN 5PN 5PN 6PN

v2 ⇠ GM

r
⌧ 1

Viral theorem

PN double expansion
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Eikonal phase

Fourier transform to the impact parameter

For Kerr

Transfer momenta becomes derivatives in impact parameter space


