Spinning Black Holes from Scattering Amplitudes

Rafael Aoude UCLouvain

Based on

Classical Observables from coherent-spin amplitudes

- Rafael Aoude and Alexander Ochirov
 - [hep-th/2108.01649]
 - *JHEP***10** (2021) 08

Outline

- Motivation
- Definite-spin amplitudes
- Coherent spin-states
- Coherent scattering amplitudes
- KMOC formalism
- Classical Observables / Hamiltonian from amplitudes
- Conclusion

Motivation

Burst in Gravitational Waves physics...

How can we use QFT methods to describe the binary inspiral problem?

LIGO/Virgo have accumulated on

BH - BH merger BH - NS merger NS - NS merger

Accurate description of Binary Inspiral dynamics

Motivation

Tradicional methods: EOB formalism [Buonanno Damour 99'] Gm $\sim v^2$ Post-Newtonian (PN): $1 \gg$ rQFT approach: Post-Minkowskian (PM): $1 \gg \frac{Gm}{r}$, $v^2 \sim 1$

[Figure from Antelis and Moreno, [1610.03567]

Motivation

Tradicional methods: EOB formalism QFT approach:

[Figure from Antelis and Moreno, [1610.03567]

From Amplitudes to Hamiltonians (or potentials)

Two-body bounded problem

Effective theory

V(p,q)

 $A_{\rm EFT}(p,q)$

[Cheung, Rothstein, Solon, 19']

Scattering problem

Full theory

 A_{full} $\hbar \to 0$

A(p,q)

Matching

5

Buonanno's slide at Gravitational scattering, inspiral and radiation 2021

Comparison between PMs and NR binding energies

•2-body non-spinning (local-in-time) Hamiltonian at 4PM order computed using scattering-amplitude methods.

(Cheung et al. 18, Bern et al. 19, Bern et al. 21)

•Crucial to push PM calculations at higher order, and resum them in EOB formalism.

(Damour 19, Antonelli, AB, Steinhoff, van de Meent & Vines 19, Khalil, AB, Steinhoff & Vines in prep 21)

Buonanno's slide at Gravitational scattering, inspiral and radiation 2021

Long Range Gravitational Scattering

$$V_G^{(1)}(\vec{r}) = -\int \frac{d^3q}{(2\pi)^3} \mathcal{M}(\vec{q}) e^{-i\vec{q}\cdot\vec{r}}$$

spin-0 x spin-0 scattering:

$$\frac{m_b}{m_a m_b} \left[1 + \frac{\vec{p}^2}{m_a m_b} \left(1 + \frac{3(m_a + m_b)^2}{2m_a m_b} \right) + \dots \right]$$
 (monopole)

Long Range Gravitational Scattering

$$V_G^{(1)}(\vec{r}) = -\int \frac{d^3q}{(2\pi)^3} \mathcal{M}(\vec{q}) e^{-i\vec{q}\cdot\vec{r}}$$

spin-0 x spin-0 scattering:

Spin-0 x spin-1/2 scattering:

[Holstein, Ross 08']

$$\frac{m_b}{m_a m_b} \left[1 + \frac{\vec{p}^2}{m_a m_b} \left(1 + \frac{3(m_a + m_b)^2}{2m_a m_b} \right) + \dots \right]$$
 (monopole)

$$\frac{Gm_a m_b}{r} \chi_f^{b\dagger} \chi_i^b + \frac{G}{r^3} \frac{3m_a + 4m_b}{2m_b} \vec{L} \cdot \vec{S_b}$$

(dipole/ spin-orbit)

Long Range Gravitational Scattering

$$V_G^{(1)}(\vec{r}) = -\int \frac{d^3q}{(2\pi)^3} \mathcal{M}(\vec{q}) e^{-i\vec{q}\cdot\vec{r}}$$

spin-0 x spin-0 scattering:

Spin-0 x spin-1/2 scattering:

How do we obtain all the multipoles? Scattering observables...

[Holstein, Ross 08']

$${}^{0}V_{G}^{(1)}(\vec{r}) = -\frac{Gm_{a}m_{b}}{r} \left[1 + \frac{\vec{p}^{2}}{m_{a}m_{b}} \left(1 + \frac{3(m_{a} + m_{b})^{2}}{2m_{a}m_{b}} \right) + \dots \right]$$
(monopole)
-0 x spin-1/2 scattering:
$${}^{\frac{1}{2}}V_{G}^{(1)}(\vec{r}) = -\frac{Gm_{a}m_{b}}{r} \chi_{f}^{b\dagger} \chi_{i}^{b} + \frac{G}{r^{3}} \frac{3m_{a} + 4m_{b}}{2m_{b}} \vec{L} \cdot \vec{S}_{b}$$
(dipole/spin-orbit)

13

Classical limit: $\hbar \rightarrow 0$

$$\Delta P^{\mu}_{\rm a} = -\hbar \frac{\partial}{\partial b_{\mu}} \int_{p_{\rm a}, p_{\rm b}} | e^{i \theta_{\rm b}} | e^{i$$

- The KMOC formalism:

- quantum expectation values - chosen initial quantum states - classical observables when $\hbar \rightarrow 0$

14

Scattering of two coherent-spin states mediated by a graviton

Factorizes into two three-points.

Classical limit: $\hbar \rightarrow 0$

 $\Delta P_{\mathrm{a}}^{\mu} = -\hbar \frac{\partial}{\partial b_{\mu}} \int_{p_{\mathrm{a}}, p_{\mathrm{b}}} |\psi_{\mathrm{a}}(p_{\mathrm{a}})|^{2} |\psi_{\mathrm{b}}(p_{\mathrm{b}})|^{2}$

Coherent amplitude as a coherent sum of definite-spin amplitudes

16

Definite-spin amplitudes

17

Why do we use the spinor-helicity formalism?

Off-shell Feynman Rules:

Four-momenta, polarization vectors/tensors and Dirac spinors

 ε^{μ} p_i^{μ}

spinor-helicity building blocks $\langle i^a j^b \rangle$ $[i^a j^b]$

Gauge-independent terms, uses particles' little-group

$$(p_i) \quad \varepsilon^{\mu\nu}(p_i) \quad \overline{v}^b(p_i) \quad u^a(p_i)$$

Gauge-dependent terms, uses the SO(1,3) Lorentz group

Difficult to go to higher-spins

U(1) massless SU(2) massive

Definite-spin amplitudes - Spinor-helicity formalism

Little-group: SU(2) labels a, b = 1, 2

Split the four-momenta into two Weyl spinors

$$p_{\alpha\dot{\beta}} = p_{\mu}\sigma^{\mu}_{\alpha\dot{\beta}} = \lambda^{a}_{p\alpha}\epsilon_{ab}\tilde{\lambda}^{b}_{p\dot{\beta}} \equiv |p^{a}\rangle_{\alpha}[p_{a}|_{\dot{\beta}}$$

Spin-1 Spin-1/2 $Aa \quad \left< |p^a \right> \right>$ $i\langle p^{(a}|\sigma_{u}|p^{b)}]$

[Arkani-Hamed, Huang, Huang 2017]

[Ochirov 2018]

19

Definite-spin amplitudes - Spinor-helicity formalism

Little-group: SU(2) labels a, b = 1, 2

Split the four-momenta into two Weyl spinors

$$p_{\alpha\dot{\beta}} = p_{\mu}\sigma^{\mu}_{\alpha\dot{\beta}} = \lambda^{a}_{p\alpha}\epsilon_{ab}\tilde{\lambda}^{b}_{p\dot{\beta}} \equiv |p^{a}\rangle_{\alpha}[p_{a}|_{\dot{\beta}}$$

Spin-1 Spin-1/2 $\langle |p^a \rangle \rangle$ $i\langle n^{(a}|\sigma_{...}|n^{b)}]$ Aa

[Arkani-Hamed, Huang, Huang 2017]

Similar for massless. Little group U(1)

$$k_{\alpha\dot{\beta}} = k_{\mu}\sigma^{\mu}_{\alpha\dot{\beta}} = |k\rangle_{\alpha}[k|_{\dot{\beta}},$$

Spin-1

$$\varepsilon_{p+}^{\mu} = \frac{1}{\sqrt{2}} \frac{\langle q | \sigma^{\mu} | p]}{\langle q \, p \rangle} \qquad \qquad \varepsilon_{p-}^{\mu} = -\frac{1}{\sqrt{2}} \frac{[q | \bar{\sigma}^{\mu} | p \rangle}{[q \, p]}$$

[Ochirov 2018]

Definite-spin amplitudes - Spinor-helicity formalism

Little-group: SU(2) labels a, b = 1, 2

Split the four-momenta into two Weyl spinors

$$p_{\alpha\dot{\beta}} = p_{\mu}\sigma^{\mu}_{\alpha\dot{\beta}} = \lambda^{a}_{p\alpha}\epsilon_{ab}\tilde{\lambda}^{b}_{p\dot{\beta}} \equiv |p^{a}\rangle_{\alpha}[p_{a}|_{\dot{\beta}}$$

Spin-1 Spin-1/2 $\varepsilon_{p\mu}^{ab} = \frac{i\langle p^{(a}|\sigma_{\mu}|p^{b})]}{\sqrt{2}}$ $u_p^{Aa} = \begin{pmatrix} |p^a\rangle \\ |p^a| \end{pmatrix}$

Example (spin-1/2): minimal coupling

$$\mathcal{A}(1^a_{\psi}, 2^b_{\psi}, 3^+_{\gamma}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \gamma^{\mu} u^b_2 \varepsilon^+_{\mu}(q) \quad \rightarrow \quad a$$

[Arkani-Hamed, Huang, Huang 2017]

Similar for massless. Little group U(1)

$$k_{\alpha\dot{\beta}} = k_{\mu}\sigma^{\mu}_{\alpha\dot{\beta}} = |k\rangle_{\alpha}[k|_{\dot{\beta}},$$

$$\varepsilon_{p+}^{\mu} = \frac{1}{\sqrt{2}} \frac{\langle q | \sigma^{\mu} | p]}{\langle q \, p \rangle} \qquad \qquad \varepsilon_{p-}^{\mu} = -\frac{1}{\sqrt{2}} \frac{[q | \bar{\sigma}^{\mu} | p \rangle}{[q \, p]}$$

 $ig x \langle 1^a 2^b \rangle$

$$x = \frac{\langle q|p_1|3]}{m\langle 3q\rangle} = -\frac{\sqrt{2}}{m}(p_1 \cdot \varepsilon_3)$$

[Ochirov 2018]

Two massive vectors couplings

$$\mathcal{A}_{\min\{a\}}^{\{b\}} = -\frac{\kappa}{2} \langle 2^b 1_a \rangle^{\odot 2} x^2$$
$$\mathcal{A}_{\min\{a\}}^{\{b\}} = -\frac{2\sqrt{2}s_\theta}{m_W v} \langle 2^b 1_a \rangle^{\odot 2} x$$

$$\{a\} = \{a_1, a_2\}$$

 $\odot 2$ symmetriza

Definite-spin scattering amplitudes

Using the particles' little-group: minimal coupling with a graviton

Best behavior in the high-energy limit

 $\mathcal{A}_{\min}^{(0)\{b\}}{}_{\{a\}}(p_2,s|p_2)$

*Non-minimal later!

*Similar for positive helicities

Spin-2s: 2s indices $\{a\} = \{a_1, a_2, \dots, a_{2s}\}$ $\odot 2s$ symmetrization

$$p_1, s; k, +) = -\frac{\kappa}{2} \frac{\langle 2^b 1_a \rangle^{\odot 2s}}{m^{2s-2}} x^2,$$

$$x = \frac{[k|p_1|r\rangle}{m\langle kr\rangle} = \frac{m[kr]}{\langle k|p_1|r]} = -\frac{\sqrt{2}}{m}(p_1 \cdot \varepsilon^+) = \left[\frac{\sqrt{2}}{m}(p_1 \cdot \varepsilon^+)\right]$$

Use definite-spin amplitudes to contract with coherent sates

Classical limit: $\hbar \rightarrow 0$

 $\Delta P_{\mathrm{a}}^{\mu} = -\hbar \frac{\partial}{\partial b_{\mu}} \int_{p_{\mathrm{a}}, p_{\mathrm{b}}} |\psi_{\mathrm{a}}(p_{\mathrm{a}})|^{2} |\psi_{\mathrm{b}}(p_{\mathrm{b}})|^{2}$

Coherent amplitude as a coherent sum of definite-spin amplitudes

24

Coherent states and Coherent scattering amplitudes

Why coherent-states?

Provide a rigorous framework for quantum-classical transitions

Schwinger's construction for spin-coherent sates

SU(2)

[Schwinger 1952]

Contract with the LG index of definite-spin amplitudes

We want to identify the classical spin from spin-coherent states

We employ the KMOC formalism with the aid of coherent-states

Massive little-group of definite-momenta amplitudes

[Arkani-Hamed, Huang, Huang 2017]

Classical coherent states

Quantum Harmonic Oscillator

$$H = \hbar\omega(a^{\dagger}a + 1/2)$$

Uncertainties: Δ

$$\Delta_n x = \sqrt{\frac{\hbar}{m\omega}(n+1/2)}$$

Coherent states: $\hat{a}|\alpha\rangle$

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$$
 —

Uncertainties:

$$\Delta_{\alpha} x = \sqrt{\frac{\hbar}{2m\omega}}$$

$$E_{\alpha} = \hbar\omega(||\alpha||^2 + 1/2)$$

For the energy to be finite

 $||\alpha||^2 \to \infty$ in the classical limit

$$E_n = \hbar \omega (n + 1/2)$$

$$0 \quad \infty \quad \text{classical limit}$$

$$\Delta_n p = \sqrt{m\omega\hbar(n+1/2)}$$

Finite errors in the classical limit !!

$$|\alpha\rangle = e^{-|\alpha|^2/2} e^{\alpha \hat{a}^{\dagger}} e^{-\alpha^* \hat{a}} |0\rangle$$

$$\Delta_{\alpha} p = \sqrt{\frac{m\omega\hbar}{2}}$$
 Vanish in the classical limi

Saturates the uncertainty principle Expectation values evolve classically

Spin-states

Schwinger's construction: general spin from zero-spin with 2 creation ops.

$$|s, s_z\rangle = \frac{(a_1^{\dagger})^{s+s_z} (a_2^{\dagger})^{s-s_z}}{\sqrt{(s+s_z)!(s-s_z)!}}|0\rangle, \qquad s_z = -s, -s+1, \dots, s-1, s.$$

Covariantize it:

$$[a^a, a^{\dagger}_b] = \delta^a_b, \qquad \qquad oldsymbol{S} = rac{\hbar}{2} a^{\dagger}_a oldsymbol{\sigma}^a$$

SU(2)-covariant s-spin states

$$|s, \{a\}\rangle \equiv |s, \{a_1 \dots a_{2s}\}\rangle = \frac{1}{\sqrt{(2s)!}} a_{a_1}^{\dagger} a_{a_2}^{\dagger} \dots a_{a_{2s}}^{\dagger} |0\rangle \equiv \frac{(a_a^{\dagger})^{\odot 2s}}{\sqrt{(2s)!}} |0\rangle.$$

[Schwinger, 1952]

along the z-axis

 $a^{a}{}_{b}a^{b} \Rightarrow [S^{i}, S^{j}] = i\hbar\epsilon^{ijk}S^{k}.$

Coherent Spin-states

Coherent spin-states defined as

$$|lpha
angle=e^{- ilde{lpha}_{a}lpha^{a}/2}e^{lpha^{a}a_{a}^{\dagger}}|0
angle$$

In terms of definite spin:

$$|\alpha\rangle = e^{-\tilde{\alpha}_{a}\alpha^{a}/2} \sum_{s=0,1/2}^{\infty} \sum_{a_{1},\dots,a_{2s}} \frac{\alpha^{a_{1}}\cdots\alpha^{a_{2s}}}{\sqrt{(2s)!}} |s, \{a_{1}\dots a_{2s}\}\rangle \equiv e^{-(\tilde{\alpha}\alpha)/2} \sum_{2s=0}^{\infty} \frac{(\alpha^{a})^{\odot 2s}}{\sqrt{(2s)!}} \cdot |s, \{a\}\rangle,$$

We want the coherent state in terms of definite spin... because we know the general definite-spin amplitudes

$$\Rightarrow \qquad a^a |\alpha\rangle = \alpha^a |\alpha\rangle,$$

Classical limit and crucial property

$$\langle S^i \rangle_{\alpha} = \frac{\hbar}{2} (\tilde{\alpha} \sigma^i \alpha)$$

Implies that classical spin is obtained when

$$\|\alpha\| \equiv \sqrt{\tilde{\alpha}_a \alpha^a}$$

$$\bar{s} = \sqrt{2|\boldsymbol{s}_{\mathrm{cl}}|/\hbar} = \mathcal{O}(\hbar^{-1/2}).$$

 $\int \int c_{p\mu,a} b = -\frac{1}{2m} \Big(\langle p_a | \sigma_\mu | p^b] + [p_a | \bar{\sigma}_\mu | p^b \rangle] \Big),$

Classical limit and crucial property

$$\langle S^i \rangle_{\alpha} = \frac{\hbar}{2} (\tilde{\alpha} \sigma^i \alpha)$$

Implies that classical spin is obtained when

$$\|\alpha\| \equiv \sqrt{\tilde{\alpha}_a \alpha^a}$$

$$\bar{\boldsymbol{s}} = \sqrt{2|\boldsymbol{s}_{\mathrm{cl}}|/\hbar} = \mathcal{O}(\hbar^{-1/2}).$$

Taking the classical limit (KMOC + coherent)

$$\langle S_p^{\mu} \rangle_{\alpha} = \frac{\hbar}{2} (\tilde{\alpha} \sigma_p^{\mu} \alpha) \xrightarrow{\hbar \to 0} \langle S_p^{\mu} S_p^{\nu} \rangle_{\alpha} = \langle S_p^{\mu} \rangle_{\alpha} \langle S_p^{\nu} \rangle_{\alpha} + \mathcal{O}$$

 $\int c_{p\mu,a}^{b} = -\frac{1}{2m} \Big(\langle p_a | \sigma_\mu | p^b] + [p_a | \bar{\sigma}_\mu | p^b \rangle] \Big),$

$$\langle S^i S^j \rangle_{\alpha} = \langle S^i \rangle_{\alpha} \langle S^j \rangle_{\alpha} + \frac{\hbar^2}{4} \left[\delta^{ij} (\tilde{\alpha}\alpha) + i\epsilon^{ijk} (\tilde{\alpha}\sigma^k) \right]$$

In this limit,

 $\langle S^i S^j \rangle_{\alpha}$ factorizes into $\langle S^i \rangle_{\alpha} \langle S^j \rangle_{\alpha}$

 $\mathcal{O}(\hbar) \xrightarrow[\hbar \to 0]{} s^{\mu}_{\mathrm{cl}} s^{
u}_{\mathrm{cl}},$ etc.

$[\alpha \alpha)].$

31

Dressing the Minimal coupling

Minimal 3-point

 $\mathcal{A}_{3}^{h} \equiv \mathcal{A}^{(0)}(p_{2},\beta|p_{1},\alpha;k,h) = e^{-(\|\alpha\|^{2}+\|\beta\|^{2})/2} \sum_{s_{1},s_{2}} \frac{1}{s_{1}}$

$$\mathcal{A}_{\min}^{(0)\{b\}}{}_{\{a\}}(p_2, s | p_1, s; k, +) = -\frac{\kappa}{2} \frac{\langle 2^b 1_a \rangle^{\odot 2s}}{m^{2s-2}} x^2,$$

$$\sum_{s_1, s_2} \frac{(\tilde{\beta}_b)^{\odot 2s_2}(\alpha^a)^{\odot 2s_1}}{\sqrt{(2s_1)!(2s_2)!}} \cdot \mathcal{A}^{(0)\{b\}}{}_{\{a\}}(p_2, s_2 | p_1, s_1; k, h),$$

Dressing the Minimal coupling

$$e^{-(\|\alpha\|^{2}+\|\beta\|^{2})/2} \sum_{2s=0}^{\infty} \frac{1}{(2s)!} (\tilde{\beta}_{b})^{\odot 2s} \cdot \frac{\langle 2^{b}1_{a} \rangle^{\odot 2s}}{m^{2s-2}} \cdot (\alpha^{a})^{\odot 2s}$$

$$e^{2x^{2}} e^{-(\|\alpha\|^{2}+\|\beta\|^{2})/2} \exp\left\{\frac{1}{m} \tilde{\beta}_{b} \langle 2^{b}1_{a} \rangle \alpha^{a}\right\}.$$

It exponentiates!

Boost to the same momenta

 $p_1^{\rho} = \exp\left|-\right|$

The exponent $\tilde{\beta}_b(p_2)\langle 2^b 1_a \rangle \alpha^a(p_1) = \tilde{\beta}_b(p_a)$

On-shell kinematics
$$p_{a} = (p_{1} + p_{2})/2 = p_{1} + k/2 = p_{2} - k/2 = p_{2} -$$

$$-\frac{ip_{\mathrm{a}}^{\mu}k^{\nu}}{2m^{2}}\Sigma_{\mu\nu}\Big]_{\sigma}^{\rho}p_{\mathrm{a}}^{\sigma},\qquad |1_{a}\rangle=|U_{a}^{\ b}(p_{1},p_{\mathrm{a}})\Big(|\mathrm{a}_{b}\rangle-\frac{1}{4m}|k|\mathrm{a}_{b}\rangle\Big)$$

(Similar for 2)

$$\left(\langle \mathbf{a}^{b}\mathbf{a}_{a}\rangle - \frac{1}{4m} \left([\mathbf{a}^{b}|k|\mathbf{a}_{a}\rangle + \langle \mathbf{a}^{b}|k|\mathbf{a}_{a}] \right) \right) \alpha^{a}(p_{\mathbf{a}}).$$

spinless term

spin generator

Boost to the same momenta

The exponent $\tilde{\beta}_b(p_2)\langle 2^b 1_a \rangle \alpha^a(p_1) = \tilde{\beta}_b(p_a)$

$$\mathcal{A}_{3,\min}^{\pm} = -\frac{\kappa}{2}m^2 x^{\pm 2} e^{-(\|\alpha\|^2 + \|\beta\|^2)/2 + \tilde{\beta}\alpha} \exp\left\{ \mp \frac{\hbar}{2m} \bar{k}_{\mu} (\tilde{\beta} \sigma_{p_{a}}^{\mu} \alpha) \right\}$$
overlap between coherent states

On-shell kinematics
$$p_{a} = (p_{1} + p_{2})/2 = p_{1} + k/2 = p_{2} - k/2 = p_{2} -$$

$$-\frac{ip_{\mathrm{a}}^{\mu}k^{\nu}}{2m^{2}}\Sigma_{\mu\nu}\bigg]_{\sigma}^{\rho}p_{\mathrm{a}}^{\sigma},\qquad |1_{a}\rangle=|U_{a}^{\ b}(p_{1},p_{\mathrm{a}})\bigg(|\mathrm{a}_{b}\rangle-\frac{1}{4m}|k|\mathrm{a}_{b}\rangle\bigg)$$

(Similar for 2)

$$\left(\langle \mathbf{a}^{b}\mathbf{a}_{a}\rangle - \frac{1}{4m} \left([\mathbf{a}^{b}|k|\mathbf{a}_{a}\rangle + \langle \mathbf{a}^{b}|k|\mathbf{a}_{a}] \right) \right) \alpha^{a}(p_{\mathbf{a}}).$$

spinless term

spin generator

Classical limit and classical three-points

Factored out the standard coherent-state over

In the classical limit, we take: $\tilde{\beta}_a = (\alpha^a)^*$

and we can identify the spin expectation value

$$\mathcal{A}_{3,\min}^{\pm}\big|_{\beta=\alpha} = -\frac{\kappa}{2}m^2 x^{\pm 2} \exp\left\{\mp \frac{1}{m}\bar{k}_{\mu}\langle S_{p_{\mathrm{a}}}^{\mu}\rangle_{\alpha}\right\} = -\frac{\kappa}{2}m^2 x^{\pm 2}e^{\mp\bar{k}\cdot a_{\mathrm{a}}}.$$

notation:
$$k^{\mu} = \hbar \bar{k}^{\mu}$$

$$a^{\mu}_{\rm a} \equiv \frac{1}{m_{\rm a}} \langle S^{\mu}_{p_{\rm a}} \rangle_{\alpha}$$

lap:
$$\langle \beta | \alpha \rangle = e^{-(\|\alpha\|^2 + \|\beta\|^2)/2 + \tilde{\beta}\alpha}$$

Exact cancellation between the spinless term and the normalization

Matches the Kerr BH 'amplitude' Can use directly to built four-points. Matches 1PM results

[see Guevara, Ochirov, Vines, 19']

General three-point amplitude and Kerr BHs

General Three-point amplitude: bootstrapping

Spin-1/2: minimal

$$\mathcal{A}(1^a_{\psi}, 2^b_{\psi}, 3^+_{\gamma}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \gamma^{\mu} u^b_2 \varepsilon^+_{\mu}(q)$$

Spin-1/2: dipole (higher-dim operator)

$$\mathcal{A}_{\text{dipole}}(1^a_{\psi}, 2^b_{\psi}, 3^+_{\gamma}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} (q^{\mu} \varepsilon^+_{\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu\nu} (q^{\mu} \varepsilon^+_{\mu\nu}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^$$

$$x = \frac{\langle q|p_1|3]}{m\langle 3q\rangle} = -\frac{\sqrt{2}}{m}(p_1)$$

 $\rightarrow ig x \langle 1^a 2^b \rangle$

$(q) \rightarrow igx^2 \langle 1^a q \rangle \langle q 2^b \rangle$

General Three-point amplitude: bootstrapping

Spin-1/2: minimal

$$\mathcal{A}(1^a_{\psi}, 2^b_{\psi}, 3^+_{\gamma}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \gamma^{\mu} u^b_2 \varepsilon^+_{\mu}(q)$$

Spin-1/2: dipole (higher-dim operator)

$$\mathcal{A}_{\text{dipole}}(1^a_{\psi}, 2^b_{\psi}, 3^+_{\gamma}) = i \frac{g}{\sqrt{2}} \bar{v}^a_1 \sigma_{\mu\nu} u^b_2 q^{\mu} \varepsilon^+_{\nu} q^{\mu} \varepsilon^+_{\mu} q^{$$

For general spin, we have 2s+1 terms

$$x = \frac{\langle q|p_1|3]}{m\langle 3q\rangle} = -\frac{\sqrt{2}}{m}(p_1)$$

 $\rightarrow ig x \langle 1^a 2^b \rangle$

 $(q) \rightarrow igx^2 \langle 1^a q \rangle \langle q 2^b \rangle$

[Arkani-Hamed, Huang, Huang 2017]

$$k,+) = -\frac{\kappa}{2} \sum_{n=0}^{2s} g_n^+ \frac{x^{n+2} \langle 2^b 1_a \rangle^{\odot(2s-n)}}{m^{2s+n-2}} \odot \left(\langle 2^b k \rangle \langle k 1_a \rangle \right)$$

How to connect it with Kerr BHs?

Worldline effective action vs. three-point

in the effective action

$$S_{\text{Int}} = -\frac{m}{2} \int d\tau \bigg[\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} C_{\text{ES}^{2n}}(a \cdot \partial)^{2n} u^{\mu} u^{\nu} h_{\mu\nu} + \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} C_{\text{BS}^{2n+1}}(a \cdot \partial)^{2n} u^{\mu} \epsilon^{\nu\rho\sigma\tau} u_{\rho} a_{\sigma} \partial_{\tau} h_{\mu\nu} \bigg]_{x=r(\tau)} + \mathcal{O}(h^2).$$

Interpreted as the interaction

$$S_{\rm Int} = -\frac{1}{2} \int d^4x \, h_{\mu\nu}(x) T_{\rm gen}^{\mu\nu}(x) = -\frac{1}{2} \int \frac{d^4\bar{k}}{(2\pi)^4} h_{\mu\nu}(\bar{k}) T_{\rm gen}^{\mu\nu}(\bar{k}) = -\frac{1}{2} \int \frac{d^4\bar{k}}{(2\pi)^4} h_{\mu\nu}(\bar{k}) T_{\mu\nu}(\bar{k}) = -\frac{1}{2} \int$$

 $T_{\rm gen}^{\mu\nu}(\bar{k}) = m$ General stress-tensor:

Kerr BH corresponds: $C_{\mathrm{ES}^{2n}} = -C_{\mathrm{BS}^{2n+1}} = 1$

[Porto, Rothstein, 06'] [Porto, Rothstein, 08'] [Levi, Steinhoff, 15']

Expanding the curvature tensor $R_{\lambda\mu\nu\rho}$ in terms of linear grav. pertubation $h_{\mu\nu}=g_{\mu\nu}-\eta_{\mu\nu}$

$$(-\bar{k}),$$

$$\int d\tau \, e^{i\bar{k}\cdot r(\tau)} \sum_{n=0}^{\infty} (\bar{k}\cdot a)^{2n} \left[\frac{C_{\mathrm{ES}^{2n}}}{(2n)!} u^{\mu} u^{\nu} + \frac{C_{\mathrm{BS}^{2n+1}}}{(2n+1)!} i u^{(\mu} \epsilon^{\nu)\rho\sigma\tau} u_{\rho} d\mu \right]$$

Worldline effective action vs. three-point

To obtain the amplitude from the action:

Straight particle trajectory coupled to an on-shell graviton

$$h^{\mu\nu}(\bar{k}) \rightarrow$$

The interaction:

$$S_{\rm Int} = \int \frac{d^4 \bar{k}}{(2\pi)^2} \delta(\bar{k})$$

Amplitude

 $\mathcal{A}_{\text{gen}}^{\pm}(p,k) = -\kappa(p)$

For Kerr: $C_{\mathrm{ES}^{2n}} = -C_{\mathrm{BS}^{2n+1}} = 1$

$$\mathcal{A}_{\min}^{\pm}(p,k) = -\kappa(p)$$

$$\kappa 2\pi \delta(\bar{k}^2) \varepsilon^{\mu}_k \varepsilon^{\nu}_k, \qquad r^{\mu}(\tau) = \frac{p^{\mu}}{m} \tau \qquad \Rightarrow \qquad u^{\mu}(\tau) = \frac{p^{\mu}}{m}.$$

 $(\bar{k}^2)\delta(2p\cdot\bar{k})\mathcal{A}_{\text{gen}}(p,k),$

$$(p \cdot \varepsilon_k^{\pm})^2 \bigg[\sum_{n=0}^{\infty} \frac{C_{\mathrm{ES}^{2n}}}{(2n)!} (\bar{k} \cdot a)^{2n} \pm \sum_{n=0}^{\infty} \frac{C_{\mathrm{BS}^{2n+1}}}{(2n+1)!} (\bar{k} \cdot a)^{2n+1} \bigg],$$

 $(p \cdot \varepsilon_k^{\pm})^2 [\cosh(\bar{k} \cdot a) \mp \sinh(\bar{k} \cdot a)] = -\frac{\kappa}{2} m^2 x^{\pm 2} e^{\mp \bar{k} \cdot a}.$ Same as before!

Kerr preferred solution: Non-minimal

$$\mathcal{A}_{\text{gen}}^{(0)\{b\}}{}_{\{a\}}(p_2, s | p_1, s; k, +) = -\frac{\kappa}{2} \sum_{n=0}^{2s} g_n^+ \frac{x^{n+2} \langle 2^b 1_a \rangle^{\odot(2s-n)}}{m^{2s+n-2}} \odot \left(\langle 2^b k \rangle \langle k 1_a \rangle \right)^{\odot n},$$

Matching with the previous amplitude

$$\mathcal{A}_{\rm gen}^{\pm}(p,k) = -\kappa (p \cdot \varepsilon_k^{\pm})^2 \bigg[\sum_{n=0}^{\infty} \frac{C_{{\rm ES}^{2n}}}{(2n)!} (\bar{k} \cdot a)^{2n} \pm \sum_{n=0}^{\infty} \frac{C_{{\rm BS}^{2n+1}}}{(2n+1)!} (\bar{k} \cdot a)^{2n+1} \bigg],$$

The wilson coefficients

$$C_{\mathrm{ES}^{2n}} = \sum_{r=0}^{2n} \frac{(2n)!(-2)^r g_r^{\pm}}{(2n-r)! \|\alpha\|^{2r}}$$

(Same for the magnetic)

Kerr preferred solution: Non-minimal

$$\mathcal{A}_{\text{gen}}^{(0)\{b\}}{}_{\{a\}}(p_2, s | p_1, s; k, +) = -\frac{\kappa}{2} \sum_{n=0}^{2s} g_n^+ \frac{x^{n+2} \langle 2^b 1_a \rangle^{\odot(2s-n)}}{m^{2s+n-2}} \odot \left(\langle 2^b k \rangle \langle k 1_a \rangle \right)^{\odot n},$$

Matching with the previous amplitude

$$\mathcal{A}_{\rm gen}^{\pm}(p,k) = -\kappa (p \cdot \varepsilon_k^{\pm})^2 \bigg[\sum_{n=0}^{\infty} \frac{C_{{\rm ES}^{2n}}}{(2n)!} (\bar{k} \cdot a)^{2n} \pm \sum_{n=0}^{\infty} \frac{C_{{\rm BS}^{2n+1}}}{(2n+1)!} (\bar{k} \cdot a)^{2n+1} \bigg],$$

The wilson coefficients

$$C_{\text{ES}^{2n}} = \sum_{r=0}^{2n} \frac{(2n)!(-2)^r g_r^{\pm}}{(2n-r)! \|\alpha\|^{2r}}$$
(Same for the magnetic)

Classically suppressed unless $g_{n>0}^{\pm}$ scales with $\mathcal{O}(\hbar^{-n})$ In order to model general spinning body, non-minimal couplings

(Expect for a Kerr BH) $g_0^{\pm} = 1$ $g_{n>0}^{\pm} = 0$

depends on the spin via

$$\|\alpha\|^2 = \frac{2m}{\hbar}\sqrt{-a^2}.$$

Classical limit: $\hbar \to 0$ $||\alpha||^2 \to \infty$

$$\Delta P^{\mu}_{\rm a} = -\hbar \frac{\partial}{\partial b_{\mu}} \int_{p_{\rm a}, p_{\rm b}} | e^{i \theta_{\rm b}} | e^{i$$

- The KMOC formalism:

- quantum expectation values - chosen initial quantum states - classical observables when $\hbar \to 0 ||\alpha||^2 \to \infty$

Changing in an operator due to scattering

$$\Delta O = \langle \text{out} | O | \text{out} \rangle - \langle \text{i}$$

Using S = 1 + iT and optical theorem $T^{\dagger} = T - iT^{\dagger}T$.

$$\Delta O = i \langle \operatorname{in} | [O, T] | \operatorname{in} \rangle + \langle \operatorname{in} | T^{\dagger} [O, T] | \operatorname{in} \rangle$$

leading order

Alternatively, we can write (indifferent at LO)

 $\Delta O = \langle \mathrm{in} | S^{\dagger} O S | \mathrm{in} \rangle - \langle \mathrm{in} | O | \mathrm{in} \rangle = \underbrace{i \langle \mathrm{in} | [O]}_{in} = \underbrace{i \langle \mathrm{in} | [O]}_{in}$

We need to prepare well-defined the initial state states.

[Kosower, Maybee,O'Connell 18] [Maybee,O'Connell, Vines 19] [de la Cruz, Maybee,O'Connell 20]

$\ln|O|\ln\rangle = \langle \ln|S^{\dagger}OS|\ln\rangle - \langle \ln|O|\ln\rangle$

next-to-leading order

$$\underbrace{DT - T^{\dagger}O]|\text{in}\rangle}_{\Delta_1 O} + \underbrace{\langle \text{in}|T^{\dagger}OT|\text{in}\rangle}_{\Delta_2 O},$$

Incoming (spineless) state: $|in\rangle = \int_{p_1} \int_{p_2} \psi_a(p_1) \psi_b(p_2) e^{ib \cdot p_1/\hbar} |p_1; p_2\rangle$

 $\int_{p} \equiv \int \frac{d^{4}p}{(2\pi)^{3}} \Theta(p^{0}) \delta(p^{2} - m^{2})$

$$\psi_{\xi}(p) = \frac{1}{m} \left[\frac{8\pi^2}{\xi K_1(2/\xi)} \right]^{1/2} \exp\left(-\frac{p \cdot u}{\xi m}\right)$$

Well-behaved classical exp. values

Incoming (spineless) state: $|in\rangle = \int_{p_1} \int_{p_2} \psi_a(p_1)\psi_b(p_2)e^{ib \cdot p_1/\hbar}|p_1;p_2\rangle$ [Kosower, Maybee,O'Connell 18]

[Maybee,O'Connell, Vines 19]

definite momenta state

Incoming (spinning) state: $|\text{in}\rangle = \sum_{a_1, a_2} \int_{p_1} \int_{p_2} \psi_{a}(p_1)\psi_{b}(p_2)\xi_{a_1}\xi_{a_2}e^{ib \cdot p_1/\hbar}|p_1, p_2; a_1, a_2\rangle$

Quantum spin-indices

Incoming (spineless) state: $|in\rangle = \int_{p_1} \int_{p_2} \psi_a(p_1)\psi_b(p_2)e^{ib \cdot p_1/\hbar}|p_1;p_2\rangle$ [Kosower, Maybee, O'Connell 18] [Kosower, Maybee,O'Connell 18]

Incoming (spinning) state: [Maybee,O'Connell, Vines 19]

$$|\mathrm{in}\rangle = \sum_{a_1,a_2} \int_{p_1} \int_{p_2}$$

Incoming (coherent) state:

[RA, Ochirov 21]

$$\begin{split} &\text{in} \rangle = \int_{p_1} \int_{p_2} \psi_{\mathbf{a}}(p_1) \psi_{\mathbf{b}}(p_2) e^{i b \cdot p_1 / \hbar} |p_1| \\ &= e^{-(||\alpha||^2 + ||\beta||^2)/2} \sum_{s_1, s_2} \int_{p_1, p_2} e^{i b \cdot p_1 / \hbar} \psi_{\mathbf{a}}(p_1) \\ &\text{normalization} \end{split}$$

definite momenta state

 $\psi_{\rm a}(p_1)\psi_{\rm b}(p_2)\xi_{a_1}\xi_{a_2}e^{ib\cdot p_1/\hbar}|p_1,p_2;a_1,a_2\rangle$

Quantum spin-indices

 $_{1}, lpha; p_{2}, eta
angle$

 $\psi_{\mathrm{b}}(p_2) \frac{(lpha^a)^{\odot 2s_1}(eta^b)^{\odot 2s_2}}{\sqrt{(2s_1)!(2s_2)!}} \cdot |p_1, s_1, \{a\}; p_2, s_2, \{b\}\rangle.$

definite spin-state

$$\Delta O = \langle \mathrm{in} | S^{\dagger} O S | \mathrm{in} \rangle - \langle \mathrm{in} | O | \mathrm{in} \rangle = \underbrace{i \langle \mathrm{in} | [OT - \Delta_1]}_{\Delta_1}$$

Focusing on the first term

$$\Delta_1 O = \int_{p'_1, p'_2, p_1, p_2} e^{-ik \cdot b/\hbar} \psi_{\mathbf{a}}^*(p'_1) \psi_{\mathbf{b}}^*(p'_2) \psi_{\mathbf{a}}(p_1) \psi_{\mathbf{b}}(p_2) d\mathbf{b}$$

For the momentum operator:

$$\Delta P_{\rm a}^{\mu} = \int_{p_1, p_2} \int_k e^{-ik \cdot b/\hbar} \psi_{\rm a}^*(p_1 + k) \psi_{\rm b}^*(p_2 - k) \psi_{\rm a}(p_1) \psi_{\rm b}(p_2) \\ \times \left\{ (p_1 + k)^{\mu} i \mathcal{A}(p_1 + k, \alpha; p_2 - k, \beta | p_1, \beta | p_1, \beta | p_2 - k, \beta | p_2 - k$$

Result in full QFT, need to take the classical limit

 $i\langle p_1', \alpha; p_2', \beta | [OT - T^{\dagger}O] | p_1, \alpha; p_2, \beta \rangle,$

 $\alpha; p_2, \beta) - p_1^{\mu} i \mathcal{A}^*(p_1, \alpha; p_2, \beta | p_1 + k, \alpha; p_2 - k, \beta) \bigg\}$

Classical limit:

From the wave-functions

$$\psi_{\xi}(p) = \frac{1}{m} \left[\frac{8\pi^2}{\xi K_1(2/\xi)} \right]^1$$

From the coherent-states

$$\|\alpha\|^2 = \frac{2}{\hbar} \sqrt{-s_{\rm cl}^2} \ \to \ \infty.$$

Avoid head-on or deep-inelastic collisions

 $|b| \equiv \sqrt{-b^2} \gg (\sigma_x)_{\mathrm{a,b}} \ge rac{\hbar}{2(\sigma_p)_{\mathrm{a,b}}} \propto rac{\hbar}{\sqrt{\xi}m_{\mathrm{a,b}}}.$

Heuristically:

$$\sigma_x, \sigma_p \propto \hbar^{1/2}, \qquad \xi \propto \hbar, \qquad \| \phi \|$$

$$^{'2}\exp\left(-rac{p\cdot u}{\xi m}
ight).$$

$$\xi \approx \frac{2\sigma_p^2}{3m^2} \to 0$$

 $\|lpha\| \propto \hbar^{-1/2}, \qquad \|k\| \propto \hbar, \qquad k \cdot u_{\mathrm{a,b}} \propto \hbar^{3/2}.$

KMOC using coherent states

After some manipulation Leading classical impulse:

$$\Delta P_{\mathrm{a}}^{\mu} = -\hbar \frac{\partial}{\partial b_{\mu}} \int_{p_{\mathrm{a}}, p_{\mathrm{b}}} |\psi_{\mathrm{a}}(p_{\mathrm{a}})|^{2} |\psi_{\mathrm{b}}(p_{\mathrm{b}})|^{2} \int_{k} e^{-i\bar{k}}$$

$$\Delta S_{\mathrm{a}}^{\mu} = \frac{\hbar}{m_{\mathrm{a}}} \int_{p_{\mathrm{a}}, p_{\mathrm{b}}} |\psi_{\mathrm{a}}(p_{\mathrm{a}})|^{2} |\psi_{\mathrm{b}}(p_{\mathrm{b}})|^{2} \left[p_{\mathrm{a}}^{\mu} a_{\mathrm{a}}^{\nu} \frac{\partial}{\partial b^{\nu}} \right]$$

in both, we need the eikonal coherent-spin amplitudes

Coherent scattering amplitudes

Classical limit dominated by $t = k^2 = \hbar^2 \bar{k}^2$

Holomorphic Classical Limit and kinematics

 $x_{\rm a}/x_{\rm b} = \gamma(1-v)$

$$x_{\rm b}/x_{\rm a} = \gamma(1+v).$$
 $\gamma = \frac{1}{\sqrt{1-v^2}} = \frac{p_{\rm a} \cdot p_{\rm b}}{m_{\rm a}m_{\rm b}}.$

[Cachazo, Guevara, 17'] [Guevara, 17'] [Guevara, Ochirov, Vines 18'] [Guevara, Ochirov, Vines 19']

$\mathcal{A}^{(0)}(p_1',lpha;p_2',eta|p_1,lpha;p_2,eta) = -rac{1}{\hbar^2ar{k}^2} \sum_{\pm} \mathcal{A}^{(0)}(p_1',lpha|p_1,lpha;k,\pm)$ $\times \mathcal{A}^{(0)}(p_2',\beta;k,\mp|p_2,\beta) + \mathcal{O}(1/\hbar),$

into three-points

Four-point coherent amplitudes (general case)

Beyond t-pole and using some notation [Vines 17']

$$\mathcal{A}^{(0)}(k) = -\frac{8\pi G m_{\rm a}^2 m_{\rm b}^2 \gamma^2}{\hbar^3 \bar{k}^2} \times \sum_{\pm} (1 \mp v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm a}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} + \mathcal{O}(m_1 + v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1} C_{{\rm b}n_2}}{n_1! n_2!} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_1} (\pm i \bar{k} \cdot [w \ast a_{\rm b}])^{n_2} (\pm i \bar{k} \cdot [w \ast a_{\rm b}]$$

$$w^{\mu
u} = rac{2p_{\mathrm{a}}^{[\mu}p_{\mathrm{b}}^{
u]}}{m_{\mathrm{a}}m_{\mathrm{b}}\gamma v},$$

 $[w*a]_{\lambda} = (*w)_{\lambda\mu}a^{\mu} = rac{\epsilon_{\lambda\mu
u
ho}p_{\mathrm{a}}^{\mu}p_{\mathrm{b}}^{
u}a^{
ho}}{m_{\mathrm{a}}m_{\mathrm{b}}\gamma v},$

$$(\mathbf{z}) = -rac{\kappa}{2}m_\mathrm{a}^2 x_\mathrm{a}^{\pm 2}\sum_{n=0}^\infty rac{C_\mathrm{an}}{n!} ig(\pm ar{k}\cdot a_\mathrm{a}ig)^n + \mathcal{O}(\hbar^0),$$

notation

$$a_{\mathrm{a}}^{\mu} \equiv -\frac{1}{n}$$

 $C_{2n} \equiv C$

$$C_{2n+1} \equiv C$$

Impulse Observables from elastic scattering

After the Fourier transform to the impact parameter space...

Linear impulse

$$\Delta P_{\mathrm{a}}^{\mu} = -\hbar \frac{\partial}{\partial b_{\mu}} \int_{p_{\mathrm{a}}, p_{\mathrm{b}}} |\psi_{\mathrm{a}}(p_{\mathrm{a}})|^{2} |\psi_{\mathrm{b}}(p_{\mathrm{b}})|^{2} \mathcal{A}_{4}^{(0)}(b)$$

Angular impulse

$$\Delta S_{\rm a}^{\mu} = \frac{\hbar}{m_{\rm a}} \int_{p_{\rm a}, p_{\rm b}} |\psi_{\rm a}(p_{\rm a})|^2 |\psi_{\rm b}(p_{\rm b})|^2 \left[p_{\rm a}^{\mu} a_{\rm a}^{\nu} \frac{\partial}{\partial b^{\nu}} - \epsilon^{\mu\nu\rho\sigma} p_{\rm a\nu} a_{\rm a\rho} \frac{\partial}{\partial a_{\rm a}^{\sigma}} \right] \mathcal{A}_4^{(0)}(b)$$

*cl. means initial momenta $p_{a,b}^{\mu}$ localized on their classical values $m_{a,b}u_{a,b}^{\mu}$

$$\Delta P_{\rm a}^{\mu} = Gm_{\rm a}m_{\rm b}\frac{\gamma}{v}\sum_{\pm}(1\mp v)^{2}\frac{[b\pm w*(a_{\rm a}+a_{\rm b})^{2}}{[b\pm w*(a_{\rm a}+a_{\rm b})^{2}]}$$

$$= -Gm_{\rm a}m_{\rm b}\frac{\gamma}{v}\sum_{\pm}\frac{(1\mp v)^2}{[b\pm w*(a_{\rm a}+a_{\rm b})]^2} \bigg[(a_{\rm a}\cdot[b\pm w*a_{\rm b}]) u_{\rm a}^{\mu} \\ \frac{1}{\gamma v} \Big((u_{\rm b}\cdot a_{\rm a}) [b\pm w*(a_{\rm a}+a_{\rm b})]^{\mu} - (a_{\rm a}\cdot[b\pm w*a_{\rm b}]) [u_{\rm b}-\gamma u_{\rm a}]^{\mu} \Big)$$

Matches Vines 17'

Hamiltonian

$$egin{aligned} H(m{r},m{p},m{S}_{
m a},m{S}_{
m b}) &= \sqrt{m{p}^2+m_{
m a}^2}+\sqrt{m{p}^2+m_{
m b}^2}+V(m{r},m{p},m{S}_{
m b}) \end{aligned}$$

General spinning bodies

$$V^{(1)}(\boldsymbol{r}, \boldsymbol{p}, \boldsymbol{S}_{\mathrm{a}}, \boldsymbol{S}_{\mathrm{b}}) = -rac{Gm_{\mathrm{a}}^2 m_{\mathrm{b}}^2 \gamma^2}{2E_{\mathrm{a}}E_{\mathrm{b}}} \sum_{\pm} (1 \mp v)^2 \sum_{n_1, n_2=0}^{\infty} rac{C_{\mathrm{a}n_1} C_{\mathrm{b}n_2}}{n_1! n_2!} \Big(\pm rac{1}{m_{\mathrm{a}}} [\hat{\boldsymbol{p}} imes \boldsymbol{S}_{\mathrm{a}}] \cdot
abla \boldsymbol{r} \Big)^{n_1} \Big(\pm rac{1}{m_{\mathrm{b}}} [\hat{\boldsymbol{p}} imes \boldsymbol{S}_{\mathrm{b}}] \cdot
abla \boldsymbol{r} \Big)^{n_2} rac{1}{|\boldsymbol{r}|}.$$

 ${oldsymbol{S}_{\mathrm{a}}, oldsymbol{S}_{\mathrm{b}}}).$ LO potential from tree-level amplitude

$$(\mathbf{p}, \mathbf{S}_{\mathrm{a}}, \mathbf{S}_{\mathrm{b}}) = -\frac{\hbar^3}{4E_{\mathrm{a}}E_{\mathrm{b}}} \int \frac{d^3 \bar{\mathbf{k}}}{(2\pi)^3} e^{i \bar{\mathbf{k}} \cdot \mathbf{r}} \mathcal{A}^{(0)}(\bar{\mathbf{k}}, \mathbf{p}, \mathbf{S}_{\mathrm{a}}, \mathbf{S}_{\mathrm{b}}),$$

COM kinematics

Hamiltonian

$$egin{aligned} H(m{r},m{p},m{S}_{
m a},m{S}_{
m b}) &= \sqrt{m{p}^2+m_{
m a}^2}+\sqrt{m{p}^2+m_{
m b}^2}+V(m{r},m{p},m{S}_{
m b}) \end{aligned}$$

General spinning bodies

$$V^{(1)}(\boldsymbol{r}, \boldsymbol{p}, \boldsymbol{S}_{\rm a}, \boldsymbol{S}_{\rm b}) = -\frac{Gm_{\rm a}^2m_{\rm b}^2\gamma^2}{2E_{\rm a}E_{\rm b}} \sum_{\pm} (1 \mp v)^2 \sum_{n_1, n_2=0}^{\infty} \frac{C_{{\rm a}n_1}C_{{\rm b}n_2}}{n_1!n_2!} \Big(\pm \frac{1}{m_{\rm a}} [\hat{\boldsymbol{p}} \times \boldsymbol{S}_{\rm a}] \cdot \nabla_{\boldsymbol{r}} \Big)^{n_1} \Big(\pm \frac{1}{m_{\rm b}} [\hat{\boldsymbol{p}} \times \boldsymbol{S}_{\rm b}] \cdot \nabla_{\boldsymbol{r}} \Big)^{n_2} \frac{1}{|\boldsymbol{r}|}.$$

Kerr BH
$$V^{(1)}(\boldsymbol{r}, \boldsymbol{p}, \boldsymbol{S}_{\mathrm{a}}, \boldsymbol{S}_{\mathrm{b}}) = -\frac{Gm_{\mathrm{a}}^2m_{\mathrm{b}}^2\gamma^2}{2E_{\mathrm{a}}E_{\mathrm{b}}}\sum_{\pm}\frac{(1\pm v)^2}{|\boldsymbol{r}\pm\hat{\boldsymbol{p}}\times(\boldsymbol{a}_{\mathrm{a}}+v)|^2}$$

Validated by integrating the EOM to obtain linear and angular impulses

 $\boldsymbol{S}_{\mathrm{a}}, \boldsymbol{S}_{\mathrm{b}}).$ LO potential from tree-level amplitude

$$(\mathbf{p}, \mathbf{S}_{\mathrm{a}}, \mathbf{S}_{\mathrm{b}}) = -\frac{\hbar^3}{4E_{\mathrm{a}}E_{\mathrm{b}}} \int \frac{d^3 \bar{\mathbf{k}}}{(2\pi)^3} e^{i \bar{\mathbf{k}} \cdot \mathbf{r}} \mathcal{A}^{(0)}(\bar{\mathbf{k}}, \mathbf{p}, \mathbf{S}_{\mathrm{a}}, \mathbf{S}_{\mathrm{b}}),$$

COM kinematics

Conclusion and outlook

- scattering amplitudes
- Quantum amplitudes compatible with the Kerr Black hole is favored in the classical limit (also favored in spin-entanglement)

Extended the KMOC formalism to general spinning bodies (described by wilson coeffs.)

Coherent states provide rigorous framework to extract classical observables from quantum

Covariant Spin

General spin wave-functions

$$\begin{array}{ll} \text{integer } s: \quad \varepsilon_{p\mu_1\dots\mu_s}^{\{a\}} = \varepsilon_{p\mu_1}^{(a_1a_2}\cdots\varepsilon_{p\mu_s}^{a_{2s-1}a_{2s})}, \\ \text{half-integer } s: \quad u_{p\mu_1\dots\mu_{\lfloor s\rfloor}}^{\{a\}} = u_p^{(a_1}\varepsilon_{p\mu_1}^{a_2a_3}\cdots\varepsilon_{p\mu_{\lfloor s\rfloor}}^{a_{2s-1}a_{2s})}. \end{array}$$

Combined with the Pauli-Lubanski spin operator $\Sigma_{\lambda} = \frac{1}{2m} \epsilon_{\lambda\mu\nu\rho} \Sigma^{\mu\nu} p^{\rho}$.

One-particle matrix element:

$$\begin{array}{ll} \text{integer } s: & \frac{1}{(-1)^s} \, \varepsilon_{p\{a\}} \cdot \Sigma^{\mu} \cdot \varepsilon_p^{\{b\}} = s \, \sigma_{p\mu,(a_1}{}^{(b_1} \delta_{a_2}^{b_2} \cdots \delta_{a_{2s}}^{b_{2s})}, \\ \text{half-integer } s: & \frac{1}{(-1)^{\lfloor s \rfloor} 2m} \, \bar{u}_{p\{a\}} \cdot \Sigma^{\mu} \cdot u_p^{\{b\}} = s \, \sigma_{p\mu,(a_1}{}^{(b_1} \delta_{a_2}^{b_2} \cdots \delta_{a_{2s}}^{b_{2s})}. \end{array}$$

Lorentz-covariant S

The one-particle ang.mom representation (with hbar)

$$(S_p^{\mu})_{s,\{a\}}{}^{s',\{b\}} = \hbar s \,\delta$$

[Guevara, Ochirov, Vines 2019]

$$u_p^{Aa} = \begin{pmatrix} |p^a\rangle \\ |p^a \rangle \end{pmatrix} \qquad \varepsilon_{p\mu}^{ab} = \frac{i\langle p^{(a)}|\sigma}{\sqrt{2}}$$

U(2) spin operator:
$$\sigma_{p\mu,a}{}^b = -\frac{1}{2m} \Big(\langle p_a | \sigma_\mu | p^b] + [p_a | \bar{\sigma}_\mu | p^b \rangle \Big)$$

 $\delta_{s}^{s'} \sigma_{p \ (a_{1}}^{\mu, \ (b_{1}} \delta_{a_{2}}^{b_{2}} \cdots \delta_{a_{2s}}^{b_{2s})} = \hbar s \, \delta_{s}^{s'} \, \sigma_{p \ a}^{\mu, \ b} \odot \left(\delta_{a}^{b} \right)^{\odot(2s-1)}$

Pauli-Lubanski

Combined with the Pauli-Lubansk

Inner products:
$$\varepsilon_{p\{a\}} \cdot \varepsilon_p^{\{b\}} = (-1)^s \left(\delta_a^b\right)^{\odot 2s}, \quad \overline{u}_{p\{a\}} \cdot u_p^{\{b\}} = (-1)^{\lfloor s \rfloor} 2m \left(\delta_a^b\right)^{\odot 2s}$$

$$\begin{array}{ll} \text{Generalization of} \\ \text{Lorentz generator:} \end{array} & \text{integer } s: \quad (\Sigma_s^{\mu\nu})^{\sigma_1\ldots\sigma_s}{}_{\tau_1\ldots\tau_s} = \Sigma^{\mu\nu,\sigma_1}{}_{\tau_1}\delta^{\sigma_2}_{\tau_2}\cdots\delta^{\sigma_s}_{\tau_s}+\ldots+\delta^{\sigma_1}_{\tau_1}\cdots\delta^{\sigma_{s-1}}_{\tau_{s-1}}\Sigma^{\mu\nu,\sigma_s}{}_{\tau_s}, \\ \Sigma_s^{\mu\nu,\sigma}{}_{\tau} = i[\eta^{\mu\sigma}\delta^{\nu}_{\tau}-\eta^{\nu\sigma}\delta^{\mu}_{\tau}] & \text{half-integer } s: \qquad \Sigma_s^{\mu\nu} = \frac{i}{4}[\gamma^{\mu},\gamma^{\nu}] + \Sigma_{\lfloor s \rfloor}^{\mu\nu}, \end{array}$$

One-particle matrix element:

$$\begin{array}{ll} \text{integer } s: & \frac{1}{(-1)^s} \, \varepsilon_{p\{a\}} \cdot \Sigma^{\mu} \cdot \varepsilon_p^{\{b\}} = s \, \sigma_{p\mu,(a_1}{}^{(b_1} \delta_{a_2}^{b_2} \cdots \delta_{a_{2s}}^{b_{2s})}, \\ \text{half-integer } s: & \frac{1}{(-1)^{\lfloor s \rfloor} 2m} \, \bar{u}_{p\{a\}} \cdot \Sigma^{\mu} \cdot u_p^{\{b\}} = s \, \sigma_{p\mu,(a_1}{}^{(b_1} \delta_{a_2}^{b_2} \cdots \delta_{a_{2s}}^{b_{2s})}. \end{array}$$

ki spin operator
$$\Sigma_{\lambda}=rac{1}{2m}\epsilon_{\lambda\mu\nu\rho}\Sigma^{\mu\nu}p^{
ho}.$$

PM vs. PN expansion

Viral theorem $v^2 \sim \frac{GM}{M} \ll 1$

PN double expansion

Eikonal phase

Fourier transform to the impact parameter

$$\mathcal{A}_{4}^{(0)}(b) = \int_{k} e^{-i\bar{k}\cdot b} \mathcal{A}^{(0)}(p_{\rm a} + k/2, \alpha; p_{\rm b} - k/2, \beta | p_{\rm a} - k/2, \alpha; p_{\rm b} + k/2, \beta)$$

Transfer momenta becomes derivatives in impact parameter space

$$\mathcal{A}_{4}^{(0)}(b) = -\frac{Gm_{\mathrm{a}}m_{\mathrm{b}}\gamma}{\hbar v} \sum_{\pm} (1\pm v)^{2} \sum_{n_{1},n_{2}=0}^{\infty} \frac{(\pm 1)^{n_{1}+n_{2}}}{n_{1}!n_{2}!} C_{\mathrm{a}n_{1}}C_{\mathrm{b}n_{2}} \times \left([w*a_{\mathrm{a}}]\cdot\partial_{b_{\perp}}\right)^{n_{1}} \left([w*a_{\mathrm{b}}]\cdot\partial_{b_{\perp}}\right)^{n_{2}} \log\sqrt{-b_{\perp}^{2}} + \mathcal{O}(\hbar^{-1/2})^{n_{2}} \left(\frac{1+v}{2}\right)^{n_{2}} \left(\frac{1+v}{2}\right)^{n_{2}}$$

For Kerr
$$C_{\mathrm{a}n}=C_{\mathrm{b}n}=(-1)^n$$

$$\mathcal{A}_4^{(0)}(b) = -rac{Gm_{
m a}m_{
m b}\gamma}{\hbar v} \sum_{\pm} (1\pm v)^2 \log \sqrt{-ig(b_{\perp}\mp w*(a_{
m a}+a_{
m b})ig)^2} + \mathcal{O}(\hbar^{-1/2}),$$

