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REMEMBER TO START RECORDING
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Program for today

Lesson 3
Confidence Intervals in nontrivial cases
Test of hypotheses

CLs
Significance

Truth and models
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Practicalities

Schedule: five days of lectures (Every Friday for the next five weeks)
2h morning lecture, virtual coffee break midway (09:30–11:45)
2h (probably less) afternoon exercise session, virtual coffee break midway (13:30–15:45)

Many interesting references, nice reading list for your career
Papers mostly cited in the topical slides
Some cool books cited here and there and in the appendix

Unless stated otherwise, figures belong to P. Vischia for inclusion in my upcoming textbook on
Statistics for HEP
(textbook to be published by Springer in 2021)

Or I forgot to put the reference, let me know if you spot any figure obviously lacking reference, so that
I can fix it
I cannot put the recordings publicly online as “massive online course”, so I will distribute them only to
registered participants, and have to ask you to not record yourself. I hope you understand.

Your feedback is crucial for improving these lectures (a feedback form will be provided at the
end of the lectures)!

You can also send me an email during the lectures: if it is something I can fix for the next day, I’ll
gladly do so!
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The Bureaucracy

This course provides 3 credits for the UCLouvain doctoral school (CDD Sciences)
If you need it recognized by another doctoral school, you have to ask to your school
Besides the certificate, I am available at supplying additional information (e.g. detailed schedule) or
activity (exam?)

People connecting online: certificates will be provided by checking connection logs
The only way I have to check if you connected to most lectures is to check the Zoom logs
Make sure you connect with a recognizable email address (or let me know which unrecognizable
address belongs to you)

This course contributes to the activities of the Excellence of Science (EOS) Be.h network,
https://be-h.be/
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The Interactive Element

I will pop up every now and then some questions

I will open a link, and you’ll be able to answer by going to www.menti.com and inserting a code
Totally anonymous (no access even for me to any ID information, not even the country): don’t
be afraid to give a wrong answer!

The purpose is making you think, not having 100% correct answers!

First question of the day is purely a logistics matter
Question time: ROOT

The direct links are accessible to me only: you’ll see in your screens the code in a second :)

The slides of each lecture will be available one minute after the end of the lecture
To encourage you to really try answering without looking at the answers
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General outline of the lectures

Lesson 1 - Fundaments
Bayesian and frequentist probability, theory of measure, correlation and causality, distributions

Lesson 2 - Point and Interval estimation
Maximum likelihood methods, confidence intervals, most probable values, credible intervals

Lesson 3 - Advanced interval estimation, test of hypotheses
Interval estimation near the physical boundary of a parameter
Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis

Lesson 4 - Commonly-used methods in particle physics
Unfolding, ABCD, ABC, MCMC, estimating efficiencies

Lesson 5 - Machine Learning
Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation
and Deep Learning
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Combination of measurements

Measure N times the same quantity: values xi and uncertainties σi. MLE and variance are:

x̂ML =

∑N
i=1

xi
σ2

i∑N
i=1

1
σ2

i

1
σ̂2

x
=

N∑
i=1

1
σ2

i

The MLE is obtained when each measurement is weighted by its own variance
This is because the variance is essentially an estimate of how much information lies in each
measurement

This works if the p.d.f. is known
Compare this method with an alternative one that does not assume knowledge of the p.d.f.
The second method will be the only one applicable to cases in which the p.d.f. is unknown
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Combination of measurements: alternative method 1/

Take a set of measures sampled from an unknown p.d.f. f (⃗x, θ⃗)

Compute the expected value and variance of a combination of such measurements described
by a function g(⃗x).

The expected value and variance of xi are elementary:

µ = E[x]Vij = E[xixj]− µiµj

If we want to extract the p.d.f. of g(⃗x), we would normally use the jacobian of the
transformation of f to g, but in this case we assumed f (⃗x) is unknown.
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Combination of measurements: alternative method 2/

We don’t know f , but we can still write an expansion in series for it:

g(⃗x) ≃ g(µ⃗) +
N∑

i=1

( ∂g
∂xi

)∣∣∣
x=µ

(xi − µi)

We can compute the expected value and variance of g by using the expansion:

E
[
g(⃗x)

]
≃ g(µ), (E[xi − µi] = 0)

σ2
g =

N∑
ij=1

[ ∂g
∂xi

∂g
∂xj

]∣∣∣⃗
x=µ⃗

Vij

The variances are propagated to g by means of their jacobian!

For a sum of measurements, y = g(⃗x) = x1 + x2, the variance of y is σ2
y = σ2

1 + σ2
2 + 2V12,

which is reduced to the sum of squares for independent measurements
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Combination of measurements: example 1/

Let’s compare the two ways of combining measurements, and check the role of the Fisher
Information
Let’s estimate the time taken for a laser light pulse to go from the Earth to the Moon and back
(in units of Earth-to-Moon-Time EMT)

On the Moon we have a receiver built by NASA. It’s very good but placed in unfavourable conditions,
yielding only a 2% precision on Earth-to-Moon
On Earth we have a receiver made out of scrap material. It is however placed in favourable
conditions, yielding a 5% precisionon Moon-to-Earth

NEM = 0.99 ± 0.02 EMT

NME = 1.05 ± 0.05 EMT

Evidently, the time to moon and back is NEME = NEM + NME, and we can apply Eq. 10: Do it!

Resulting estimate:
NEME = 0.99 + 1.05 ±

√
0.022 + 0.052 EMT = 2.05 ± 0.05 EMT, corresponding to a precision of

σNEME
NEME

∼ 2.4%.
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Combination of measurements: example 2/

We now however can argue that over the time it takes for light to go to the Moon and back any
environment condition would be roughly constant

How can we exploit this additional information? Question Time: Combining Estimates

We can use this additional information to note that the two estimates NEM and NME are
independent estimates of the same physical quantity NEME

2

Compute NEME and σ(NEME)based on this reasonment

We can therefore use Eq. 8 to compute NEME
2 and multiply the result by 2, obtaining

NEME = 2.00 ± 0.03 EMT

This estimate corresponds to a precision of only 1.5%!!!

The dramatic improvement in the precision of the measurement, from 2.4% to 1.5%, is a
direct consequence of having used additional information under the form of a relationship
(constraint) between the two available measurements.
A good physicist exploits as many constraints as possible in order to improve the precision of
a measurement

Sometimes the contraints are arbitrary or correspond to special cases
Is is very important to explicitly mention any constraint used to derive a measurement, when quoting
the result.
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What about asymmetric uncertainties?

Now suppose my receivers operate by taking data and performing a maximum likelihood fit to
estimate NEM and NME

Can I combine these two measurements with the two methods seen above?
NEM = 0.99 ± 0.03
NME = 1.10+0.05

−0.01

For example, NEMT = 2.09+0.06
−0.03

No!

Why?
The naïve quadrature of the two uncertainties is wrong!

The naïve combination is an expression of the Central Limit Theorem
The resulting combination is expected to be more symmetric than the measurements it originates
from
Symmetric uncertainties usually assume a Gaussian approximation of the likelihood
Asymmetric uncertainties? One would need a study of the non-linearity (large biases might be
introduced if ignoring this)

Intrinsic difference between averaging and most probable value
Averaging results in average value and variance that propagate linearly
Taking the mode (essentially what MLE does) does not add up linearly!

With asymmetric uncertainties from MLE fits, always combine the likelihoods (better in an
individual simultaneous fit)
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Confidence Intervals in nontrivial cases
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Confidence intervals!

Confidence interval for θ with probability content β
The range θa < θ < θb containing the true value θ0 with probability β
The physicists sometimes improperly say the uncertainty on the parameter θ

Given a p.d.f., the probability content is β = P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX

If θ is unknown (as is usually the case), use auxiliary variable Z = Z(X, θ) with p.d.f. g(Z)
independent of θ
If Z can be found, then the problem is to estimate interval P(θa ≤ θ0 ≤ θb) = β

Confidence interval
A method yielding an interval satisfying this property has coverage

Example: if f (X|θ) = N(µ, σ2) with unknown
µ, σ, choose Z = X−µ

σ

Find [c, d] in
β = P(c ≤ Z ≤ d) = Φ(d)− Φ(c) by finding
[Zα, Zα+β ]

Infinite interval choices: here central interval
α = 1−β

2

Plot from James, 2nd ed.
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Confidence intervals in many dimensions

Generalization to multidimensional θ is immediate
Probability statement concerns the whole θ, not the individual θi

Shape of the ellipsoid governed by the correlation coefficient (or the mutual information)
between the parameters
Arbitrariety in the choice of the interval is still present

Plot from James, 2nd ed.
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Coverage

Coverage probability of a method for calculating a confidence interval [θ1, θ2]:
P(θ1 ≤ θtrue ≤ θ2)

Fraction of times, over a set of (usually hypothetical) measurements, that the resulting interval covers
the true value of the parameter
Can sample with toys to study coverage

Coverage is not a property of a specific confidence interval!
Coverage is a property of the method you use to compute your confidence interval

It is calculated from the sampling distribution of your confidence intervals

The nominal coverage is the value of confidence level you have built your method around
(often 0.95)
When actually derive a set of intervals, the fraction of them that contain θtrue ideally would be
equal to the nominal coverage

You can build toy experiments in each of whose you sample N times for a known value of θtrue
You calculate the interval for each toy experiment
You count how many times the interval contains the true value

Nominal coverage (CL) and the actual coverage (Co) observed with toys should agree
If all the assumptions you used in computing the intervals are valid
If they don’t agree, it might be that Co < CL (undercoverage) or Co > CL (overcoverage)
It’s OK to strive to be conservative, but one might be unnecessarily lowering the precision of the
measurement
When Co! = CL you usually want at least a convergence to equality in some limit
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Coverage: the binomial case

For discrete distributions, the discreteness induces steps in the probability content of the
interval

Continuous case: P(a ≤ X ≤ b) =
∫ b

a f (X|θ)dX = β

Discrete case: P(a ≤ X ≤ b) =
∑b

a f (X|θ)dX ≤ β

Binomial: find interval (rlow, rhigh) such that
∑r=rhigh

r=rlow

( r
N

)
pr(1 − p)N−r ≤ 1 − α

Also,
( r

N

)
computationally taxing for large r and N

Approximations are found in order to deal with the problem

Gaussian approximation: p ± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests∑N
r=0

( r
N

)
pn(1 − plow)

N−n ≤ α/2∑N
r=0

( r
N

)
pr(1 − phigh)

N−r ≤ α/2
Single-tailed → use α/2 instead of α

Vischia Statistics for HEP January 21st to February 18th, 2022 18 / 91



Coverage: the binomial case

Gaussian approximation: p ± Z1−α/2

√
p(1−p)

N

Clopper Pearson: invert two single-tailed binomial tests, designed to overcover∑N
r=0

( r
N

)
pn(1 − plow)

N−n ≤ α/2∑N
r=0

( r
N

)
pr(1 − phigh)

N−r ≤ α/2
Single-tailed → use α/2 instead of α

This afternoon we will study the coverage of intervals from a gaussian approximation and
from the Clopper-Pearson method

We will also study the coverage of intervals obtained from crossings with ∆lnL

Question time: Coverage
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Coverage, N = 20
Gaussian approximation bad for small sample sizes
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Coverage, N = 1000
Gaussian approximation bad near p = 0 and p = 1 even for large sample sizes
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Confidence belts: the Neyman construction

Unique solutions to finding confidence intervals are infinite
Central intervals, lower limits, upper limits, etc

Let’s suppose we have chosen a way

Build horizontally: for each (hypothetical) value of θ, determine t1(θ), t2(θ) such that∫ t2
t1

P(t|θ)dt = β

Read vertically: from the observed value t0, determine [θL, θU ] by intersection
The resulting interval might be disconnected in severely non-linear cases

Probability content statements to be seen in a frequentist way
Repeating many times the experiment, the fraction of [θL, θ

U ] containing θ0 is β

Plot from James, 2nd ed.
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Upper limits for non-negative parameters
Gaussian measurement ( variance 1) of a non-negative parameter µ ∼ 0 (physical bound)
Individual prescriptions are self-consistent

90% central limit (solid lines)
90% upper limit (single dashed line)

Other choices are problematic (flip-flopping): never choose after seeing the data!
“quote upper limit if xobs is less than 3σ from zero, and central limit above” (shaded)
Coverage not guaranteed anymore (see e.g. µ = 2.5)

Unphysical values and empty intervals: choose 90% central interval, measure xobs = −2.0
Don’t extrapolate to an unphysical interval for the true value of µ!
The interval is simply empty, i.e. does not contain any allowed value of µ
The method still has coverage (90% of other hypothetical intervals would cover the true value)

Plot from James, 2nd ed.
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Unphysical values: Feldman-Cousins

The Neyman construction results in guaranteed coverage, but choice still free on how to fill
probability content

Different ordering principles are possible (e.g. central/upper/lower limits)

Unified approach for determining interval for µ = µ0: the likelihood ratio ordering principle

Include in order by largest ℓ(x) =
P(x|µ0)
P(x|µ̂)

µ̂ value of µ which maximizes P(x|µ) within the physical region
µ̂ remains equal to zero for µ < 1.65, yielding deviation w.r.t. central intervals

Minimizes Type II error (likelihood
ratio for simple test is the most
powerful test)

Solves the problem of empty
intervals

Avoids flip-flopping in choosing an
ordering prescription

Plot from James, 2nd ed.
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Feldman-Cousins in HEP
The most typical HEP application of F-C is confidence belts for the mean of a Poisson
distribution
Discreteness of the problem affects coverage
When performing the Neyman construction, will add discrete elements of probability
The exact probability content won’t be achieved, must accept overcoverage∫ x2

x1

f (x|θ)dx = β →
U∑

i=L

P(xi|θ) ≥ β

Overcoverage larger for small values of µ (but less than other methods)

Plot from James, 2nd ed.
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Bayesian intervals

Often numerically identical to frequentist confidence intervals
Particularly in the large sample limit

Interpretation is different: credible intervals

Posterior density summarizes the complete knowledge about θ

π(θ|X) =

∏N
i=1 f (Xi, θ)π(θ)∫ ∏N
i=1 f (Xi, θ)π(θ)dθ

Sometimes you may want to summarize the prior with estimates of its location and of its
dispersion

For the location, you can use mode or median (see tomorrow’s lecture)

An interval [θL, θU ] with content β defined by
∫ θU

θL
π(θ|X)dθ = β

Bayesian statement! P(θL < θ < θU) = β
Again, non unique

Issues with empty intervals don’t arise, though, because the prior takes care of defining the
physical region in a natural way!

But this implies that central intervals cannot be seamlessly converted into upper limits
Need the notion of shortest interval
Issue of the metric (present in frequentist statistic) solved because here the preferred metric is
defined by the prior
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Bayesian intervals and coverage
What about computing the frequentist coverage for Bayesian intervals?
Question time: Coverage Bayes

Even if you are not interested in frequentist methods, it can be useful! Certainly it doesn’t hurt
Knowing the sampling properties of a method can always give insights or work as a
cross-check of the method
Particularly given that typically Bayesian and frequentist answers tend to converge in the
high-N limit

Except for hypothesis tests, we’ll find out later today

Image from the Statistical Statistics Memes Facebook Page
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Test of Hypotheses
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What is an hypothesis...

Is our hypothesis compatible with the experimental data? By how much?
Hypothesis: a complete rule that defines probabilities for data.

An hypothesis is simple if it is completely specified (or if each of its parameters is fixed to a single
value)
An hypothesis is complex if it consists in fact in a family of hypotheses parameterized by one or more
parameters

“Classical” hypothesis testing is based on frequentist statistics
An hypothesis—as we do for a parameter θ⃗true—is either true or false. We might improperly say that
P(H) can only be either 0 or 1
The concept of probability is defined only for a set of data x⃗

We take into account probabilities for data, P(⃗x|H)

For a fixed hypotesis, often we write P(⃗x; H), skipping over the fact that it is a conditional probability
The size of the vector x⃗ can be large or just 1, and the data can be either continuos or discrete.
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...and how do we test it?

The hypothesis can depend on a parameter
Technically, it consists in a family of hypotheses scanned by the parameter
We use the parameter as a proxy for the hypothesis, P(⃗x; θ) := P(⃗x; H(θ).

We are working in frequentist statistics, so there is no P(H) enabling conversion from P(⃗x|θ)
to P(θ|⃗x).
Statistical test

A statistical test is a proposition concerning the compatibility of H with the available data.
A binary test has only two possible outcomes: either accept or reject the hypothesis
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Testing an hypothesis H0...
H0 is normally the hypothesis that we assume true in absence of further evidence
Let X be a function of the observations (called “test statistic”)
Let W be the space of all possible values of X, and divide it into

A critical region w: observations X falling into w are regarded as suggesting that H0 is NOT true
A region of acceptance W − w

The size of the critical region is adjusted to obtain a desired level of significance α
Also called size of the test
P(X ∈ w|H0) = α
α is the (hopefully small) probability of rejecting H0 when H0 is actually true

Once W is defined, given an observed value x⃗obs in the space of data, we define the test by
saying that we reject the hypothesis H0 if x⃗obs ∈ W.
If x⃗obs is inside the critical region, then H0 is rejected; in the other case, H0 is accepted

In this context, accepting H0 does not mean demonstrating its truth, but simply not rejecting it
Choosing a small α is equivalent to giving a priori preference to H0!!!
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...while introducing some spice in it
The definition of W depends only on its area α, without any other condition

Any other area of area α can be defined as critical region, independently on how it is placed with
respect to x⃗obs
In particular, for an infinite number of choices of W , the point x⃗obs—which beforehand was situated
outside of W—is now included inside the critical region
In this condition, the result of the test switches from accept H0 to reject H0

To remove or at least reduce this arbitrariness in the choice of W, we introduce the alternative
hypothesis, H1
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Choose reasonable regions
Choose a critical region so that P(⃗x ∈ W|H0) is α under H0, and as large as possible under H1

Choice of regions is somehow arbitrary, and many choices are not more justified than others
In Physics, after ruling out an hypothesis we aim at substituting it with one which explains
better the data

Often H1 becomes the new H0, e.g. from (H0:noHiggs, H1 =Higgs) to (H1:Higgs ,
H1:otherNewPhysics)
We can use our expectations about reasonable alternative hypotheses to design our test to exlude H0
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Could not find source for the meme
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A small example

H0: pp → pp elastic scattering

H1: pp → ppπ0

Compute the missing mass M (as
total rest energy of unseen
particles)

Under H0, M = 0

Under H1, M = 135 MeV

Choose H0 Choose H1
H0 is true 1 − α α (Type I error)
H1 is true β (Type II error) 1 − β (power)

Plot from James, 2nd ed.
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A longer example

Student’s t distribution

Test the mean!

Will not run it this afternoon, you
can check it at home hyptest.ipynb

Vischia Statistics for HEP January 21st to February 18th, 2022 35 / 91

https://github.com/vischia/intensiveCourse/master/hyptest.ipynb


Basic hypothesis testing – 4
The usefulness of the test depends on how well it discriminates against the alternative
hypothesis
The measure of usefulness is the power of the test

P(X ∈ w|H1) = 1 − β
Power (1 − β) is the probabiliity of X falling into the critical region if H1 is true
P(X ∈ W − w|H1) = β
β is the probability that X will fall into the acceptance region if H1 is true

NOTE: some authors use β where we use 1 − β. Pay attention, and live with it.
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Comparing tests

For parametric (families of) hypotheses, the power depends on the parameter
H0 : θ = θ0
H1 : θ = θ1
Power: p(θ1) = 1 − β

Generalize for all possible alternative hypotheses: p(θ) = 1 − β(θ)
For the null, p(θ0) = 1 − β(θ0) = α

Plot from James, 2nd ed.
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Properties of tests
More powerful test: a test which at least as powerful as any other test for a given θ
Uniformly more powerful test: a test which is the more powerful test for any value of θ

A less powerful test might be preferrable if more robust than the UMP1

If we increase the number of observations, it makes sense to require consistency
The more observations we add, the more the test distinguishes between the two hypotheses
Power function tends to a step function for N → ∞

Biased test: argmin(p(θ)) ̸= θ0

More likely to accept H0 when it is false than
when it is true

Big no-no for θ0 vs θ1]

Still useful (larger power) for θ0 vs θ2

Plot from James, 2nd ed.
1Robust: a test with low sensitivity to unimportant changes of the null hypothesis

Vischia Statistics for HEP January 21st to February 18th, 2022 38 / 91



Play with Type I (α) and Type II (β) errors freely

Image from the Statistical Statistics Memes Facebook Page
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Play with Type I (α) and Type II (β) errors freely

Comparing only based on the power curve
is asymmetric w.r.t. α
For each value of α = p(θ0), compute
β = p(θ1), and draw the curve

Unbiased tests fall under the line 1 − β = α
Curves closer to the axes are better tests

Ultimately, though, choose based on the
cost function of a wrong decision

Bayesian decision theory

Plot from James, 2nd ed.
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Find the most powerful test

Testing simple hypotheses H0 vs H1, find the best critical region

Maximize power curve 1 − β =
∫

wα
f (X|θ1)dX, given α =

∫
wα

f (X|θ0)dX

The best critical region wα consists in the region satisfying the likelihood ratio equation

ℓ(X, θ0, θ1) :=
f (X|θ1)

f (X|θ0)
≥ cα

The criterion, called Neyman-Pearson test, is therefore
If ℓ(X, θ0, θ1) > cα then choose H1
If ℓ(X, θ0, θ1) ≤ cα then choose H0

The likelihood ratio must be calculable for any X
The hypotheses must therefore be completely specified simple hypotheses
For complex hypotheses, ℓ is not necessarily optimal
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Demonstrating the Neyman-Pearson lemma

We want to prove that ℓ(X, θ0, θ1) :=
f (X|θ1)
f (X|θ0)

≥ cα gives the best acceptance region

Image from Evan Vucci, Shutterstock, meme is mine
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Demonstrating the Neyman-Pearson lemma
We want to prove that ℓ(X, θ0, θ1) :=

f (X|θ1)
f (X|θ0)

≥ cα gives the best region
Critical region from NP (red contour), demonstrate that any other region (blue contour) has less power
Take out a wedge region and add it e.g. to the other side
Regions must have equal area under H0 (tests with same size)
Being on different sides of the red contour, under H1 data is less likely in the added region than in the
removed one
Less probability to reject the null → test based on the new contour is less powerful!
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Intermezzo: the Wilks theorem

The likelihood ratio is commonly used
As any test statistic in the market, in order to select critical regions based on confidence
levels it is necessary to know its distribution

Run toys to find its distribution (very expensive if you want to model extreme tails)
Find some asymptotic condition under which the likelihood ratio assumes a simple known form

Wilks theorem: when the data sample size tends to ∞, the likelihood ratio tends to
χ2(N − N0)

Exercise yesterday afternoon
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Verifying the Wilks theorem: N=2

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=10

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Verifying the Wilks theorem: N=100

Log−likelihood ratio

Sampled values of log−likelihood ratio values
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Bayesian model selection — two models...

The parameter θ might be predicted by two models M0 and M1: P(θ|⃗x,M) =
P(⃗x|θ,M)P(θ|M)

P(⃗x|M)

A step further than yesterday in writing down the Bayes theorem: now multiple conditioning
P(⃗x|M) =

∫
P(⃗x|θ, M)P(θ|M)dθ: Bayesian evidence or model likelihood

Posterior for M0: P(M0 |⃗x) = P(⃗x|M0)π(M0)
P(⃗x)

Posterior for M1: P(M1 |⃗x) = P(⃗x|M1)π(M1)
P(⃗x)

The odds indicate relative preference of one model over the other

Posterior odds: P(M0 |⃗x)
P(M1 |⃗x)

=
P(⃗x|M0)π(M0)
P(⃗x|M1)π(M1)

Posterior odds = Bayes Factor × prior odds

B01 :=
P(⃗x|M0)
P(⃗x|M1)

Various slightly different scales for the Bayes Factor
Interesting: deciban, unit supposedly theorized by Turing (according to IJ Good) as the smallest
change of evidence human mind can discern

Jeffreys
Kass and Raftery Trotta

Images from Wikipedia and from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — ...with many models

Image from Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayesian model selection — Discourage nonpredictive models

The Bayes Factor also takes care of penalizing excessive model complexity

Highly predictive models are rewarded, broadly-non-null priors are penalized

From Roberto Trotta, Chair Lemaitre Lectures 2018
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Bayes vs p-values: the Jeffreys-Lindley paradox
Data X (N data sampled from f (x|θ))<

H0:θ = θ0. Prior: π0 (non-zero for point mass, Dirac’s δ, counting measure)
H1: θ! = θ0. Prior: π1 = 1 − π0 (usual Lebesgue measure)

Conditional on H1 being true:
Prior probability density g(θ)
If f (x|θ) ∼ Gaus(θ, σ2), then the sample mean X̄ ∼ Gaus(θ, σtot = σ/N)

Likelihood ratio of H0 to best fit for H1: λ =
L(θ0)

L(θ̂)
= exp(−Z2/2) ∝ σtot

τ
B01; Z := θ̂−θ0

σtot

λ disfavours the null hypothesis for large significances (small p-values), independent of sample size
B01 includes σtot/τ (Ockham Factor, penalizing H1 for imprecise determination of θ), sample
dependent!

For arbitrarily large Z (small p-values), λ disfavours H0, while there is always a N for which B01
favours H0 over H1

Image from Cousins, doi:10.1007/s11229-014-0525-z
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2016: breaking announcement by the American Statistical Association

doi:10.1080/00031305.2016.1154108
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Unprecedented policy statement
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I have an excess, do I?

Plot from https://cds.cern.ch/record/2230893
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Look only at the null hypothesis!

Probability of obtaining a fluctuation with test statistic qobs or larger, under the null hypothesis
H0

Distribution of test statistic under H0 either with toys or asymptotic approximation (if Nobs is large, then
q ∼ χ2(1))
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P(Q>=6) = 0.005

Plots from Vischia—in preparation with Springer
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And the sigmas?

Just an artifact to convert p-values to easy-to-remember O(1) numbers
1σ: p = 0.159
3σ: p = 0.00135
5σ: p = 0.000000285

No approximation involved, just a change of units to gaussian variances: one-sided tail area
1

2π

∫∞
x e−

t2
2 dt = p

p-value must be flat under the null, or interpretation is invalidated

HEP: usually interested in one-sided deviations (upper fluctuations)
Most other disciplines interested in two-sided effects (e.g. 2σ: p2sided = 0.05)

Left: ATLAS Collaboration, Right: https://saylordotorg.github.io/
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Back to ASA: the six statements

1 P-values can indicate how incompatible the data are with a specified statistical model.
2 P-values do not measure the probability that the studied hypothesis is true, or the probability

that the data were produced by random chance alone.
3 Scientific conclusions and business or policy decisions should not be based only on whether

a p-value passes a specific threshold.
The widespread use of “statistical significance” (generally interpreted as p ≤ 0.05) as a license for
making a claim of a scientific finding (or implied truth) leads to considerable distortion of the scientific
process.

4 Proper inference requires full reporting and transparency
5 A p-value, or statistical significance, does not measure the size of an effect or the importance

of a result.
6 By itself, a p-value does not provide a good measure of evidence regarding a model or

hypothesis.
...supplement or even replace p-values with other approaches. These include methods that
emphasize estimation over testing, such as confidence, credibility, or prediction intervals; Bayesian
methods; alternative measures of evidence, such as likelihood ratios or Bayes Factors; and other
approaches such as decision-theoretic modeling and false discovery rates.

doi:10.1080/00031305.2016.1154108
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Responses to ASA statement: redefine pvalue threshold or not use it at all
Benjamin et al. (doi:/10.31234/osf.io/mky9j) proposed to switch to lower threshold (p < 0.005)

and not use it as criterion for publication

Wagenmakers (doi:/10.3758/BF03194105) proposed to switch to Bayesian criteria

Gelman (statmodeling.stat.columbia.edu) proposes to not limit ourselves to a single summary
statistic or threshold

“I put much of the blame on statistical education, for two reasons”
“First [...] we typically focus on the choice of sample size, not on the importance of valid and reliable
measurements.”
“Second, it seems to me that statistics is often sold as a sort of alchemy that transmutes randomness
into certainty, an uncertainty laundering [...] Just try publishing a result with p = 0.20”
“In summary, I agree with most of the ASA’s statement on p-values but I feel that the problems are
deeper, and that the solution is not to reform p-values or to replace them with some other statistical
summary or threshold, but rather to move toward a greater acceptance of uncertainty and embracing
of variation.”
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Reproducibility crysis: is it a thing?

It seems so: The Bayer Study (https://www.nature.com/articles/nrd3545)

“Irreproducibility was high both when Bayer scientists applied the same experimental procedures as
the original researchers and when they adapted their approaches to internal needs (for example, by
using different cell lines).”
“High-impact journals did not seem to publish more robust claims, and, surprisingly, the confirmation
of any given finding by another academic group did not improve data reliability.”
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The funny bit

Ioannidis (doi:/10.1371/journal.pmed.0020124) identifies several causes mostly linked to
scientists’ own biases

Investigator prejudice, incorrect statistical methods, competition in hot fields, publishing bias

Then Ioannidis got accused of the same issues, just last month
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Be on the safe side with your Higgs bosons

Goal since LEP: seamless transition between exclusion, observation, discovery (historically
for the Higgs)

Exclude Higgs as strongly as possible in its absence (in a region where we would be sensitive to its
presence)
Confirm its existence as strongly as possible in its presence (in a region where we are sensitive to its
presence)
Maintain Type I and Type II errors below specified (small) levels
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Exclusion regions

Composite hypothesis H(θ) (monodimensional)
Our tests work for simple hypotheses → make test of simple hypothesis H(θ = θi), scanning
values θi of θ

E.g., for the Higgs boson θ can be the cross section for a given mass

Calculate p-value for each test

Assume our target test size α = 0.05
Each hypothesis with pθ < α can be excluded at the 1 − α = 95% confidence level (CL)

The set of excluded hypotheses constitutes an exclusion region
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What’s the difference between these two statements?

Acceptance region: set of values of the test statistic for which we don’t reject H0 at
significance level α

100(1 − α)% Confidence interval: set of values of the parameter θ for which we don’t reject
H0 (if H0 is assumed true)
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Duality between hypothesis tests and confidence intervals

Meme generated with https://imgflip.com/memegenerator
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Beyond coverage: the CLs method

Identify observables, and a suitable test statistic Q
Define rules for exclusion/discovery, i.e. ranges of values of Q leading to various conclusions

Specify the significance of the statement, in form of confidence level (CL)

Confidence limit: value of a parameter (mass, xsec) excluded at a given confidence level CL
A confidence limit is an upper(lower) limit if the exclusion confidence is greater(less) than the
specified CL for all values of the parameter below(above) the confidence limit

The resulting intervals are neither frequentist nor bayesian!
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Testing hypotheses near the boundary: Zech

Example: Find a monotonic Q for increasing signal-like experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B hypothesis, favouring B-only

Counting experiment: observe n events

Assume they come from Poisson processes: n ∼ Pois(s + b), with known b

Set limit on s given nobs

Exclude values of s for which P(n ≤ nobs|s + b) ≤ α (guaranteed coverage 1 − α)
b = 3, nobs = 0

Exclude s + b ≤ 3 at 95%CL
Therefore excluding s ≤ 0, i.e. all possible values of s (can’t distinguish b-only from very-small-s)

Zech: let’s condition on nb ≤ nobs (nb unknown number of background events)
For small nb the procedure is more likely to undercover than when nb is large, and the distribution of
nb is independent of s
P(n ≤ nobs|nb ≤ nobs, s + b) = ... =

P(n≤nobs|s+b)
P(n≤nobs|b)
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Get your confidence levels right

Find a monotonic Q for increasing signal-like
experiments (e.g. likelihood ratio)
CLs+b = Ps+b(Q ≤ Qobs)

Small values imply poor compatibility with S + B
hypothesis, favouring B-only

CLb = Pb(Q ≤ Qobs)
Large (close to 1) values imply poor compatibility with
B-only, favouring S + B

What to do when the estimated parameter is
unphysical?

The same issue solved by Feldman-Cousins
If there is also underfluctuation of backgrounds, it’s
possible to exclude even zero events at 95%CL!
It would be a statement about future experiments
Not enough information to make statements about the
signal

Normalize the S + B confidence level to the B-only
confidence level!

Plot from Read, CERN-open-2000-205
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Avoid issues at low signal rates

CLs :=
CLs+b

CLb

Exclude the signal hypothesis at confidence level CL if
1 − CLs ≤ CL
Ratio of confidences is not a confidence

The hypotetical false exclusion rate is generally less
than the nominal 1 − CL rate
CLs and the actual false exclusion rate grow more
different the more S + B and B p.d.f. become similar

CLs increases coverage, i.e. the range of parameters
that can be exclude is reduced

It is more conservative
Approximation of the confidence in the signal hypothesis
that might be obtained if there was no background

Avoids the issue of CLs+b with experiments with the
same small expected signal

With different backgrounds, the experiment with the
larger background might have a better expected
performance

Formally corresponds to have H0 = H(θ! = 0) and
test it against H1 = H(θ = 0)

Test inversion!

Dashed: CLs+b
Solid: CLs

S < 3: exclusion for a B-free search ≡ 0

Plot from Read, CERN-open-2000-205
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That’s what we used for the Higgs discovery!

Apply the CLs method to each Higgs mass point
Green/yellow bands indicate the ±1σ and ±2σ intervals for the expected values under B-only
hypothesis

Obtained by taking the quantiles of the B-only hypothesis

Plot from Higgs discovery paper
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Deal with CLs!

This afternoon we’ll play with CLs!
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Quantifying excesses

Quantify the presence of the signal by using the background-only p-value
Probability that the background fluctuates yielding and excess as large or larger of the observed one

For the mass of a resonance, q0 = −2logL(data|0,θ̂0)

L(data|µ̂,θ̂)
, with µ̂ ≥ 0

Interested only in upwards fluctuation, accumulate downwards one to zero

Use pseudo-data to generate background-only Poisson counts and nuisance parameters θobs
0

Use distribution to evaluate tail probability p0 = P(q0 ≤ qobs
0 )

Convert to one-sided Gaussian tail areas by inverting p = 1
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Left plot by Pietro Vischia, right plot from ATL-PHYS-PUB-2011-011 and Higgs discovery paper
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Question time: Significance
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Fluctuations in HEP? The proposal of a 5σ criterion
Rosenfeld, 1968 (https://escholarship.org/uc/item/6zm2636q) Are there any Far-out Mesons
or Baryons?

“In summary of all the discussion abouve, I conclude that each of our 150,000 annual histograms is
capable of generating somewhere between 10 and 100 deceptive upward fluctuations [...] (we)
should expect several 4σ and hundreds of 3σ fluctuations”
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HEP has a history of unconfirmed effects
3.5σ (2005, CDF) in dimuon (candidate bottom squark, doi:/10.1103/PhysRevD.72.092003)

∼ 4σ (1996, Aleph) in four-jet (Higgs boson candidate, doi:/10.1007/BF02906976)
6σ (2004, H1) (narrow c̄ baryon state, doi:/10.1016/j.physletb.2004.03.012)

H1 speaks of “Evidence”, not confirmed.
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The revenge of the pentaquarks

9σ and 12σ (2015, LHCb): pentaquarks! (doi:/10.1103/PhysRevLett.115.072001)
Several cross-checks (fit to mass spectrum, fit with non-resonant components, evolution of complex
amplitute in Argand diagrams)
Mass measurement, soft statement: “Interpreted as resonant states they must have minimal quark
content of ccuud, and would therefore be called charmonium-pentaquark states.

One remark: quoting significances above about 5–6σ is meaningless
Asymptotic approximation not trustable (tail effects). Can run lots of toys but...
...cannot possibly trust knowing your systematic uncertainties to that level
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The Look-elsewhere effect — 1
Searching for a resonance X of arbitrary mass

H0 = no resonance, the mass of the resonance is not defined (Standard Model)
H1 = H(M ̸= 0), but there are infinite possible values of M

Wilks theorem not valid anymore, no unique test statistic encompassing every possible H1
Quantify the compatibility of an observation with the B-only hypothesis

q0(m̂X) = maxmX q0(mX)

Write a global p-value as pglobal
b := P(q0(m̂X) > u) ≤ ⟨Nu⟩ + 1

2 P
χ2

1
(u)

u fixed confidence level
Crossings (Davis, Biometrika 74, 33–43 (1987)) , computable using pseudo-data (toys)

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
Vischia Statistics for HEP January 21st to February 18th, 2022 76 / 91



The Look-elsewhere effect — 2

Ratio of local (excess right here) and global (excess anywhere) p-values: trial factor
Asymptoticly linear in the number of search regions and in the fixed significance level

Dashed red lines: prediction based on the formula with upcrossings
Blue: 106 toys (pseudoexperiments)

Here asymptotic means for increasingly smaller tail probabilities

Plot from Gross-Vitells, 10.1140/epjc/s10052-010-1470-8
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The Look-elsewhere effect, now also in 2D — 1
Extension to two dimensions requires using the theory of random fields

Excursion set: set of points for which the value of a field is larger than a threshold u
Euler characteristics interpretable as number of disconnected regions minus number of holes

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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The Look-elsewhere effect, now also in 2D — 2

Asymptoticity holds also for the 2D effect, as desired
Dashed red lines: prediction based on the formula with upcrossings
Blue: 200k toys (pseudoexperiments)

Plot from Gross-Vitells, 10.1016/j.astropartphys.2011.08.005
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When there is no LEE, you still need to make sure your systematics are right

In 2011 OPERA (arXiv:1109.4897v1) reported superluminal neutrino speed, with 6.0σ
significance...

...but they had a loose cable connector (doi:/10.1007/JHEP10(2012)093)

Vischia Statistics for HEP January 21st to February 18th, 2022 80 / 91

https://arxiv.org/abs/1109.4897v1
https://doi.org/10.1007/JHEP10(2012)093


Deborah Mayo’s Severe Testing

Frequentist testing based on Type I and Type 2 error rates (D. Mayo “Statistical Inference as
Severe Testing”. Cambridge UP, 2018.)

Point-null avoided by considering H0 : µ ≤ µ0 vs H1 : µ > µ0

Generalize to test µ1 = (µ0 + γ), γ ≥ 0
Severe interpretation of negative results (SIN)

When H0 not rejected, define severity
SEV(µ ≤ µ1) = P(Q > Qobs;µ ≤ µ1false) = P(Q > Qobs;µ > µ1) > P(Q > Qobs;µ = µ1)
Low severity: your test is not capable of detecting a discrepancy even when if it existed, therefore
when not detected is’s poor evidence of its absence (low power)
High severity: your test is highly capable of detecting a discrepancy if it existed, therefore when not
detected is a good indication of its absence (high power)

Severe interpretation of rejection (SIR)
When H0 rejected, define severity
SEV(µ > µ1) = P(Q ≤ Qobs;µ > µ1false) = P(Q ≤ Qobs;µ ≤ µ1) > P(Q ≤ Qobs;µ = µ1)
Low severity: if probability of higher-than-observed Qobs is fairly high, then Qobs not a good indication
of effect
High severity: if probability of smaller-than-observed Qobs is very high, then such a large Qobs
indicates a real effect

Cousins (arXiv:2002.09713) seems to argue that current CL HEP practice is substantially
equivalent to Mayo’s severe testing

Very specific to HEP. Other disciplines should be worried, instead
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Truth and models: all models are wrong

Box (https://www.jstor.org/stable/2286841) warns that any model is an approximation
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Truth and models: HEP is special

Cousins (doi:/10.1007/s11229-014-0525-z) notes HEP is in a privileged position when
compared with social or medical sciences

Others (Gelman, Raftery, Berger, Bernardo) argue that a point null is impossible (at most
“small”)
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Ground truth, models, and point nulls

I think a point or almost-point null is related to our simplifications rather than with a claim on
reality
Some disciplines deal with phenomena which cannot (yet) be explained from first principles

Maybe one day we will have a full quasi-deterministic model of a whole body or brain
Certainly so far most models are attempts at finding a functional form for the relationship between two
variables

Some disciplines (HEP) have to do with phenomena which can be explained from first
principles

These principles are reasonable but not necessarily the best or the only possible ones
No guarantee that they reflect a universal truth
Arguing that the vast experimental agreement of the SM implies ground truth behaves based on our
principles sounds a bit wishful thinking
What can be claimed is that the vast experimental agreement warrants the use of point or quasi-point
nulls

Box’s view on models, and the Occam’s Razor, should still lead considerations on model
choices

A version of the Occam’s Razor is even implemented in Bayesian model selection

Still, to avoid interpreting fluctuations as real effects all disciplines should strive—when
possible—to describe causal relationships rather than correlations
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The χ2 distribution: why degrees of freedom?
Sample randomly from a Gaussian p.d.f., obtaining X1 y X2
Q = X2

1 + X2
2 (or in general Q =

∑N
i=1 X2

i ) is itself a random variable
What is P(Q ≥ 6)? Just integrate the χ2(N = 2) distribution from 6 to ∞

Depends only on N!
If we sample 12 times from a Gaussian and compute Q =

∑12
i=1 X2

i , then Q ∼ χ2(N = 12)

Theorem: if Z1, ..., ZN is a sequence of normal random variables, the sum V =
∑N

i=1 Z2
i is

distributed as a χ2(N)
The sum of squares is closely linked to the variance E[(X − µ)2] = E[X2] − µ2 from Eq. ??

The χ2 distribution is useful for goodness-of-fit tests that check how much two distributions
diverge point-by-point
It is also the large-sample limit of many distributions (useful to simplify them to a single
parameter)
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The χ2 distribution: goodness-of-fit tests 1/
Consider a set of M measurements {(Xi, Yi)}

Suppose Yi are affected by a random error representable by a gaussian with variance σi

Consider a function g(X) with predictive capacity, i.e. such that for each i we have g(Xi) ∼ Yi
Pearson’s χ2 function related to the difference between the prediction and the experimental
measurement in each point

χ2
P :=

M∑
i=1

[
Yi − g(Xi)

σi

]2

(1)

Neyman’s χ2 is a similar expression under some assumptions
If the gaussian error on the measurements is constant, it can be factorized
If Yi represent event counts Yi = ni, then the errors can be approximated with σi ∝

√
ni

χ2
N :=

M∑
i=1

(
ni − g(Xi)

)2

ni
(2)
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The χ2 distribution: goodness-of-fit tests 2/

If g(Xi) ∼ Yi (i.e. g(X) reasonably predicts the data), then each term of the sum is
approximately 1

Consider a function of χ2
N,P and of the number of measurements M

E[f (χ2
N,P, M)] = M

The function is analytically a χ2:

f (χ2
, M) =

2−
M
2

Γ
(

N
2

)χ
N−2e−

χ2
2 (3)

The cumulative of f is

1 − cum(f ) = P(χ2
> χ

2
obs|g(x) is the correct model) (4)

If the p.d.f. under the correct model describes the data well, then within the measured
uncertainty it should agree with the data...

For about 2/3 of the points, because σi represent 68.3% intervals

... and χ2 ≃ M
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The χ2 distribution: goodness-of-fit tests 3/

For a given M, the p.d.f. is known (χ2(M)) and the observed value can be computed and
compared with it
Cast the problem as an hypothesis test

Null hypothesis: there is no difference between prediction and observation (i.e. g fits well the data)
Alternative hypothesis: there is a significant difference between prediction and observation
Under the null, the sum of squares is distributed as a χ2(M)

p-values can be calculated by integration of the χ2 distribution

χ2M ≃ 1 ⇒ g(X) approximates well the data

Large χ2M >> 1 ⇒ issues in data or hypothesis (increases χ2), correlated measurements

Very small χ2M << 1 ⇒ overestimated σi, or cherrypicked/fraudulent data, or statistically improbable fluctuation
(5)
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The χ2 distribution: goodness-of-fit tests 4

How small/large is a small/large χ2?

Very subjective, you must decide by yourself

Think in terms of p-value: P(χ2 > χ2
obs|g(x) is the correct model)

0.001 reasonably bad, P(χ2, M) > 0.001 expected in 1/1000 cases
Often, failed test defined as the infamous P(χ2, M) < 0.05

Problem: the p-value must be calculated by integration

Can define reduced χ2 as χ2

M , and translate the previous equation:

χ2

M
∼ 1 ⇒ g(X) approximates well the data

χ2

M
>> 1 ⇒ poor model (increases χ2), or statistically improbable fluctuation

χ2

M
<< 1 ⇒ overestimated σi, or fraudulent data, or statistically improbable fluctuation

(6)

Question time: reduced χ2

It’s tempting but alone it’s misleading! Same χ2/M can lead to opposite answers!
For a χ2/M = 7/5, p-value p = 0.22 (reasonably good)
For a χ2/M = 70/50, p-value p = 0.03 (reasonably bad)

If you want to give the ratio, you should always either provide M or directly the p-value!
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The χ2 distribution: goodness-of-fit tests 3/

χ2(M) tends to a Normal distribution for M → ∞
Slow convergence
It is generally not a good idea to substitute a χ2 distribution with a Gaussian

The goodness of fit seen so far is valid only if the model (the function g(X)) is fixed

Sometimes the model has k free parameters that were not given and that have been fit to the
data
Then the observed value of χ2 must be compared with χ2(N′), with N′ = N − k degrees of
freedom

N′ = N − k are called reduced degrees of freedom
This however works only if the model is linear in the parameters
If the model is not linear in the parameters, when comparing χ2

obs with χ2(N − k) then the p-values
will be deceptively small!

Variant of the χ2 for small datasets: the G-test
g = 2

∑
Oijln(Oij/Eij)

It responds better when the number of events is low (Petersen 2012)
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