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Program for today

Lesson 2
Estimating a physical quantity

Sufficiency principle
Likelihood Principle
Estimators and maximum likelihood
Profile likelihood ratio
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Practicalities

Schedule: five days of lectures (Every Friday for the next five weeks)
2h morning lecture, virtual coffee break midway (09:30–11:45)
2h (probably less) afternoon exercise session, virtual coffee break midway (13:30–15:45)

Many interesting references, nice reading list for your career
Papers mostly cited in the topical slides
Some cool books cited here and there and in the appendix

Unless stated otherwise, figures belong to P. Vischia for inclusion in my upcoming textbook on
Statistics for HEP
(textbook to be published by Springer in 2021)

Or I forgot to put the reference, let me know if you spot any figure obviously lacking reference, so that
I can fix it
I cannot put the recordings publicly online as “massive online course”, so I will distribute them only to
registered participants, and have to ask you to not record yourself. I hope you understand.

Your feedback is crucial for improving these lectures (a feedback form will be provided at the
end of the lectures)!

You can also send me an email during the lectures: if it is something I can fix for the next day, I’ll
gladly do so!
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The Bureaucracy

This course provides 3 credits for the UCLouvain doctoral school (CDD Sciences)
If you need it recognized by another doctoral school, you have to ask to your school
Besides the certificate, I am available at supplying additional information (e.g. detailed schedule) or
activity (exam?)

People connecting online: certificates will be provided by checking connection logs
The only way I have to check if you connected to most lectures is to check the Zoom logs
Make sure you connect with a recognizable email address (or let me know which unrecognizable
address belongs to you)

This course contributes to the activities of the Excellence of Science (EOS) Be.h network,
https://be-h.be/
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The Interactive Element

I will pop up every now and then some questions

I will open a link, and you’ll be able to answer by going to www.menti.com and inserting a code
Totally anonymous (no access even for me to any ID information, not even the country): don’t
be afraid to give a wrong answer!

The purpose is making you think, not having 100% correct answers!

First question of the day is purely a logistics matter
Question time: ROOT

The direct links are accessible to me only: you’ll see in your screens the code in a second :)

The slides of each lecture will be available one minute after the end of the lecture
To encourage you to really try answering without looking at the answers
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General outline of the lectures

Lesson 1 - Fundaments
Bayesian and frequentist probability, theory of measure, correlation and causality, distributions

Lesson 2 - Point and Interval estimation
Maximum likelihood methods, confidence intervals, most probable values, credible intervals

Lesson 3 - Advanced interval estimation, test of hypotheses
Interval estimation near the physical boundary of a parameter
Frequentist and Bayesian tests, CLs, significance, look-elsewhere effect, reproducibility crysis

Lesson 4 - Commonly-used methods in particle physics
Unfolding, ABCD, ABC, MCMC, estimating efficiencies

Lesson 5 - Machine Learning
Overview and mathematical foundations, generalities most used algorithms, automatic Differentiation
and Deep Learning
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Lesson 2
Point and Interval estimation
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Estimating a physical quantity
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Estimators

Set x⃗ = (x1, ..., xN) of N statistically independent observations xi, sampled from a p.d.f. f (x).

Mean and width of f (x) (or some parameter of it: f (x; θ⃗), with θ⃗ = (θ1, ..., θM) unknown)
In case of a linear p.d.f., the vector of parameters would be θ⃗ = (intercept, slope)

We call estimator a function of the observed data x⃗ which returns numerical values ˆ⃗
θ for the

vector θ⃗.

ˆ⃗
θ is (asymptotically) consistent if it converges to θ⃗true
for large N:

lim
N→∞

ˆ⃗
θ = θ⃗true

ˆ⃗
θ is unbiased if its bias is zero, b⃗ = 0

Bias of ˆ⃗θ: b⃗ := E[ ˆ⃗θ] − θ⃗true

If bias is known, can redefine ˆ⃗
θ′ =

ˆ⃗
θ − b⃗, resulting in

b⃗′ = 0.
ˆ⃗
θ is efficient if its variance V[

ˆ⃗
θ] is the smallest possible Plot from James, 2nd ed.

An estimator is robust when it is insensitive to small deviations from the underlying
distribution (p.d.f.) assumed (ideally, one would want distribution-free estimates, without
assumptions on the underlying p.d.f.)



Sufficient statistic

A test statistic is a function of the data (a quantity derived from the data sample)
When X ∼ f (X|θ), a statistic T = T(X) is sufficient for θ if the density function f (X|T) is
independent of θ

If T is a sufficient statistic for θ, then also any strictly monotonic g(T) is sufficient for θ

Minimal sufficient statistic: a sufficient statistic that is a function of all other sufficient statistics
for θ
The statistic T carries as much information about θ as the original data X

No other function can give any further information about θ
Same inference from data X with model M and from sufficient statistic T(X) with model M′

Rao–Blackwell theorem: if g(X) is an estimator for θ and T is a sufficient statistic, then the
conditional expectation of g(X) given T(X) is never a worse estimator of θ

Practical procedure: build a ballpark estimator g(X), then condition it on a T(X) to obtain a better
estimator

The Sufficiency Principle: Two observations X and Y that factorize through the same value
of T(·), i.e. s.t. T(x) = T(y), must lead to the same inference about θ

Images from AmStat magazine and from Illinois.edu
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Example of sufficient statistic

Given some data 1, 2, 3, 4, 5, you may want to estimate the population mean
Consider the sample mean x̂ = 1+2+3+4+5

5 = 3 as an estimator of the sample mean (3 is the
estimate)
Imagine we don’t have the data; we only know that the sample mean is 3
Is the sample mean a sufficient statistic? Question time: Sufficient statistic

If you only knew the sample mean of 3, you would estimate the population mean to be 3 anyway,
regardless of having the data or not
Knowing the data (the set 1, 2, 3, 4, 5) or knowing only the sample mean does not improve our
estimate for the population mean

Estimate the binomial probability of obtaining r heads in N coin tosses

Record heads and tails, with their order: HTTHHHTHHTTTHTHTH
Can we somehow improve by identifying a sufficient statistic? Question time: Sufficient Statistic
What happens if we record only the number of heads? (remember that the binomial p.d.f. is:
P(r) =

(N
r

)
pr(1 − p)N−r , r = 0, 1, ...,N)

Recording only the number of heads (no tails, no order) gives exactly the same information
Data can be reduced; we only need to store a sufficient statistic (the distribution f (X|T) is
independent of θ)
Storage needs are reduced!!!
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Ancillary statistic and pivotal quantities

Pivotal quantity: its distribution does not depend on the
parameters

For a Gaus(µ, σ2) p.d.f., X̄−µ

S/
√

N
∼ tstudent is a pivot

See exercise this afternoon

Ancillary statistic for a parameter θ: a statistic f (X) which does not depend on θ
Concept linked to that of (minimal) sufficient statistic; (maximal) data reduction while retaining all
Fisher information about θ

Can an ancillary statistic can give information about θ even if it does not depend on it? QT!
Ancillary

Yes!

Sample X1 and X2 from Pθ(X = θ) = Pθ(X = θ + 1) = Pθ(X = θ + 2) = 1
3

Ancillary statistic: R := X2 − X1 (no information about θ)
Minimal sufficient statistic: M :=

X1+X2
2

Sample point (M = m, R = r): either θ = m, or θ = m − 1, or θ = m − 2
If R = 2, then necessarily X1 = m − 1 and X2 = m − 2; Therefore necessarily θ = m − 1

Knowledge of R alone carries no information on θ, but increases the precision on an estimate
of θ (Cox, Efron, Hinckley)!
Powerful tool to improve data reduction capabilities (save money...)
Also employed for asymptotic likelihood expressions

Also impact on approximate expressions for significance
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Information, the Fisher way

The information of a set of observations should increase with the number of observations
Double the data should result in double the information if the data are independent

Information should be conditional on what we want to learn from the experiment
Data which are irrelevant to our hypothesis should carry zero information relative to our hypothesis

Information should be related to precision
The greatest the information carried by the data, the better the precision of our result
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The Likelihood Principle — Enunciation

Common enunciation: given a set of observed data x⃗, the likelihood function L(⃗x; θ) contains
all the information that is relevant to the estimation of the parameter θ contained in the data
sample

The likelihood function is seen as a function of θ, for a fixed set (a particular realization) of observed
data x⃗
The likelihood is used to define the information contained in a sample
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The Likelihood Principle — Bayesians and Frequentists

Bayesian statistics automatically satisfies the likelihood principle
P(θ|⃗x) ∝ L(⃗x; θ) × π(θ): the only quantity depending on the data is the likelihood
Information as a broad way of saying all the possible inferences about θ
“Probably tomorrow will rain”

Frequentist statistics: information more strictly as Fisher information (connection with
curvature of L(⃗x; θ))

Usually does not comply (have to consider the hypothetical set of data that might have been obtained)
Need to recast question in terms of hypotetical data
Example: tail areas from sampling distributions obtained with toys
Even in forecasts: computer simulations of the day of tomorrow, or counting the past frequency of
correct forecasts by the grandpa feeling arthritis in the shoulder
“The sentence -tomorrow it will rain- is probably true”

The Likelihood Principle is quite vague: no practical prescription for drawing inference from
the likelihood

Bayesian Maximum a-posteriori (MAP) estimator automatically maximizes likelihood
Maximum Likelihood estimator (MLE) maximizes likelihood automatically, but some foundational
issues
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The Likelihood Principle — is it profound?

Two likelihoods differing by only a normalization factor are equivalent
Implies that information resides in the shape of the likelihood

George Bernard: replace a dataset D with a dataset D + Z, where Z is the result of tossing a
coin

Assume that the coin toss is independent on the parameter θ you seek to determine
Sampling probability: p(DZ|θ) = p(D|θ)p(Z)
The coin toss tells us nothing about the parameter θ beyond what we already learn by considering D
only
Any inference we do with D must therefore be the same as any inference we do with D + Z
In particular, normalizations cancel out in ratio: L1

L2
=

p(DZ|θ1 I)
p(DZ|θ2 I) =

p(D|θ1 I)
p(D|θ2 I)

Do you believe probability comes from the imperfect knowledge of the observer?
Then the likelihood principle does not seem too profound besides the mathematical simplifications it
allows

Do you believe that probability is a physical phaenomenon arising from randomness?
Then the likelihood principle has for you a profound meaning of valid principle of inference
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Likelihood and Fisher Information
A very narrow likelihood will provide much information about θtrue

The posterior probability will be more localized than the prior in the regimen in which the likelihood
function dominates the product L(⃗x; θ⃗) × π
Ideally we’d want to connect this with the Fisher Information, which therefore be large

A very broad likelihood will not carry much information, and ideally the computed Fisher
Information will be small
What’s a reasonable definition of Fisher Information based on the likelihood function?
Question time: Likelihood and Information
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Likelihood, Score, and Information

Score: ∂
∂θ

lnL(X; θ)

Under broad regularity conditions, if X ∼ f (x|θtrue) the expectation of the score calculated for
θ = θtrue is zero

E
[ ∂

∂θ
lnL(X; θ)|θ = θtrue

]
=

∂

∂θ

∫
f (x|θtrue)dx =

∂

∂θ
1 = 0

Fisher Information: the variance of the score

I(θ) = E
[( ∂

∂θ
lnL(X; θ)

)2
|θtrue

]
=

∫ ( ∂

∂θ
lnf (x|θ)

)2
f (x|θ)dx ≥ 0

Under some regularity conditions, and when the likelihood is twice differentiable, then you can
“exchange” the exponent and the number of derivations

I(θ) = −E
[( ∂2

∂θ2
lnL(X; θ)

)2
|θtrue

]
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Likelihood and Fisher Information

The narrowness of the likelihood can be estimated by looking at its curvature

The curvature is the second derivative with respect to the parameter of interest

A very narrow (peaked) likelihood is characterized by a very large and positive
curvature − ∂2lnL

∂θ2

The second derivative of the likelihood is linked to the Fisher Information

I(θ) = −E

[
∂2lnL
∂θ2

]
= E

[(
∂lnL
∂θ

)2]
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Fisher Information and Jeffreys priors
When changing variable, the change of parameterization must not result in a change of the
information

The information is a property of the data only, through the likelihood—that summarizes them
completely (likelihood principle)

Search for a parametrization θ′(θ) in which the Fisher Information is constant
Compute the prior as a function of the new variable

π(θ) = π(θ′)
∣∣∣ dθ′

dθ

∣∣∣ ∝
√√√√E

[(
∂lnN
∂θ′

)2]∣∣∣∣∣∂θ′∂θ

∣∣∣∣∣
=

√√√√E

[(
∂lnL
∂θ′

∂θ′

∂θ

)2]

=

√√√√E

[(
∂lnL
∂θ

)2]
=
√

I(θ)

For any θ, π(θ) =
√

I(θ); with this choice, the information is constant under changes of
variable
Such priors are called Jeffreys priors, and assume different forms depending on the type of
parametrization

Location parameters: uniform prior
Scale parameters: prior ∝ 1

θ

Poisson processes: prior ∝ 1√
θ
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The Maximum Likelihood Method 1/
Let x⃗ = (x1, ..., xN) be a set of N statistically independent observations xi, sampled from a
p.d.f. f (x; θ⃗) depending on a vector of parameters
Under independence of the observations, the likelihood function factorizes into the individual
p.d.f. s

L(⃗x; θ⃗) =
N∏

i=1

f (xi, θ⃗)

The maximum-likelihood estimator is the θ⃗ML which maximizes the joint likelihood

θ⃗ML := argmaxθ
(

L(⃗x, θ⃗)
)

The maximum must be global
Numerically, it’s usually easier to minimize

− lnL(⃗x; θ⃗) = −
N∑

i=1

lnf (xi, θ⃗)

Easier working with sums than with products
Easier minimizing than maximizing

If the minimum is far from the range of permitted values for θ⃗, then the minimization can be
performed by finding solutions to

−
lnL(⃗x; θ⃗)

∂θj
= 0

It is assumed that the p.d.f. s are correctly normalized, i.e. that
∫

f (⃗x; θ⃗)dx = 1 (→ integral does not
depend on θ⃗)
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The Maximum Likelihood Method 2/

Solutions to the likelihood minimization are found via numerical methods such as MINOS
Fred James’ Minuit: https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html

θ⃗ML is an estimator → let’s study its properties!
1 Consistent: limN→∞ θ⃗ML = θ⃗true;
2 Unbiased: only asymptotically. b⃗ ∝ 1

N , so b⃗ = 0 only for N → ∞;
3 Efficient: V[θ⃗ML] =

1
I(θ)

4 Invariant: for change of variables ψ = g(θ); ψ̂ML = g(θ⃗ML)

θ⃗ML is only asymptotically unbiased, and therefore it does not always represent the best
trade-off between bias and variance

Remember that in frequentist statistics L(⃗x; θ⃗) is not a p.d.f. . In Bayesian statistics, the
posterior probability is a p.d.f.:

P(θ⃗|⃗x) =
L(⃗x|θ⃗)π(θ⃗)∫
L(⃗x|θ⃗)π(θ⃗)dθ⃗

Note that if the prior is uniform, π(θ⃗) = k, then the MLE is also the maximum of the posterior
probability, θ⃗ML = maxP(θ⃗|⃗x).
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Nuclear Decay with Maximum Likelihood Method

A nuclear decay with half-life τ is described by the p.d.f., expected value, and variance

f (t; τ) =
1
τ

e−
t
τ

E[f ] = τ

V[f ] = τ 2

Sampling N independent measurements ti from the same p.d.f. results in a set of
measurements identically distributed
Exercise: compute the MLE for this p.d.f.

The joint p.d.f. can be factorized

f (t1, ...tN ; τ) =
∏

i

f (ti; τ)

For a particular set of N measurements ti, the p.d.f. can be written as a function of τ only,
L(τ) := f (ti; τ)

Now all you need to do is to maximize the likelihood

The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti

τ

)
, can be maximized analytically

∂lnL(τ)
∂τ

=
∑

i

(
−

1
τ
+

ti
τ 2

)
≡ 0
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The logarithm of the likelihood, lnL(τ) =
∑(

ln 1
τ
− ti

τ

)
, can be maximized analytically

∂lnL(τ)
∂τ

=
∑

i

(
−

1
τ
+

ti
τ 2

)
≡ 0
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Nuclear Decay with Maximum Likelihood Method
The maximum-likelihood estimator is

τ̂(t1, ..., tN) =
1
N

∑
i

ti

It’s the simple arithmetical mean of the individual measurements!
What’s the expected value? Is the estimator unbiased? Question time: Nuclear Decay 1

The expected value is E[τ̂ ] = τ , and the estimator is unbiased:

b = E[τ̂ ]− E[f ] = τ − τ = 0

What is the variance? Which is its relationship to N? Is the estimator efficient? QT: N D 1
The variance interestingly decreases when N increases, and it is possible to demonstrate that
the estimator is efficient

V[τ̂ ] = V
[ 1

N

∑
i

ti
]
=

1
N2

∑
i

V[ti] =
τ 2

N

The MLE is not the only estimator we can think of. Fill the table!
Consistent Unbiased Efficient

τ̂ = τ̂ML = t1+...+tN
N

τ̂ = t1+...+tN
N−1

τ̂ = ti

Table: Properties of different estimators of the half life for a nuclear decay.
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Table: Properties of different estimators of the half life for a nuclear decay.
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τ̂ = τ̂ML = t1+...+tN

N ✓ ✓ ✓
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N−1 ✓ ✗ ✗
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Table: Properties of different estimators of the half life for a nuclear decay.
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Why τ̂ = ti is unbiased

Bias: b = E[τ̂ ]− τ
Note: if you don’t know the true value, you must simulate the bias of the method
Generate toys with known parameters, and check what is the estimate of the parameter for the toy
data
If there is a bias, correct for it to obtain an unbiased estimator

ti is an individual observation, which is still sampled from the original factorized p.d.f.

f (ti; τ) = 1
τ

e−
ti
τ

The expected value of ti is therefore still E[τ̂ ] = E[ti] = τ

τ̂ = ti is therefore unbiased!
Consistent Unbiased Efficient

τ̂ = ti ✗ ✓ ✗

Table: Properties of different estimators of the half life for a nuclear decay.
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Bias-variance tradeoff and optimal variance 1/

We usually want to optimize both bias b⃗ and variance V[
ˆ⃗
θ]

While we can optimize each one separately, optimizing them simultaneously leads to none
being optimally optimized, in genreal

Optimal solutions in two dimensions are often suboptimal with respect to the optimization of just one
of the two properties

The variance is linked to the width of the likelihood function, which naturally leads to linking it
to the curvature of L(⃗x; θ⃗) near the maximum

However, the curvature of L(⃗x; θ⃗) near the maximum is linked to the Fisher information, as we
have seen

Information is therefore a limiting factor for the variance (no data set contains infinite
information, variance cannot collapse to zero)

Variance of an estimator satisfies the Rao-Cramér-Frechet (RCF) bound

V[θ̂] ≥
1

θ̂
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Information Inequality – 1

Rao-Cramer-Frechet (RCF) bound

V[θ̂] ≥ (1+∂b/∂θ)2

−E
[
∂2lnL/∂θ2

]
In multiple dimensions, link with the information is maintaned via the full Fisher Information Matrix:
Iij = E

[
∂2lnL/∂θi∂θj

]
Approximations

Neglect the bias (b = 0)
Inequality is an approximate equality (true for large data samples)

V[θ̂] ≃ 1
−E
[
∂2lnL/∂θ2

]
Estimate of the variance of the estimate of the parameter!

V̂[θ̂] ≃ 1
−E
[
∂2lnL/∂θ2

]
|
θ= ˆtheta

For a generic unbiased estimator, can define efficiency of the estimator as

e(θ̂) :=
I(θ)−1

V[θ̂]

The efficiency of a generic unbiased estimator, because of the RCF bound, is always e(θ̂) ≤ 1
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Bias-variance tradeoff and optimal variance 2/

For multidimensional parameters, we can build the information matrix with elements:

Ijk(θ⃗) = −E
[ N∑

i

∂2lnf (xi; θ⃗)

∂θk∂θk

]
= N

∫
1
f
∂f
∂θj

∂f
∂θk

dx

(the last equality is due to the integration interval not being dependent on θ⃗)
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Estimating variance non-analytically

We have calculated the variance of the MLE in the simple case of the nuclear decay

Analytic calculation of the variance is not always possible

Write the variance approximately as:

V[θ̂] ≥

(
1 + ∂b

∂θ

)2

−E
[
∂2lnL
∂θ2

]
This expression is valid for any estimator, but if applied to the MLE then we can note θ⃗ML is
efficient and asymptotically unbiased

Therefore, when N → ∞ then b = 0 and the variance approximate to the RCF bound, and ≥
becomes ≃:

V[θ⃗ML] ≃
1

−E
[
∂2lnL
∂θ2

]∣∣∣
θ=θ⃗ML
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How to extract an interval from the likelihood function 1/

For a Gaussian p.d.f., f (x; θ⃗) = N(µ, σ), the likelihood can be written as:

L(⃗x; θ⃗) = ln
[
−

(⃗x − θ⃗)2

2σ2

]
Moving away from the maximum of L(⃗x; θ⃗) by one unit of σ, the likelihood assumes the value
1
2 , and the area enclosed in [θ⃗ − σ, θ⃗ + σ] will be—because of the properties of the Normal
distribution—equal to 68.3%.
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How to extract an interval from the likelihood function 2/
We can therefore write

P
(
(⃗x − θ⃗)2 ≤ σ)

)
= 68.3%

P(−σ ≤ x⃗ − θ⃗ ≤ σ) = 68.3%

P(⃗x − σ ≤ θ⃗ ≤ x⃗ + σ) = 68.3%

Taking into account that it is important to keep in mind that probability is a property of sets, in
frequentist statistics

Confidence interval: interval with a fixed probability content
This process for computing a confidence interval is exact for a Gaussian p.d.f.

Pathological cases reviewed later on (confidence belts and Neyman construction)
Practical prescription:

Point estimate by computing the Maximum Likelihood Estimate
Confidence interval by taking the range delimited by the crossings of the likelihood function with 1

2 (for
68.3% probability content, or 2 for 95% probability content—2σ, etc)
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How to extract an interval from the likelihood function 3/
MLE is invariant for monotonic transformations of θ

This applies not only to the maximum of the likelihood, but to all relative values
The likelihood ratio is therefore an invariant quantity (we’ll use it for hypothesis testing)
Can transform the likelihood such that log(L(⃗x; θ⃗)) is parabolic, but not necessary (MINOS/Minuit)

When the p.d.f. is not normal, either assume it is, and use symmetric intervals from Gaussian
tails...

This yields symmetric approximate intervals
The approximation is often good even for small amounts of data

...or use asymmetric intervals by just looking at the crossing of the log(L(⃗x; θ⃗)) values
Naturally-arising asymmetrical intervals
No gaussian approximation

In any case (even asymmetric intervals) still based on asymptotic expansion
Method is exact only to O( 1

N )

Plot from James, 2nd ed.
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How to extract an interval from the likelihood function

Theorem: for any p.d.f. f (x|θ⃗), in the large numbers limit N → ∞, the likelihood can always
be approximated with a gaussian:

L(⃗x; θ⃗) ∝N→∞ e−
1
2 (θ⃗−θ⃗ML)

T H(θ⃗−θ⃗ML)

where H is the information matrix I(θ⃗).

Under these conditions, V[θ⃗ML] → 1
I(θ⃗ML)

, and the intervals can be computed as:

∆lnL := lnL(θ′)− lnLmax = −
1
2

The resulting interval has in general a larger probability content than the one for a gaussian
p.d.f., but the approximation grows better when N increases

The interval overcovers the true value θ⃗true
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How to extract an interval from the likelihood function—interpretation

θ⃗true is therefore stimated as θ̂ = θ⃗ML ± σ. This is another situation in which frequentist and
Bayesian statistics differ in the interpretation of the numerical result

Frequentist: θ⃗true is fixed
“if I repeat the experiment many times, computing each time a confidence interval around θ⃗ML, on
average 68.3% of those intervals will contain θ⃗true”
Coverage: “the interval covers the true value with 68.3% probability”
Direct consequence of the probability being a property of data sets

Bayesian: θ⃗true is not fixed
“the true value θ⃗true will be in the range [θ⃗ML − σ, θ⃗ML + σ] with a probabilty of 68.3%”
This corresponds to giving a value for the posterior probability of the parameter θ⃗true
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Non-normal likelihoods and Gaussian approximation — 1

How good is the approximation L(⃗x; θ⃗) ∝ exp
[
− 1

2 (θ⃗ − θ⃗MLE)T H(θ⃗ − θ⃗ML)
]
?

Here H is the information matrix I(θ⃗)
True only to O( 1

N )

In these conditions, V[θ⃗ML] → 1
I(θ⃗ML)

Intervals can be derived by crossings: ∆lnL = lnL(θ′) − lnLmax = k

This afternoon: we’ll convince ourselves of how good is this approximation in case of the
nuclear decay!
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Non-normal likelihoods and Gaussian approximation — 2
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Non-normal likelihoods and Gaussian approximation — 3
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The Central Limit Theorem

The convergence of the likelihood L(⃗x; θ⃗) to a gaussian is a direct consequence of the central
limit theorem

Take a set of measurements x⃗ = (xi, ..., xN) affected by experimental errors that results in
uncertainties σ1, ..., σN (not necessarily equal among each other)

In the limit of a large number of events, M → ∞, the random variable built summing M
measurements is gaussian-distributed:

Q :=
M∑

j=1

xj ∼ N
( M∑

j=1

xj,
M∑

j=1

σ2
j

)
, ∀ f (x, θ⃗)

The demonstration runs by expanding in series the characteristic function yi =
xj−µj√

σj

The theorem is valid for any p.d.f. f (x, θ⃗) that is reasonably peaked around its expected value.
If the p.d.f. has large tails, the bigger contributions from values sampled from the tails will have a
large weight in the sum, and the distribution of Q will have non-gaussian tails
The consequence is an alteration of the probability of having sums Q outside of the gaussian
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Asymptoticity of the Central limit theorem

The condition M → ∞ is reasonably valid if the sum is of many small contributions.

How large does M need to be for the approximation to be reasonably good? Question time:
Central Limit

This afternoon we’ll check!
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And in many dimensions...

Construct logL contours and determine confidence intervals by MINOS
Elliptical contours correspond to gaussian Likelihoods

The closer to MLE, the more elliptical the contours, even in non-linear problems
All models are linear in a sufficiently small region

Nonlinear regions not problematic (no parabolic transformation of logL needed)
MINOS accounts for non-linearities by following the likelihood contour

Confidence intervals for each
parameter

max
θj,j̸=i

logL(θ) = logL(θ̂)− λ

λ =
Z2

1−β

2
λ = 1/2 for β = 0.683 (“1σ”)
λ = 2 for β = 0.955 (“2σ”)

Plot from James, 2nd ed.
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Profile likelihood ratio step by step for cross sections — Expected events
We used to compute the total cross section of a given process by applying the naïve formula

σ =
Ndata − Nbkg

ϵL
.

Nsig estimated from Ndata − Nbkg for the measured integrated luminosity L
The acceptance ϵ accounts for th. branching fractions fiducial region for the measurement
(fiducial region: generator-level selection which defines the phase space of the measurement)

Nowadays we model everything into the likelihood function
p(x|µ, θ) pdf for the observable x to assume a certain value in a single event

µ := σ
σpred

(single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted

cross section: signal strength
θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the
measurement.

Extend to a data set of many events X = {x1, ..., xn} by taking the product of the single-event
p.d.f.s.

n∏
e=1

p(xe|µ, θ)

The number of events in the data set is however a random variable itself!
Poisson distribution with mean equal to the number of events ν we expect from theory

Marked Poisson model

f (X|ν(µ, θ), µ, θ) = Pois(n|ν(µ, θ))
n∏

e=1

p(xe|µ, θ) .

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Profile likelihood ratio step by step for cross sections — Expected events
We used to compute the total cross section of a given process by applying the naïve formula

σ =
Ndata − Nbkg

ϵL
.

Nsig estimated from Ndata − Nbkg for the measured integrated luminosity L
The acceptance ϵ accounts for th. branching fractions fiducial region for the measurement
(fiducial region: generator-level selection which defines the phase space of the measurement)

Nowadays we model everything into the likelihood function
p(x|µ, θ) pdf for the observable x to assume a certain value in a single event

µ := σ
σpred

(single- or multi-dimensional) parameter of interest (POI). A multiplier of the predicted

cross section: signal strength
θ (generally multi-dimensional) nuisance parameter representing all the uncertainties affecting the
measurement.

Extend to a data set of many events X = {x1, ..., xn} by taking the product of the single-event
p.d.f.s.

n∏
e=1

p(xe|µ, θ)

The number of events in the data set is however a random variable itself!
Poisson distribution with mean equal to the number of events ν we expect from theory

Marked Poisson model

f (X|ν(µ, θ), µ, θ) = Pois(n|ν(µ, θ))
n∏

e=1

p(xe|µ, θ) .

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Profile likelihood ratio step by step for cross sections — Systematic uncertainties

Both µ and θ act on the individual pdfs for the observable and on the expectation for the
global amount of events
Incorporate systematic uncertainties as nuisance parameter θ:
Conway, 2011 in CERN-2011-006115

Constrain the terms in the fit: constraint interpreted as prior coming from the auxiliary measurement
θ estimated with uncertainty δθ
Often Gaussian pdf, unless θ has a physical bound at zero: then log-normal (rejects negative values)

Likelihood L(µ, θ;X): take the marked Poisson model f (X|ν(µ, θ), µ, θ) and condition on the
observed value of X

MLE: µ̂ := argmaxµL(µ, θ;X) still depends on the nuisance parameters θ

L(n,α0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)y

L(n, 0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(0|αj, 1)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,
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Eliminate dependence on the nuisance parameters
Likelihood ratio!

λ(µ) :=
L(µ, ˆ̂θ)
L(µ̂, θ̂)

.

Denominator L(µ̂, θ̂) is computed for the values of µ and θ which jointly maximize the
likelihood function.

Profiling: eliminating the dependence on the nuisance parameters by taking their conditional
maximum likelihood estimate
Bayesians normally marginalize (integrate) rather than profiling (see Demortier, 2002)

The maximum of the likelihood ratio yields the point estimate for µ
The second derivative of the maximum likelihood ratio yields intervals on the parameter µ

Tomorrow: the tricky cases (e.g. point estimate near the physical range allowed for the parameter)

Pleasant quality read: Vischia, 2019 doi:10.1016/j.revip.2020.100046 ,

Vischia Statistics for HEP January 21st to February 18th, 2022 46 / 79

http://www.ippp.dur.ac.uk/Workshops/02/statistics/proceedings/demortier.pdf
https://doi.org/10.1016/j.revip.2020.100046


What do I need to profile?

The likelihood ratio λ(µ) =
L(µ, ˆ̂θ(µ))

L(µ̂,θ̂)

Conceptually, you can run the experiment many times (e.g. toys) and record the value of the
test statistic

The test statistic can therefore be seen as a distribution

Asymptotically, λ(µ) ∼ exp
[
− 1

2χ
2
](

1 +O( 1√
N
)
)

(Wilks Theorem, under some regularity
conditions—continuity of the likelihood and up to 2nd derivatives, existence of a maximum,
etc)

The χ2 distribution depends only on a single parameter, the number of degrees of freedom
It follows that the test statistic is independent of the values of the nuisance parameters
Useful: you don’t need to make toys in order to find out how is λ(µ) distributed!
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What is a nuisance parameter?

Sometimes the classification into POI and nuisance parameter washes out

Maybe you data and your method can provide information on a systematic uncertainty

Plot from doi:10.1007/JHEP12(2012)105
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Constrained nuisance parameters

More often, the analysis is not sensitive enough to treat an uncertainty as POI and measure it

The fit can still constrain the nuisance parameter that is profiled
Indirectly provides information about your estimate of that parameter before the fit

Over- or under-estimate θ before the fit
See a best fit value for θ that doesn’t match very well with the prefit value

Quote, for each nuisance parameter, two important quantities
Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit
uncertainty: pull := θ̂−θ

δθ
Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance parameter.
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Pulls and Constraints

Pull: the difference of the post-fit and pre-fit values of the parameter, normalized to the pre-fit
uncertainty: pull := θ̂−θ

δθ

Constraint: the ratio between the post-fit and the pre-fit uncertainty in the nuisance
parameter.
Spot easily possible issues in the fit

θ pulled too much may be a hint that our estimate of the pre-fit value was not reasonable
θ constrained too much indicates that the data contain enough information to improve the precision in
the nuisance parameter with respect to our original estimate, which may or may not make sense.
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Question time, pulls and constraints

What is more worrying, a small pull with a small constraint, or a large pull with a strong
constraint? Question time: Pulls and Constraints

A pull with very small constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.9

The same pull with a strong constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.2

A way of estimating if a shift is significant is to compare the shift with its uncertainty

For independent measurements, the compatibility C is

C = ∆θ/σ∆θ =
θ2 − θ1√
σ2

1 + σ2
2

We would conclude that the first case C = 0.74, for the second one C = 0.98 (larger, still
within uncertainty)

However, these are not independent measurements!

The formula is therefore
C = ∆θ/σ∆θ =

θ2 − θ1√
σ2

1 − σ2
2

For the first case, C = 2.29, for the second case C = 1.02

The same pull is more significant if there is (almost no) constraint!!!

Vischia Statistics for HEP January 21st to February 18th, 2022 51 / 79



Question time, pulls and constraints

What is more worrying, a small pull with a small constraint, or a large pull with a strong
constraint? Question time: Pulls and Constraints

A pull with very small constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.9

The same pull with a strong constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.2

A way of estimating if a shift is significant is to compare the shift with its uncertainty

For independent measurements, the compatibility C is

C = ∆θ/σ∆θ =
θ2 − θ1√
σ2

1 + σ2
2

We would conclude that the first case C = 0.74, for the second one C = 0.98 (larger, still
within uncertainty)

However, these are not independent measurements!

The formula is therefore
C = ∆θ/σ∆θ =

θ2 − θ1√
σ2

1 − σ2
2

For the first case, C = 2.29, for the second case C = 1.02

The same pull is more significant if there is (almost no) constraint!!!

Vischia Statistics for HEP January 21st to February 18th, 2022 51 / 79



Question time, pulls and constraints

What is more worrying, a small pull with a small constraint, or a large pull with a strong
constraint? Question time: Pulls and Constraints

A pull with very small constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.9

The same pull with a strong constraint: θprefit = 0 ± 1, θpostfit = 1 ± 0.2

A way of estimating if a shift is significant is to compare the shift with its uncertainty

For independent measurements, the compatibility C is

C = ∆θ/σ∆θ =
θ2 − θ1√
σ2

1 + σ2
2

We would conclude that the first case C = 0.74, for the second one C = 0.98 (larger, still
within uncertainty)

However, these are not independent measurements!

The formula is therefore
C = ∆θ/σ∆θ =

θ2 − θ1√
σ2

1 − σ2
2

For the first case, C = 2.29, for the second case C = 1.02

The same pull is more significant if there is (almost no) constraint!!!

Vischia Statistics for HEP January 21st to February 18th, 2022 51 / 79



Impacts
Impact of θ on the post-fit signal strength permits to obtain a ranking of the nuisance
parameters in terms of their effect on the signal strength

Fix each nuisance parameter to its post-fit value θ̂ plus/minus its pre-fit (post-fit) uncertainty δθ (δθ̂)
Reperform the fit for µ
Compute the impact as the difference between the original fitted signal strength and the refitted signal
strength.

Results on Asimov dataset (replacing the data with the expectations from simulated events) is
expected to give “perfect” results
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Breakdown of systematic uncertainties
What’s the amount of uncertainty that is impotable to a given set of systematic effects?

The modern expression of Fisher’s formalization of the ANOVA concept
“the constituent causes fractions or percentages of the total variance which they together produce”
(Fisher, 1919)
“the variance contributed by each term, and by which the residual variance is reduced when that term
is removed” (Fisher, 1921)

Breakdown the contributions
Freeze a set of uncertainties θi to their post-fit value
Repeat the fit to extract a new (smaller) uncertainty on µ
Obtain the contribution of θi to the overall uncertainty as squared difference betwee the full and
reduced uncertainties
Statistical uncertainty obtained by freezing all nuisance parameters

Toy data
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From sidebands to systematic uncertainties

Measure a background rate in a sideband, use the estimate in the signal region

As described, let’s model our estimation problem using profile likelihoods
L(n,α0|µ,α) =

∏
i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)

λ(µ) =
L(µ, ˆ̂αµ)

L(µ̂,α̂)

Sideband measurement

Lfull(s, b) = P(NSR|s + b)× P(NCR|τ̃ · b)

Subsidiary measurement of the background rate:
8% systematic uncertainty on the MC rates
b̃: measured background rate by MC simulation
G(b̃|b, 0.08): our

Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
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Renormalization of the subsidiary measurement

L(n,α0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(α0
j |αj, δαj)y

L(n, 0|µ,α) =
∏

i∈bins

P(ni|µSi(α) + Bi(α))×
∏

j∈syst

G(0|αj, 1)

Subsidiary measurement often labelled constraint term

It is not a PDF in α: G(αj|0, 1) ̸= G(0|αj, 1)

Response function: B̃i(1 + 0.1α) (a unit change in α –e.g. 5% JES– changes the acceptance
by 10%)

Graphics from W. Verkerke
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Interpolation needed between template models
Conditional density f (x|α) constructed by some means for a discrete set of values α1, ...αN

The exact dependence of f (x|α) on α is unknown
In practice f (x|αi) often nonparametric density estimates in the x space (e.g. histograms)

Problem: determine f (x|α) for arbitrary αi
Typically αi within the cloud of α1, ...αN , and direct calculation too expensive
Need to keep the densities normalized:

∫
f (x|α)dx = 1, ∀α

Graphics from W. Verkerke
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Horizontal or vertical morphing?

Vertical interpolation of single-parameter 1D
densities:
f (x|α) = w1f (x|α1) + (1 − w1)f (x|α2),
w1 = α2−α

α2−α1
, α ∈ [α1, α2]

Horizontal interpolation: identical parameter
dependence, but interpolate quantile
function
q(y|α) = w1q(y|α1) + (1 − w1)q(y|α2),
q(y|α) := F−1(y|α)

Have to solve q(y|α) = x numerically
Difficult to evaluate numerically around y = 0
and y = 1

Vertical interpolation is often not what you
want

Except some cases, e.g. interpolation of
detector efficiency curves
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Horizontal interpolation/morphing in one dimension
For HEP application and univariate densities, reasonable solution is linear interpolation

A.L. Read, Linear interpolation of histograms, NIM A 425, 357 (1999)
Can fail dramatically if the change in shape is comparable with or smaller than MC statistical
fluctuations
Sometimes we may want to avoid adding this new degree of freedom in the model
Decoupling rate and shape effects is always possible, even when not neglecting the shape ones)

Graphics from W. Verkerke

The cases f (⃗x|α) and f (⃗x|α⃗) remain delicate
Multivariate parameters: g(·|α⃗) =

∑N
i=1 wi(α⃗, α⃗1, ..., α⃗N)g(·)α⃗i

g(·|α⃗) either density function (x) or quantile function (y)
Non-negative weights summing up to 1; many techniques (polinomial, local poly, spline best used in
1D)
Lack of generality because assumes Euclidean space
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What if our metric is not Euclidean?
Given two distributions P0 and P1, define an optimal map T transforming X ∼ P0 into
T(X) ∼ P1 (Monge, 1781)
Define a geodesic path between P0 and P1 in the space of the distributions, according to a
given metric

Shape-preserving notion of averages of distributions
Distance based on transport along geodesic paths

Let X ∼ P0, and find T by minimizing E
[
∥ X − T(X) ∥p

]
=
∫

∥ x − T(x) ∥p dP0(x)
Minimization over all T s.t. T(X) ∼ P1. Can replace Euclidean distance with any distance
The minimizer is called optimal transport map
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Generalize to arbitrary metric
Formally a minimization of the weighted average distance:
S(f , α⃗, α⃗1, α⃗N) =

∑N
i=1 wi(α⃗, α⃗1, α⃗N)

[
D
(

f (x|α⃗), f (x|α⃗i

)]p

D(f (x), g(x)) is a distance (metric functional in the space of distributions)
Every metric generates an interpolation method (see Chap. 14 of Encyclopedia of Distances,
Deza and Deza, 4ed., Springer, 2016)
L2 distance generates vertical morphing (with p = 2, [D(·)]p is the integrated squared error)
Wasserstein distance generates horizontal morphing (p=1 Earth Mover distance)

Wp(X, Y) := Wp(P0, P1) =
( ∫

∥ x − T∗(x) ∥p dP0(x)
)1/p

, T∗ optimal transport map
Works well in defining a metric in the space of almost all distributions
The set of distributions equipped with Wasserstein distance is a geodesic space (Riemaniann if
p = 2)
Given P0 and P1 there is always a shortest path (geodesic) between them, and its length is the
Wasserstein distance W(P0, P1)

Graphics from Bonneel, Peyre, Cuturi, 2016
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Optimal transport is quite powerful

Graphics from Peyre, Cuturi, 2019
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What if a transport map from P0 to P1 does not exist?

Example: P = δ0 (point mass at 0), Q = Gaussian

Kantorovich relaxation: take the mass at x and split it into small components

J set of all joint distributions J for (X, Y) with marginals P and Q (coupling between P and Q)

Find J to minimize EJ

[
∥ X − Y ∥

]
=
( ∫

∥ x − y ∥p dJ(x, y)
) 1

p

Wasserstein distance: W(P,Q) = W(X, Y) =
(

infJ
∫

∥ x − y ∥2 dJ(x, y)
) 1

2

If an optimal transport T exists, then the optimal J is
degenerate and supported on the curve (x, T(x))
Regularization possible by adding term:

EJ

[
∥ X − Y ∥

]
=
( ∫

∥ x − y ∥p dJ(x, y)
) 1

p
+ λf (J)

f (J) e.g. entropy
Fast, and easier inference
How to choose λ? Not clear effect of regularization

Graphics from Wikipedia
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Uncertainty quantification

These methods introduce an uncertainty in the morphed shape determination

T̂ estimate of T based on samples X1, ...,XN ∼ P0, Y1, ..., YN ∼ P1

Closeness of T̂ to T (Ŵ(P0,P1) to W(P0,P1) depends on number of dimensions
E
∫

∥ T̂(x)− T(x) ∥2 dP0(x) ≈ ( 1
N )

1
d (curse of dimensionality)

Getting confidence intervals very hard, solved only for special cases
1D (Munck, Czado, Sommerfeld)
MultiD: sliced Wassserstein distance (average W between 1D projections of P0 and P1)
Under this approximation (weaker metric), can derive confidence regions by
a minimax game on the Lr norm of quantile functions of P0 and P1 for a fixed confidence level
Coverage guaranteed by construction

Graphics from arXiv:1909.07862. Here P0 is P and P1 is Q, indices refer to two example cases, n = 100
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Moment morphing
Moment morphing: morph standardized densities instead of densities

Useful for models with well-behaved first moments (mean and variance)
Not as good as horizontal morphing in 1D (inefficient version of it), good approximation in N
How to morph the covariance matrix? Many choices available

Graphics from Lydia Brenner
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The Inverse Rosenblatt Transformation

Devise a multi-D equivalent of quantile function: the Inverse Rosenblatt transformation
(Ann. Math. Statist. 23, 470 (1952).

The inverse Rosenblatt transformation x1 = F−1
1 (z1), x2 = F−1

2 (z2|z1) uses conditional
quantile functions: we know how to interpolate them!

Computationally intensive (k non-linear equations to be solved numerically, N calls to
root-finding, etc)

Graphics by Igor Volobouev
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Copula morphing
Probability integral transforms of marginals of f (⃗x): z1 = F1(x1),... zk = Fk(xk)

Copula density c(⃗z) is density of the vector of zk, captures mutual information (and c(⃗z)
uniform if and only if all Xi independent)
Given the marginal densities fi(x) =

dFi(x)
dx , then f (⃗x = c(F1(x1), ...,Fk(xk))

∏k
i=1 fi(xi)

Now do horizontal morphing on the marginals separately in each variable, then interpolate
vertically the copula density
Much faster than Inverse Rosenblatt transformation
Results intuitively more “reasonable”

Graphics by Igor Volobouev
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How we tend to call things in CMS

Analytic knowledge on λ,m
Discretized knowledge on λ,m Statistical fluctuations
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Accounting for various effects: statistical fluctuations

Slide by Olaf Behnke
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Morphing in the Higgs Combination Tool

Slide by Olaf Behnke
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Morphing in the theta tool

Slide by Olaf Behnke
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Horizontal smoothing

Horizontal smoothing with well-established
methods in literature
Kernel-based methods depend on choice of
bandwith

Discussed in detail last week (Nick McColl)

Local linear regression depends on locality
window

Slide by Olaf Behnke
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Smoothing and Goodness-of-Fit tests
To compare the smoothed and unsmoothed templates it’s tempting to use χ2

However, χ2 not well defined; by construction, smoothing alters number of degrees of freedom
You have first to treat your smoothing method as a linear filter, and calculate NDoF (in KDE,
related to autocorrelation of the kernels used)

Somehow related to time series analysis: reduction of NDoF
There is literature on this, we can put it in twiki; in the meantime, ask Igor Volobouev ,
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Caveats on modelling theory uncertainties (P.V. at Benasque 2018)
Cross section uncertainty: easy, assuming a gaussian for the constraint term
Lfull(s, b) = P(NSR|s + b)× G(b̃|b, 0.08)
Factorization scale: what distribution F is meant to model the constraint???
Lfull(s, b) = P(NSR|s + b(αFS)×F(α̃FS|αFS)

“Easy” case, there is a single parameter αFS, clearly connected to the underlying physics model
Hadronization/fragmentation model: run different generators, observing different results

Difficult! Not just one parameter, how do you model it in the likelihood?
2-point systematics: you can evaluate two (three, four...) configurations, but underlying reason for
difference unclear
Often define empirical response function

Counting experiment: easy extend to other
generators

There must exist a value of α corresponding
to SHERPA

Shape experiment: ouch!

SHERPA is in general not obtainable as an
interpolation of PYTHIA and HERWIG

Graphics from W. Verkerke
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Define a constraint term

Attempting to quantify our knowledge of the models

There is no single parameter, difficult to model the differences within a single underlying
model

Which of these is the “correct” one?

Graphics from W. Verkerke
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Solving the delta functions issue: discrete profiling

Label each shape with an integer, and use the integer as nuisance parameter

Can obtain the original log-likelihood as an envelope of different fixed discrete nuisance
parameter values
How do you define the various shapes?

Need many additional generators!
Interpolation unlikely to work (SHERPA is not midway between PYTHIA and POWHEG)

From arXiv:1408.6865
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The issue of over-constraining

How to interpret
constraints?

Not as measurements
Correlations in the fit
make interpretation
complicated

Avoid statements when
profiling as a nuisance
parameter

Graphics from ATLAS and W. Verkerke, as far as I remember
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Systematic uncertainties and closure tests

Closure tests are alternative procedures you can use to check if your measurement is robust
E.g. insensitive to systematic effects
Usually compare alternative result with nominal result (GoF test) to decide if closure test passed

Closure tests are PASS/FAIL tests
Correct course of action: if closure test fails, then there is a mistake in the tested procedure,
therefore modify/improve the procedre

If the alternative procedure highlights e.g. a recalibration to be done, then recalibrate (i.e. use the
better procedure)

Wrong course of action: if closure test fails, add discrepancy as uncertainty
The sentence “The closure test shows a 10% discrepancy, and we consequently assign it as
systematic uncertainty” is pure BS (although you’ll sadly find it in many published papers)

In general, if a closure test fails, always prioritize a mitigation or suppression of the effect by
improveming your analysis methods

A systematic should be added only as a very very last resort
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Packages

numpy

matplotlib

mpl_toolkits

inspect

iminuit

pyhf

scipy

statsmodels

itertools

pandas

statistics
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Non-exhaustive list of references

Frederick James: Statistical Methods in Experimental Physics - 2nd Edition, World Scientific

Glen Cowan: Statistical Data Analysis - Oxford Science Publications

Louis Lyons: Statistics for Nuclear And Particle Physicists - Cambridge University Press

Louis Lyons: A Practical Guide to Data Analysis for Physical Science Students - Cambridge
University Press

E.T. Jaynes: Probability Theory - Cambridge University Press 2004

Annis?, Stuard, Ord, Arnold: Kendall’s Advanced Theory Of Statistics I and II

Pearl, Judea: Causal inference in Statistics, a Primer - Wiley

R.J.Barlow: A Guide to the Use of Statistical Methods in the Physical Sciences - Wiley

Kyle Cranmer: Lessons at HCP Summer School 2015

Kyle Cranmer: Practical Statistics for the LHC - http://arxiv.org/abs/1503.07622

Roberto Trotta: Bayesian Methods in Cosmology - https://arxiv.org/abs/1701.01467

Harrison Prosper: Practical Statistics for LHC Physicists - CERN Academic Training Lectures,
2015 https://indico.cern.ch/category/72/

Christian P. Robert: The Bayesian Choice - Springer

Sir Harold Jeffreys: Theory of Probability (3rd edition) - Clarendon Press

Harald Crámer: Mathematical Methods of Statistics - Princeton University Press 1957 edition
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Backup
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