From Time Expansion (Texp) to Time of Flight (ToF) with MURAVES Data

Sept. 23, 2021
Samip Basnet
Lectures in Muography (w/ Dr. L. Cimmino)

■UCLouvain

OUTLINE

- Time Expansion (Texp) : A Short Recap
- Texp characterization of MURAVES boards
\checkmark An example board in BLU telescope
\checkmark Texp results
- Time of Flight (ToF) with MURAVES data
\checkmark Motivation
\checkmark Expected ToF vs measured ToFs
\checkmark Raw TDC diff. X and Y views
\checkmark Use of Texp characterization results for ToF calculation (incl. Fiber Delay)
- Issues with measured ToFs
- Use of 'free-sky' data to deal with ToF issues

Texp Charaterization of the MURAVES boards

- Each plane consisits of two electronics boards (i.e., 'slave' boards) for two modules, handling 32 channels each
- With each layer consisting two planes, we have 16 boards in total for calibration
- Due to incorrect capacitance being used, the boards had to be refurbished and their Texp characterization had to be performed again

Figure : Schematics of one of the planes in MURAVES detector

Texp Charaterization of the MURAVES boards

- Each plane consisits of two electronics boards (i.e., 'slave' boards) for two modules, handling 32 channels each
- With each layer consisting two planes, we have 16 boards in total for calibration
- Due to incorrect capacitance being used, the boards had to be refurbished and their Texp characterization had to be performed again

Figure : Non-linear behaviour shown by the board

Texp Charaterization of the MURAVES boards

- A reference board with known time expansion characteristics and a master board to provide a global stop trigger were used for this calibration
- Delays (which is correlated with the $\left.t_{\text {charge }}\right)$ were introduced from 2 to 20 ns and the subsequent $t_{\text {charge }}$ (in terms of TDC counts) were read-out for each board
- $t_{\text {dicharge }}=E . t_{\text {charge }}+C$

Here, E is the expansion factor (E-factor) and C is the intercept

Figure : Correct Texp characterization of an electronic boards exhibiting linear behaviour

Texp Charaterization of the BLU boards results

Boards \#	E-factor	Intercept
0	7.21	558.1
1	6.87	532.5
2	6.73	494.7
3	7.11	549.9
4	7.26	620.2
5	6.99	565.3
6	7.35	651.3
7	7.33	594.3
8	7.99	620.5
9	7.30	578.8
10	6.95	564.1
11	7.37	655.0
12	7.18	571.6
13	7.30	584.5
14	7.05	566.5
15	7.45	659.1

Time of Flight (ToF) in absorption-based muography

- In high energy physics, ToF is typically used as a means to separate particles by mass
- For MURAVES, the detector is oriented quasi-horizontally so soft muons scattering off the ground behind the detector can enter from its rear
- These backward muons may even overwhelm the muons that carry information about the target and thus have to be rejected
- ToF of the detected muons between front and rear layer of the telescope can be used to reject ${ }_{8}$ these backward muon background

MURAVES Geometry

Expected Time of Flight (ToF_exp)

Side View

- Distance travelled by incoming muon between two chosen stations can be calculated based in the goemetry of the detector and the θ and φ information of the reconstructed track
- With speed of light (c), one can easily compute expected ToF using
$\mathrm{ToF}_{\text {exp }}=($ total distance travelled) $/ \mathrm{c}$

Expected Time of Flight (ToF_exp)

- Distance travelled by incoming muon between two chosen stations can be calculated based in the goemetry of the detector and the θ and φ information of the reconstructed track
- With speed of light (c), one can easily compute expected ToF using
$\mathrm{ToF}_{\text {exp }}=($ total distance travelled $) / \mathrm{c}$
- There is delay between the hit time and the time taken for the signals to reach the electronic boards
- This delay time can be also be calculated if the hit positions are known

Example of expected ToF using hit-position information and including fibre delay for NERO

Measured Time of Flight (ToF_mes)

- Raw TDC information as well as positions of the hits are easily accessible in the ntuples
- First, the raw TDC is converted into 'actual' time in ns
- However, in order to do so, it is necessary to determine the relevant boards that were involved in the datataking
- Once the relevant boards are known, the time expansion calibration results has to be applied for TDC-ns converison
- Delay correction
- The difference between the converted time after correcting for fiber delays across two different stations gives an estimate on ToF (i.e, measured ToF).

Measured Time of Flight (ToF_mes)

Example of meaured ToF using TDC information and Texp calibration results

Measured Time of Flight (ToF_mes)

For XX view: $\quad \operatorname{ToF}_{X}=\left(\frac{\left(T_{1 X}-T_{1}^{0}\right)}{E_{1}}+\frac{\Delta L_{y 1}}{\vartheta_{\text {fiber }}}\right)-\left(\frac{\left(T_{4 X}-T_{4}^{0}\right)}{E_{4}}+\frac{\Delta L_{y 4}}{\vartheta_{\text {fiber }}}\right)$
For YY view: $\quad \operatorname{ToF}_{Y}=\left(\frac{\left(T_{1 Y}-T_{1}^{0}\right)}{E_{1}}+\frac{\Delta L_{z 1}}{\vartheta_{\text {fiber }}}\right)-\left(\frac{\left(T_{4 Y}-T_{4}^{0}\right)}{E_{4}}+\frac{\Delta L_{z 4}}{\vartheta_{\text {fiber }}}\right)$

- Adjust the equations above accordingly for $X Y$ and $Y X$ views ToF ($w /$ delay) calculation.

Representative ToF_mes vs $\theta_{\text {raw }}$ distributions in both X and Y views

Concerns and Issues after the first look

- Presence of pedestal in the measured ToF distributions (in NERO)
- Unusual peak positions in the mesured ToF distributions
- Wide range of ToFs (~-200 to 200 ns)
- Disagreement between measured ToFs from X and Y views
- Discrepancy between measured ToFs and expected ToFs (Note that average of ToF exp distribution gives 'correct' time)

Concerns and Issues after the first look

- Presence of pedestal in the measured ToF distributions (in NERO)
- Unusual peak positions in the mesured ToF distributions
- Wide range of ToFs (~-200 to 200 ns)
- Disagreement between measured ToFs from X and Y views
- Discrepancy between measured ToFs and expected ToFs (Note that average of ToF_exp distribution gives 'correct' time)

Measured ToFs between Stns \#1 and \#3 for NERO in X and Y views

Dividing the detector planes in various regions

Example:

XX - boards	YY - boards	XY - boards	YX - boards
\checkmark 0-12	\checkmark 2-14	\checkmark 0-14	\checkmark 2-12
\checkmark 0-13	\checkmark 2-15	\checkmark 0-15	\checkmark 2-13
\checkmark 1-12	\checkmark 3-14	\checkmark 1-14	\checkmark 3-12
\checkmark 1-13	\checkmark 3-15	\checkmark 1-15	\checkmark 3-13

Dividing the detector planes in various regions

$\theta-\phi$ distribution

Dividing the detector planes in various regions

Single Peak Feature

- 8 ToF distributions in total
- 4 with XX boards combination
- 2 with XY boards combination
- 2 with YX boards combination

Single Peak with
"Shoulder "Feature

- 4 ToF distributions in total
- All 4 with YY boards combination

Double Peaks Feature

- 4 ToF distributions in total
- 2 with X Y boards combination
- 2 with YX boards combination

Use of 'free-sky' data to deal with ToF issues

Steep Track Selection

Raw TDC Difference (Stns \#1 and 3)

raw_TDC_diff_1 (1X_3X)

Raw TDC Difference (Stns \#1 and 3)

raw_TDC_diff_5 (1Y_3X)

Raw TDC Difference (Stns \#1 and 3)

raw_TDC_diff_8 (1Y_3Y)

Stn \#3

Raw TDC Difference (Stns \#1 and 3)

raw_TDC_diff_9 (1Y_3Y)

Raw TDC Difference (Stns \#1 and 3)

Regions	Boards Involved	Raw TDC Difference	
	\#1 \& \#9	-197.1	NERO
1	\#1 \& \#10	-130.8	18.3
2	\#1 \& \#11	-64.0	-42.1
3	\#2 \& \#9	-106.0	192.1
4	\#3 \& \#9	-453.2	33.6
5	\#2 \& \#10	-49.2	126.6
6	\#2 \& \#11	-20.6	72.1
7	\#3 \& \#10	-402.4	-21.7
8	\#3 \& \#11	-320.0	-92.8
9			

Stn \#3

Overlap Region NERO vs ROSSO

Boards 1, 2, and 6

Boards 1, 2, and 9

Boards 1, 3, and 6

Boards 1, 3, and 9

Boards Combo	NERO					
	TDC diff. (counts)	Delay term (ns)				
	Blank Blue	Shaded Blue	Shaded Red	Blank Blue	Shaded Blue	Shaded Red
1-2 (9 fixed)	83.2	86.1	192.1	7.1	5.1	-21.0
1-3 (9 fixed)	83.2	80.7	33.6	7.1	8.7	3.1
5-6 (9 fixed)	32.7	53.5	48.1	-2.4	-2.9	14.2
5-7 (9 fixed)	32.7	52.4	138.2	-2.4	-2.1	-14.6
9-10 (1 fixed)	83.2	84.7	18.4	7.1	5.8	5.5
9-11 (1 fixed)	83.2	81.9	-42.1	7.1	8.1	14.3
5-6 (1 fixed)	52.8	53.5	39.9	7.4	7.0	0.9
5-7 (1 fixed)	52.8	52.9	-54.5	7.4	7.6	19.2

$\Delta T D C=-5.4$ counts Δ delay term $=3.6 \mathrm{~ns}$
$\Delta T D C=-1.1$ counts Δ delay term $=0.8 \mathrm{~ns}$
$\Delta T D C=-2.8$ counts Δ delay term $=2.3 \mathrm{~ns}$ $\Delta T D C=-0.6$ counts Δ delay term $=0.6 \mathrm{~ns}$

Boards Combo	ROSSO					
	TDC diff. (counts)	Delay term (ns)				
	Blank Blue	Shaded Blue	Shaded Red	Blank Blue	Shaded Blue	Shaded Red
1-2 (9 fixed)	-197.1	-192.7	-106.0	16.5	14.4	0.4
1-3 (9 fixed)	-197.1	-200.7	-453.2	16.5	18.1	56.0
5-6 (9 fixed)	313.2	-521.6	-272.2	n / a	n / a	n / a
5-7 (9 fixed)	313.2	-533.1	596.7	n / a	n / a	n / a
9-10 (1 fixed)	-197.1	-193.4	-130.8	16.5	14.9	5.3
9-11 (1 fixed)	-197.1	-200.1	-64.0	16.5	17.7	2.5
5-6 (1 fixed)	-528.0	-521.6	-461.1	n / a	n / a	n / a
5-7 (1 fixed)	-528.0	-533.1	-493.5	n / a	n / a	n / a

$\Delta T D C=-8.0$ counts Δ delay term $=3.5 \mathrm{~ns}$
$\Delta T D C=-11.5$ counts Δ delay term $=\mathrm{n} / \mathrm{a}$
$\Delta T D C=-6.7$ counts Δ delay term $=2.8 \mathrm{~ns}$
$\Delta T D C=-11.5$ counts Δ delay term $=\mathrm{n} / \mathrm{a}$

